AN ENDPOINT ESTIMATE FOR MAXIMAL MULTILINEAR SINGULAR INTEGRAL OPERATORS

Yulan Jiao

(Zhengzhou Information Engineering University, China)

Received Apr. 16, 2007

Abstract. A weak type endpoint estimate for the maximal multilinear singular integral operator

$$T_A^*f(x) = \sup_{\varepsilon > 0} \left| \int_{|x-y| > \varepsilon} \frac{\Omega(x-y)}{|x-y|^{n+1}} (A(x) - A(y) - \nabla A(y)(x-y)) f(y) \mathrm{d}y \right|$$

is established, where Ω is homogeneous of degree zero, integrable on the unit sphere and has vanishing moment of order one, and *A* has derivatives of order one in BMO(\mathbb{R}^n). A regularity condition on Ω which implies an *L*log*L* type estimate of T_A^* is given.

Key words: maximal multilinear singular integral operator, bounded mean oscillation, vanishing condition

AMS (2000) subject classification: 42B20

1 Introduction

We work on \mathbb{R}^n , $n \ge 2$. Let Ω be homegeneous of degree zero, integrable on the unit sphere S^{n-1} and satisfy the vanishing condition

$$\int_{S^{n-1}} \Omega(\theta) \theta \mathrm{d}\theta = 0. \tag{1}$$

Let *A* be a function on \mathbb{R}^n having derivatives of order one in BMO(\mathbb{R}^n). For $x, y \in \mathbb{R}^n$, set

$$R(A; x, y) = A(x) - A(y) - \nabla A(y)(x - y).$$
(2)

Define the multilinear singular integral operator T_A by

$$T_A f(x) = \mathbf{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} R(A; x, y) f(y) dy$$
(3)

and the corresponding maximal operator T_A^* by

$$T_A^* f(x) = \sup_{\varepsilon > 0} |T_{A,\varepsilon} f(x)|, \tag{4}$$

where $T_{A,\varepsilon}f(x)$ is the truncated operator defined by

$$T_{A,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{\Omega(x-y)}{|x-y|^{n+1}} R(A;x,y) f(y) \mathrm{d}y.$$
(5)

The operators T_A and T_A * have been considered by many authors. A well known result of Cohen^[1] states that if $\Omega \in \text{Lip}_1(S^{n-1})$, then T_A^* is a bounded operator on $L^p(\mathbb{R}^n)$ with the bound $C \|\nabla A\|_{\text{BMO}(\mathbb{R}^n)}$ for any $1 . Hofmann^[2] shows that <math>\Omega \in \bigcup_{q>1} L^q(S^{n-1})$ is a sufficient condition such that T_A is bounded on $L^p(\mathbb{R}^n)$ for any $1 . Recently, Hu^[3] gave a regularity condition on <math>\Omega$ which is fairly weaker than that $\Omega \in \text{Lip}_1(S^{n-1})$ and implies the $L^p(\mathbb{R}^n)$ boundedness of T_A^* for any $1 . For <math>\Omega \in L^1(S^{n-1})$, define the L^1 -modulus of continuity of Ω by

$$\omega(\delta) = \sup_{|\rho| \le \delta} \int_{S^{n-1}} |\Omega(\rho x) - \Omega(x)| \mathrm{d}x,$$

where the supremum is taken over all rotations on the unit sphere, and $|\rho|$ denotes the distance of ρ from the identity rotation. Hu^[3] shows that if the L¹-modulus of continuity of Ω satisfies

$$\int_0^1 \omega(\delta) \log\left(2 + \frac{1}{\delta}\right) \frac{1}{\delta} d\delta < \infty, \tag{6}$$

then T_A^* is bounded on $L^p(\mathbb{R}^n)$ for any p with 1 .

For the endpoint estimates of T_A and T_A^* , Hu and Yang show in [4] that if $\Omega \in \text{Lip}_{\beta}(S^{n-1})$ for some β with $0 < \beta \le 1$, then T_A satisfies an $L\log L$ type estimate, that is, there is a positive constant *C* such that for any bounded function *f* and $\lambda > 0$,

$$\left|\left\{x \in \mathbb{R}^{n} : |T_{A}f(x)| > \lambda\right\}\right| \le C \int_{\mathbb{R}^{n}} \frac{|f(x)|}{\lambda} \log\left(2 + \frac{|f(x)|}{\lambda}\right) \mathrm{d}x.$$

$$\tag{7}$$

This estimate is obviously an analogy of the weak type endpoint estimate for commutators of Calderón-Zygmund, which was established by Pérez in [5]. By a Cotlar type inequality and the weak type estimate for the operator T_A , Hu and Li^[6] show that if $\Omega \in \text{Lip}_{\beta}(S^{n-1})$ ($0 < \beta \leq 1$), then the maximal operator T_A^* also satisfies the estimate (7). The main purpose of this paper is to improve the *L*log*L* type estimate (7) for T_A^* established by Hu and Li. We will show that if Ω satisfies (6), then T_A^* also satisfies the estimate (7). Precisely, we will prove

Theorem 1. Let Ω be homogeneous of degree zero and satisfy the vanishing condition (1), A have derivatives of order one in BMO(\mathbb{R}^n). If Ω satisfies the regularity condition (6), then there exists a constant C depending only on n and $\|\nabla A\|_{\text{RBMO}(\mathbb{R}^n)}$, such that for any bounded function f and $\lambda > 0$,

$$\left|\left\{x \in \mathbb{R}^n : |T_A^*f(x)| > \lambda\right\}\right| \le C \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log\left(2 + \frac{|f(x)|}{\lambda}\right) \mathrm{d}x.$$

It is obvious that the regularity condition (6) is weaker than that $\Omega \in \text{Lip}_{\beta}(S^{n-1})$ with $0 < \beta \leq 1$. We point out that in the proof of Theorem 1, we are very much motivated by the work of Grafakos^[7].

Throughout this paper, C denotes a constant independent of the main parameters involved but its value may differ from line to line. For a measurable set E, χ_E denote the characteristic function of E. For a cube Q and a locally integrable function f, $m_Q(f)$ denote the mean value of f on Q.

2 Proof of Theorem 1

We begin with some preliminary lemmas.

Lemma 1. Let b be a function on \mathbb{R}^n with derivatives of order one in $L^q(\mathbb{R}^n)$ for some q, $n < q < \infty$. Then

$$|b(x) - b(y)| \le C_n |x - y| \left(\frac{1}{|\widetilde{Q}(x, y)|} \int_{\widetilde{Q}(x, y)} |\nabla b(z)|^q \mathrm{d}z\right)^{1/q},$$

where $\widetilde{Q}(x, y)$ is the cube centered at x and having side length $5\sqrt{n}|x-y|$.

Lemma 2. There exists a positive constant C such that for any $t_1, t_2 \ge 0$ and a > 0,

$$t_1 t_2 \le C(t_1 \log(2 + a t_1) + a^{-1} \exp t_2).$$
 (8)

Note that the Young functions $\Phi(t) = t\log(2+t)$ and $\Psi(t) = \exp t$ are complementary. It is well known that there is a positive constant *C* such that for any $t_1, t_2 > 0$,

$$t_1t_2 \leq C(\Phi(t_1) + \Psi(t_2)).$$

The inequality (8) follows from the last inequality immediately.

Proof of Theorem 1. Without loss of generality, we may assume that $\|\nabla A\|_{BMO(\mathbb{R}^n)} = 1$. For each fixed bounded function f and λ , applying the Calderón-Zygmund decomposition to f at the level λ , we can obtain a sequence of cubes $\{Q_i\}$ with disjoint interiors such that

$$\lambda < \frac{1}{|Q_j|} \int_{Q_j} |f(x)| dx \le 2^n \lambda,$$

$$|f(x)| \le \lambda, \quad \text{a.e.} \quad x \in \mathbb{R}^n \setminus \bigcup_j Q_j.$$

Let

$$g(x) = f(x)\chi_{\mathbb{R}^n \setminus \cup_j \mathcal{Q}_j}(x) + \sum_j m_{\mathcal{Q}_j}(f)\chi_{\mathcal{Q}_j}(x)$$

and

$$h(x) = f(x) - g(x) = \sum_{j} (f(x) - m_{Q_j}(f)) \chi_{Q_j}(x).$$

Since $||g||_{\infty} \leq C\lambda$ and $||g||_2 \leq C\lambda ||f||_1$, it follows from $L^2(\mathbb{R}^n)$ boundedness of T_A^* (see [3])

$$|\{x \in \mathbb{R}^n : T^*_A g(x) > \lambda\}| \le C\lambda^{-2} ||T^*_A g||_2 \le C\lambda^{-1} ||f||_1.$$

For each fixed *j* let $Q_j^* = 4nQ_j$. Note that

$$\left| \cup_j \mathcal{Q}_j^* \right| \leq C \sum_j |\mathcal{Q}_j| \leq C \lambda^{-1} \|f\|_1.$$

Therefore, the proof of Theorem 1 can be reduced to prove that for some positive constant D independent of f and λ ,

$$\left|\left\{x \in \mathbb{R}^n \setminus \bigcup_j Q_j^* : T_A^* h(x) > D\lambda\right\}\right| \le C\lambda^{-1} \|f\|_1.$$
(9)

For each fixed j, let

$$A_j(y) = A(y) - m_{Q_j}(\nabla A)y.$$

Note that for any $x, y \in \mathbb{R}^n$ and any fixed j,

$$A(x) - A(y) - \nabla A(y)(x - y) = A_j(x) - A_j(y) - \nabla A_j(y)(x - y)$$

For each fixed $\varepsilon > 0$ and k with $1 \le k \le n$, define the operator S_{ε}^k by

$$S_{\varepsilon}^{k}u(x) = \int_{|x-y| > \varepsilon} K(x-y) \frac{x_{k} - y_{k}}{|x-y|} u(y) dy$$

where $K(x) = \Omega(x)|x|^{-n}$. Write

$$T_{A,\varepsilon}h(x) = \sum_{j} \int_{|x-y|>\varepsilon} K(x-y) \frac{A_{j}(x) - A_{j}(y)}{|x-y|} h_{j}(y) dy + \sum_{k=1}^{n} \int_{|x-y|>\varepsilon} K(x-y) \frac{x_{k} - y_{k}}{|x-y|} \sum_{j} \left(\frac{\partial^{k}A(y)}{\partial y_{k}} - m_{Q_{j}}(\frac{\partial^{k}A}{\partial y_{k}}) \right) h_{j}(y) dy = G^{\varepsilon}(x) + \sum_{k=1}^{n} S_{\varepsilon}^{k} \left(\sum_{j} \left(\frac{\partial^{k}A(y)}{\partial y_{k}} - m_{Q_{j}}\left(\frac{\partial^{k}A}{\partial y_{k}} \right) \right) h_{j} \right) (x).$$

A well known result in the theory of Calderón and Zygmund tells us that the operator $S^{,*}$ defined by

$$S^{k,*}u(x) = \sup_{\varepsilon>0} \left| S^k_{\varepsilon} u(x) \right|$$

is bounded from $L^1(\mathbb{R}^n)$ to weak $L^1(\mathbb{R}^n)$. Thus by Lemma 2,

$$\begin{split} &|\{x \in \mathbb{R}^{n} : \sum_{k=1}^{n} S^{k,*} \Big(\sum_{j} \Big(\frac{\partial^{k} A(y)}{\partial y_{k}} - m_{Q_{j}} \Big(\frac{\partial^{k} A}{\partial y_{k}} \Big) \Big) h_{j} \Big)(x) > \lambda \} |\\ &\leq C \sum_{j} \int_{Q_{j}} \frac{|\nabla A(y) - m_{Q_{j}} (\nabla A)| \frac{|h_{j}(y)|}{\lambda} dy}{\sum \left(2 \sum_{j} \int_{Q_{j}} \frac{|h_{j}(x)|}{\lambda} \log \Big(2 + \frac{|h_{j}(x)|}{\lambda} \Big) dx + C \int_{Q_{j}} \exp \Big(\frac{|\nabla A(x) - m_{Q_{j}} (\nabla A)|}{B_{1}} \Big) dx \\ &\leq C \sum_{j} \int_{Q_{j}} \frac{|h_{j}(x)|}{\lambda} \log \Big(2 + \frac{|h_{j}(x)|}{\lambda} \Big) dx + \sum_{j} |Q_{j}| \\ &\leq C \int_{\mathbb{R}^{n}} \frac{|f(x)|}{\lambda} \log \Big(2 + \frac{|f(x)|}{\lambda} \Big) dx, \end{split}$$

where we have invoked the John-Nirenberg inequality, which states that there are two positive constants B_1 and B_2 such that for any $b \in BMO(\mathbb{R}^n)$ and cube Q,

$$\frac{1}{|Q|}\int_{Q}\exp\Big(\frac{|b(x)-m_{Q}(b)|}{B_{1}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}}\Big)\mathrm{d}x\leq B_{2}.$$

We now turn our attention to the term $\sup_{\varepsilon>0} |G^{\varepsilon}|$. As in [7, p. 175], for each fixed $x \in \mathbb{R}^n \setminus \bigcup_j Q_j^*$ and $\varepsilon > 0$, we define

$$J_1(x, \varepsilon) = \left\{ j : |x - y| < \varepsilon \text{ for all } y \in Q_j \right\},$$

$$J_2(x, \varepsilon) = \left\{ j : |x - y| > \varepsilon \text{ for all } y \in Q_j \right\},$$

and

$$J_3(x,\varepsilon) = \{j: Q_j \cap \{y: |y-x| > \varepsilon\} \neq \emptyset, Q_j \cap \{y: |y-x| < \varepsilon\} \neq \emptyset\}.$$

Set

$$h_j(x,\varepsilon) = |\mathcal{Q}|^{-1} \int_{\mathcal{Q}_j} h_j(y) \chi_{\{y: |y-x| > \varepsilon\}}(y) \mathrm{d}y.$$

It is easy to see that $|h_j(x, \varepsilon)| \leq 2^n \lambda$. Write

$$\begin{split} |\mathbf{G}^{\varepsilon}(x)| &\leq \sum_{j \in J_2(x,\varepsilon)} \left| \int_{|x-y| > \varepsilon} K(x-y) \frac{A_j(x) - A_j(y)}{|x-y|} h_j(y) \mathrm{d}y \right| \\ &+ \sum_{j \in J_3(x,\varepsilon)} \left| \int_{|x-y| > \varepsilon} K(x-y) \frac{A_j(x) - A_j(y)}{|x-y|} h_j(y) \mathrm{d}y \right| \\ &\leq \sum_{j \in J_2(x,\varepsilon)} \left| \int_{\mathbb{R}^n} K(x-y) \frac{A_j(x) - A_j(y)}{|x-y|} h_j(y) \mathrm{d}y \right| \\ &+ \sum_{j \in J_3(x,\varepsilon)} \left| \int_{Q_j} K(x-y) \frac{A_j(x) - A_j(y)}{|x-y|} (h_j(y) \chi_{\{y: |y-x| > \varepsilon\}}(y) - h_j(x,\varepsilon)) \mathrm{d}y \right| \\ &+ 2^n \lambda \sum_{j \in J_3(x,\varepsilon)} \left| \int_{Q_j} K(x-y) \frac{A_j(x) - A_j(y)}{|x-y|} \mathrm{d}y \right| \\ &= \mathbf{G}_1^{\varepsilon}(x) + \mathbf{G}_2^{\varepsilon}(x) + \mathbf{G}_3^{\varepsilon}(x). \end{split}$$

Choose $x_j \in 3Q_j \setminus 2Q_j$. For each fixed *j*, define $H_j(x)$ and $I_j(x)$ by

$$\begin{aligned} \mathbf{H}_{j}(x) &= \int_{\mathbb{R}^{n}} \left| K(x-y) - K(x-x_{j}) \right| \frac{|A_{j}(x) - A_{j}(y)|}{|x-y|} |h_{j}(y)| \mathrm{d}y \\ &+ \int_{\mathbb{R}^{n}} |K(x-x_{j})| \frac{|A_{j}(x_{j}) - A_{j}(y)|}{|x-y|} |h_{j}(y)| \mathrm{d}y \\ &+ |K(x-x_{j})| |A_{j}(x) - A_{j}(x_{j})| \frac{1}{|x-x_{j}|^{2}} \int_{\mathbb{R}^{n}} |y-x_{j}| |h_{j}(y)| \mathrm{d}y, \end{aligned}$$

and

$$\begin{split} \mathbf{I}_{j}(x) &= \int_{\mathcal{Q}_{j}} \left| K(x-y) - K(x-x_{j}) \right| \frac{|A_{j}(x) - A_{j}(y)|}{|x-y|} \mathrm{d}y \\ &+ \int_{\mathcal{Q}_{j}} |K(x-x_{j})| \frac{|A_{j}(x_{j}) - A_{j}(y)|}{|x-y|} \mathrm{d}y \\ &+ |\mathcal{Q}_{j}|^{1+1/n} |K(x-x_{j})| |A_{j}(x) - A_{j}(x_{j})| \frac{1}{|x-x_{j}|^{2}}. \end{split}$$

By the vanishing moment of h_j , a trivial computation shows that for $x \in \mathbb{R}^n \setminus \cup_j Q_j^*$,

$$\mathbf{G}_{1}^{\varepsilon}(x) \leq C \sum_{j} \mathbf{H}_{j}(x),$$

and

$$\mathbf{G}_{2}^{\boldsymbol{\varepsilon}}(x) \leq C \sum_{j} \left(\mathbf{H}_{j}(x) + \lambda \mathbf{I}_{j}(x) \right)$$

If we set

$$A^{\varepsilon}(y) = A(y) - m_{B(x,\varepsilon)}(\nabla A)y,$$

an application of Lemma 1 tells us that for any $x, y \in \mathbb{R}^n$ with $\varepsilon/2 \le |x-y| \le 3\varepsilon/2$,

$$|A^{\varepsilon}(x) - A^{\varepsilon}(y) - \nabla A^{\varepsilon}(y)(x - y)| \le C\varepsilon \left(1 + |\nabla A(y) - m_{B(x,\varepsilon)}(\nabla A)|\right).$$

Since for $x \in \mathbb{R}^n \setminus \bigcup_j Q_j^*$,

$$\bigcup_{j\in J_3(x,\varepsilon)} Q_j \subset B(x, 3\varepsilon/2) \setminus B(x, \varepsilon/2).$$

Applying the inequality (8) with $a = \varepsilon^n$, we then have

$$\begin{array}{lll} \mathrm{G}_{3}^{\varepsilon}(x) & \leq & 2^{n}\lambda\sum_{j\in J_{3}(x,\varepsilon)}\int_{Q_{j}}|K(x-y)|\frac{|A(x)-A(y)-\nabla A(y)(x-y)|}{|x-y|}\mathrm{d}y\\ & +2^{n}\lambda\sum_{j\in J_{3}(x,\varepsilon)}\int_{Q_{j}}|K(x-y)||\nabla A(y)-m_{Q_{j}}(\nabla A)|\mathrm{d}y\\ & \leq & 2^{n}\lambda\int_{B(x,3\varepsilon/2)\setminus B(x,\varepsilon/2)}|K(x-y)|\frac{|A^{\varepsilon}(x)-A^{\varepsilon}(y)-\nabla A^{\varepsilon}(y)(x-y)|}{|x-y|}\mathrm{d}y\\ & +C\lambda\sum_{j\in J_{3}(x,\varepsilon)}\int_{Q_{j}}|K(x-y)|\mathrm{log}(2+\varepsilon^{n}|K(x-y)|)\mathrm{d}y\\ & +C\lambda\varepsilon^{-n}\sum_{j\in J_{3}(x,\varepsilon)}\int_{Q_{j}}\exp\Big(\frac{|\nabla A(y)-m_{Q_{j}}(\nabla A)|}{C_{2}}\Big)\mathrm{d}y\\ & \leq & C\lambda\int_{B(x,3\varepsilon/2)\setminus B(x,\varepsilon/2)}|K(x-y)|\mathrm{log}(2+\varepsilon^{n}|K(x-y)|)\mathrm{d}y\\ & +C\lambda\varepsilon^{-n}\sum_{j\in J_{3}(x,\varepsilon)}|Q_{j}|\\ & \leq & C\lambda. \end{array}$$

We thus obtain that for $x \in \mathbb{R}^n \setminus Q_j^*$,

$$\sup_{\varepsilon>0} |\mathbf{G}^{\varepsilon}(x)| \le C\lambda + C\sum_{j} \left(\lambda \mathbf{I}_{j}(x) + \mathbf{H}_{j}(x)\right).$$
(10)

Now we estimate the integral on $\mathbb{R}^n \setminus \bigcup_j Q_j^*$ for H_j and I_j . A familiar argument involving Lemma 1 and the John-Nirenberg inequality gives us that for $x \in \mathcal{D}Q_j^* \setminus \mathcal{D}_j^{l-1}Q_j^*$ with $l \ge 1$ and

$$\begin{aligned} |A_j(x) - A_j(y)| &\leq C|x - y| \left(\frac{1}{|\widetilde{\mathcal{Q}}(x, y)|} \int_{\widetilde{\mathcal{Q}}(x, y)} |\nabla A(z) - m_{\mathcal{Q}_j}(\nabla A)|^q dz \right)^{1/q} \\ &\leq Cl|x - y|, \end{aligned}$$

and

$$|A_j(x_j) - A_j(x)| \le Cl|x - x_j|, \qquad |A_j(x_j) - A_j(y)| \le C|x_j - y|,$$

where $n < q < \infty$. Thus for $x \in 2^l Q_j^* \setminus 2^{l-1} Q_j^*$

$$\begin{split} \mathrm{H}_{j}(x) &\leq Cl \int_{\mathbb{R}^{n}} \left| K(x-y) - K(x-x_{j}) \right| |h_{j}(y)| \mathrm{d}y + Cl \frac{|\Omega(x-x_{j})|}{|x-x_{j}|^{n+1}} |Q_{j}|^{1/n} ||h_{j}||_{1} \\ &\leq \frac{Cl}{|x-x_{j}|^{n}} \int_{\mathbb{R}^{n}} \left| \Omega(x-y) - \Omega(x-x_{j}) \right| \mathrm{d}y + Cl \frac{|\Omega(x-x_{j})|}{|x-x_{j}|^{n+1}} |Q_{j}|^{1/n} ||h_{j}||_{1}. \end{split}$$

On the other hand, by the same argument as used in [8], we know that there exist positive constants C_1 and C_2 , such that for any positive integer l,

$$\int_{2^l \mathcal{Q}_j^* \setminus 2^{l-1} \mathcal{Q}^*} \left| \Omega(x-y) - \Omega(x-x_j) \right| \mathrm{d}x \leq C_1 |2^l \mathcal{Q}_j| \int_{C_2 2^{-l-1} < \delta \leq C_2 2^{-l}} \omega(\delta) \frac{\mathrm{d}\delta}{\delta}.$$

This via a standard computation gives us

$$\begin{split} \sum_{j} \int_{\mathbb{R}^{n} \setminus Q_{j}^{*}} \mathcal{H}_{j}(x) \mathrm{d}x &= \sum_{j} \sum_{l=1}^{\infty} \int_{2^{l} Q_{j}^{*} \setminus 2^{l-1} Q_{j}^{*}} \mathcal{H}_{j}(x) \mathrm{d}x \\ &\leq \sum_{j} \int_{\mathbb{R}^{n}} |h_{j}(y)| \sum_{l=1}^{\infty} l |2^{l} Q_{j}| \int_{2^{l} Q_{j}^{*} \setminus 2^{l-1} Q_{j}^{*}} \left| \Omega(x-y) - \Omega(x-x_{j}) \right| \mathrm{d}x \mathrm{d}y \\ &+ \sum_{j} ||h_{j}||_{1} \sum_{l=1}^{\infty} l |Q_{j}|^{1/n} \int_{2^{l} Q_{j}^{*} \setminus 2^{l-1} Q_{j}^{*}} \frac{|\Omega(x-x_{j})|}{|x-x_{j}|^{n+1}} \mathrm{d}x \\ &\leq C \sum_{j} \int_{\mathbb{R}^{n}} |h_{j}(y)| \mathrm{d}y \leq C ||f||_{1}. \end{split}$$

Similarly, we cam obtain

$$\sum_{j} \int_{\mathbb{R}^n \setminus \mathcal{Q}_j^*} \mathbf{I}_j(x) \mathrm{d}x \le C \sum_{j} \sum_{l=1}^\infty \int_{2^l \mathcal{Q}_j^* \setminus 2^{l-1} \mathcal{Q}_j^*} \mathbf{I}_j(x) \mathrm{d}x \le C \sum_{j} |\mathcal{Q}_j| \le C \lambda^{-1} \|f\|_1.$$

We can now conclude the proof of Theorem 1. In fact, by the inequality (10) and the argu-

ment used in the estimate for H_i and I_i , if we choose D large enough, then

$$\begin{split} \left\{ x \in \mathbb{R}^n \setminus \bigcup_j \mathcal{Q}_j^* : \sup_{\varepsilon > 0} |G^{\varepsilon}(x)| > (D-1)\lambda \right\} | \\ &\leq \left| \left\{ x \in \mathbb{R}^n \setminus \bigcup_j \mathcal{Q}_j^* : \sum_j H_j(x) > \lambda \right\} \right| + \left| \left\{ x \in \mathbb{R}^n \setminus \bigcup_j \mathcal{Q}_j^* : \sum_j I_j(x) > C \right\} \right| \\ &\leq C\lambda^{-1} \sum_j \int_{\mathbb{R}^n \setminus \mathcal{Q}_j^*} H_j(x) dx \\ &+ C \sum_j \int_{\mathbb{R}^n \setminus \mathcal{Q}_j^*} I_j(x) dx \\ &\leq C\lambda^{-1} \sum_j \int_{\mathcal{Q}_j} |f(x)| dx + \sum_j |\mathcal{Q}_j|. \end{split}$$

Combining the estimates for $S^{k,*}\left(\sum_{j} \left(\frac{\partial^k A}{\partial y_k} - m_{Q_j}\left(\frac{\partial^k A}{\partial y_k}\right)\right)h_j\right)$ and $\sup_{\varepsilon>0} |G^{\varepsilon}|$ we then get the desired result (9).

References

- [1] Cohen, J., A Sharp Estimate for a Multilinear Singular Integral on \mathbb{R}^n , Indiana Univ. Math. J., 30(1981), 693-702.
- [2] Hofmann, S., On Certain Nonstandard Calderón-Zygmund Operators, Studia Math., 109(1999), 105-131.
- [3] Hu, G., L^p Boundedness for the Multilinear Singular Integral Operators, Integr. Equ. Oper. Theory, 52(2005), 437-449.
- [4] Hu, G. and Yang, D., Sharp Function Estimate and Weighted Norm Inequalities for the Multilinear Singular Integral Operators, Bull. London. Math. Soc., 35(2003), 759-769.
- [5] Pérez C., Endpoint Estimates for Commutators of Singular Integral Operators, J. Funct. Anal., 128(1995), 163-185.
- [6] Hu, G. and Li, D., A Cotlar Inequality for the Multilinear Singular Integral Operators and Its Applications, J. Math. Appl. and Appl., 290(2004), 639-653.
- [7] Grafakos, L., Estimates for Maximal Singular Integrals, Colloquium Math., 96(2003), 167-177.
- [8] Calderón, A. P., Weiss, M. and Zygmund, A., On the Existences of Singular Integrals, Proc. Symp. Pure, Math., 10(1967), 56-73.

School of Sciences Information Engineering University Zhengzhou, 450001 P. R. China

E-mail: musictree@163.com