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Abstract. A weak type endpoint estimate for the maximal multilinear singular integral
operator

T ∗
A f (x) = sup

ε>0

∣∣∣∣∫|x−y|>ε

Ω(x− y)
|x− y|n+1 (A(x)−A(y)−∇A(y)(x− y)) f (y)dy

∣∣∣∣
is established, where Ω is homogeneous of degree zero, integrable on the unit sphere and
has vanishing moment of order one, and A has derivatives of order one in BMO(R n). A
regularity condition on Ω which implies an LlogL type estimate of T ∗

A is given.
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1 Introduction

We work on R
n, n ≥ 2. Let Ω be homegeneous of degree zero, integrable on the unit sphere

Sn−1 and satisfy the vanishing condition∫
Sn−1

Ω(θ)θdθ = 0. (1)

Let A be a function on R
n having derivatives of order one in BMO(Rn). For x, y ∈ R

n, set

R(A; x, y) = A(x)−A(y)−∇A(y)(x− y). (2)

Define the multilinear singular integral operator TA by

TA f (x) = p.v.
∫

Rn

Ω(x− y)
|x− y|n+1 R(A; x, y) f (y)dy (3)

and the corresponding maximal operator T∗
A by

T ∗
A f (x) = sup

ε>0
|TA,ε f (x)|, (4)
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where TA,ε f (x) is the truncated operator defined by

TA,ε f (x) =
∫
|x−y|>ε

Ω(x− y)
|x− y|n+1 R(A; x, y) f (y)dy. (5)

The operators TA and TA∗ have been considered by many authors. A well known result of
Cohen [1] states that if Ω ∈ Lip1(S

n−1), then T ∗
A is a bounded operator on Lp(Rn) with the bound

C‖∇A‖BMO(Rn) for any 1 < p < ∞. Hofmann [2] shows that Ω ∈ ⋃q>1 Lq(Sn−1) is a sufficient

condition such that TA is bounded on Lp(Rn) for any 1 < p < ∞. Recently, Hu [3] gave a regu-
larity condition on Ω which is fairly weaker than that Ω ∈ Lip1(S

n−1) and implies the Lp(Rn)
boundedness of T∗

A for any 1 < p < ∞. For Ω ∈ L1(Sn−1), define the L1-modulus of continuity
of Ω by

ω(δ ) = sup
|ρ |≤δ

∫
Sn−1

|Ω(ρx)−Ω(x)|dx,

where the supremum is taken over all rotations on the unit sphere, and |ρ | denotes the distance
of ρ from the identity rotation. Hu [3] shows that if the L1-modulus of continuity of Ω satisfies∫ 1

0
ω(δ )log

(
2+

1
δ
) 1

δ
dδ < ∞, (6)

then T∗
A is bounded on Lp(Rn) for any p with 1 < p < ∞.

For the endpoint estimates of TA and T ∗
A , Hu and Yang show in [4] that if Ω ∈ Lipβ (Sn−1)

for some β with 0 < β ≤ 1, then TA satisfies an LlogL type estimate, that is, there is a positive
constant C such that for any bounded function f and λ > 0,∣∣{x ∈ R

n : |TA f (x)| > λ
}∣∣≤C

∫
Rn

| f (x)|
λ

log
(

2+
| f (x)|

λ

)
dx. (7)

This estimate is obviously an analogy of the weak type endpoint estimate for commutators of
Calderón-Zygmund, which was established by Pérez in [5]. By a Cotlar type inequality and the
weak type estimate for the operator TA, Hu and Li [6] show that if Ω ∈ Lipβ (Sn−1) (0 < β ≤ 1),
then the maximal operator T∗

A also satisfies the estimate (7). The main purpose of this paper is
to improve the LlogL type estimate (7) for T∗

A established by Hu and Li. We will show that if Ω
satisfies (6), then T∗

A also satisfies the estimate (7). Precisely, we will prove
Theorem 1. Let Ω be homogeneous of degree zero and satisfy the vanishing condition (1),

A have derivatives of order one in BMO(Rn). If Ω satisfies the regularity condition (6), then
there exists a constant C depending only on n and ‖∇A‖RBMO(Rn), such that for any bounded
function f and λ > 0,∣∣{x ∈ R

n : |T ∗
A f (x)| > λ

}∣∣≤C
∫

Rn

| f (x)|
λ

log
(

2+
| f (x)|

λ

)
dx.

It is obvious that the regularity condition (6) is weaker than that Ω ∈ Lipβ (Sn−1) with 0 <
β ≤ 1. We point out that in the proof of Theorem 1, we are very much motivated by the work of
Grafakos[7] .

Throughout this paper, C denotes a constant independent of the main parameters involved
but its value may differ from line to line. For a measurable set E , χE denote the characteristic
function of E . For a cube Q and a locally integrable function f , mQ( f ) denote the mean value
of f on Q.
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2 Proof of Theorem 1

We begin with some preliminary lemmas.
Lemma 1. Let b be a function on R

n with derivatives of order one in Lq(Rn) for some q,
n < q < ∞. Then

|b(x)−b(y)| ≤Cn|x− y|
( 1

|Q̃(x, y)|
∫

Q̃(x,y)
|∇b(z)|qdz

)1/q
,

where Q̃(x, y) is the cube centered at x and having side length 5
√

n|x− y|.
Lemma 2. There exists a positive constant C such that for any t1, t2 ≥ 0 and a > 0,

t1t2 ≤C
(
t1log(2+at1)+a−1expt2

)
. (8)

Note that the Young functions Φ(t) = tlog(2+ t) and Ψ(t) = expt are complementary. It is
well known that there is a positive constant C such that for any t1, t2 > 0,

t1t2 ≤C(Φ(t1)+ Ψ(t2)).

The inequality (8) follows from the last inequality immediately.
Proof of Theorem 1. Without loss of generality, we may assume that ‖∇A‖BMO(Rn) = 1.

For each fixed bounded function f and λ , applying the Calderón-Zygmund decomposition to f
at the level λ , we can obtain a sequence of cubes {Qj} with disjoint interiors such that

λ <
1

|Qj|
∫

Qj

| f (x)|dx ≤ 2nλ ,

| f (x)| ≤ λ , a. e. x ∈ R
n\∪ j Q j.

Let
g(x) = f (x)χRn\∪ jQ j

(x)+∑
j

mQj( f )χQj (x)

and
h(x) = f (x)−g(x) = ∑

j
( f (x)−mQj( f ))χQj (x).

Since ‖g‖∞ ≤Cλ and ‖g‖2 ≤Cλ‖ f‖1, it follows from L2(Rn) boundedness of T∗
A (see [3])

|{x ∈ R
n : T ∗

A g(x) > λ}| ≤Cλ−2‖T ∗
A g‖2 ≤Cλ−1‖ f‖1.

For each fixed j let Q∗
j = 4nQj. Note that∣∣∪ j Q

∗
j

∣∣≤C∑
j

|Qj| ≤Cλ−1‖ f‖1.

Therefore, the proof of Theorem 1 can be reduced to prove that for some positive constant D
independent of f and λ ,∣∣{x ∈ R

n\∪ j Q∗
j : T ∗

A h(x) > Dλ}∣∣≤Cλ−1‖ f‖1. (9)
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For each fixed j, let
Aj(y) = A(y)−mQj(∇A)y.

Note that for any x, y ∈ R
n and any fixed j,

A(x)−A(y)−∇A(y)(x− y) = Aj(x)−Aj(y)−∇Aj(y)(x− y).

For each fixed ε > 0 and k with 1 ≤ k ≤ n, define the operator Sk
ε by

Sk
εu(x) =

∫
|x−y|>ε

K(x− y)
xk − yk

|x− y| u(y)dy,

where K(x) = Ω(x)|x|−n. Write

TA,εh(x) = ∑
j

∫
|x−y|>ε

K(x− y)
Aj(x)−Aj(y)

|x− y| hj(y)dy

+
n

∑
k=1

∫
|x−y|>ε

K(x− y)
xk − yk

|x− y| ∑
j

(
∂ kA(y)

∂yk
−mQj(

∂ kA
∂yk

)
)

hj(y)dy

= Gε(x)+
n

∑
k=1

Sk
ε

(
∑

j

(
∂ kA(y)

∂yk
−mQj

(
∂ kA
∂yk

))
hj

)
(x).

A well known result in the theory of Calderón and Zygmund tells us that the operator Sk,∗

defined by
Sk,∗u(x) = sup

ε>0

∣∣Sk
εu(x)

∣∣
is bounded from L1(Rn) to weak L1(Rn). Thus by Lemma 2,

∣∣{x ∈ R
n :

n

∑
k=1

Sk,∗
(
∑

j

(∂ kA(y)
∂yk

−mQj(
∂ kA
∂yk

))
hj

)
(x) > λ

}∣∣
≤ C∑

j

∫
Qj

|∇A(y)−mQj(∇A)| |hj(y)|
λ

dy

≤ C∑
j

∫
Qj

|hj(x)|
λ

log
(

2+
|hj(x)|

λ

)
dx

+C
∫

Qj

exp
( |∇A(x)−mQj(∇A)|

B1

)
dx

≤ C∑
j

∫
Qj

|hj(x)|
λ

log
(

2+
|hj(x)|

λ

)
dx+∑

j

|Qj|

≤ C
∫

Rn

| f (x)|
λ

log
(

2+
| f (x)|

λ

)
dx,

where we have invoked the John-Nirenberg inequality, which states that there are two positive
constants B1 and B2 such that for any b ∈ BMO(Rn) and cube Q,

1
|Q|

∫
Q

exp
( |b(x)−mQ(b)|

B1‖b‖BMO(Rn)

)
dx ≤ B2.
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We now turn our attention to the term supε>0 |Gε |. As in [7, p. 175], for each fixed x ∈
R

n\∪ j Q∗
j and ε > 0, we define

J1(x, ε) =
{

j : |x− y| < ε for all y ∈ Qj
}
,

J2(x, ε) =
{

j : |x− y| > ε for all y ∈ Qj
}
,

and
J3(x, ε) =

{
j : Qj ∩{y : |y− x| > ε} 
= /0, Qj ∩{y : |y− x| < ε} 
= /0}.

Set
hj(x, ε) = |Q|−1

∫
Qj

h j(y)χ{y: |y−x|>ε}(y)dy.

It is easy to see that |hj(x, ε)| ≤ 2nλ . Write

|Gε(x)| ≤ ∑
j∈J2(x,ε)

∣∣∣∫
|x−y|>ε

K(x− y)
Aj(x)−Aj(y)

|x− y| hj(y)dy
∣∣∣

+ ∑
j∈J3(x,ε)

∣∣∣∫
|x−y|>ε

K(x− y)
Aj(x)−Aj(y)

|x− y| hj(y)dy
∣∣∣

≤ ∑
j∈J2(x,ε)

∣∣∣∫
Rn

K(x− y)
Aj(x)−Aj(y)

|x− y| hj(y)dy
∣∣∣

+ ∑
j∈J3(x,ε)

∣∣∣∫
Qj

K(x− y)
Aj(x)−Aj(y)

|x− y|
(
hj(y)χ{y: |y−x|>ε}(y)−hj(x, ε)

)
dy
∣∣∣

+2nλ ∑
j∈J3(x,ε)

∣∣∣∫
Qj

K(x− y)
Aj(x)−Aj(y)

|x− y| dy
∣∣∣

= Gε
1(x)+ Gε

2(x)+ Gε
3(x).

Choose xj ∈ 3Qj\2Qj. For each fixed j, define H j(x) and I j(x) by

H j(x) =
∫

Rn

∣∣K(x− y)−K(x− x j)
∣∣ |Aj(x)−Aj(y)|

|x− y| |hj(y)|dy

+
∫

Rn
|K(x− x j)| |Aj(x j)−Aj(y)|

|x− y| |hj(y)|dy

+|K(x− x j)||Aj(x)−Aj(x j)| 1
|x− x j|2

∫
Rn

|y− x j||hj(y)|dy,

and

I j(x) =
∫

Qj

∣∣K(x− y)−K(x− x j)
∣∣ |Aj(x)−Aj(y)|

|x− y| dy

+
∫

Qj

|K(x− x j)| |Aj(x j)−Aj(y)|
|x− y| dy

+|Qj|1+1/n|K(x− x j)||Aj(x)−Aj(x j)| 1
|x− x j|2 .
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By the vanishing moment of hj, a trivial computation shows that for x ∈ R
n\∪ j Q∗

j ,

Gε
1(x) ≤C∑

j

H j(x),

and
Gε

2(x) ≤C∑
j

(
H j(x)+ λ I j(x)

)
.

If we set
Aε(y) = A(y)−mB(x,ε)(∇A)y,

an application of Lemma 1 tells us that for any x, y ∈ R
n with ε/2 ≤ |x− y| ≤ 3ε/2,

|Aε(x)−Aε(y)−∇Aε(y)(x− y)| ≤Cε
(
1+ |∇A(y)−mB(x,ε)(∇A)|).

Since for x ∈ R
n\∪ j Q∗

j , ⋃
j∈J3(x,ε)

Qj ⊂ B(x, 3ε/2)\B(x, ε/2).

Applying the inequality (8) with a = εn, we then have

Gε
3(x) ≤ 2nλ ∑

j∈J3(x,ε)

∫
Qj

|K(x− y)| |A(x)−A(y)−∇A(y)(x− y)|
|x− y| dy

+2nλ ∑
j∈J3(x,ε)

∫
Qj

|K(x− y)||∇A(y)−mQj(∇A)|dy

≤ 2nλ
∫

B(x,3ε/2)\B(x,ε/2)
|K(x− y)| |A

ε(x)−Aε(y)−∇Aε(y)(x− y)|
|x− y| dy

+Cλ ∑
j∈J3(x,ε)

∫
Qj

|K(x− y)|log(2+ εn|K(x− y)|)dy

+Cλε−n ∑
j∈J3(x,ε)

∫
Qj

exp
( |∇A(y)−mQj(∇A)|

C2

)
dy

≤ Cλ
∫

B(x,3ε/2)\B(x,ε/2)
|K(x− y)|log(2+ εn|K(x− y)|)dy

+Cλε−n ∑
j∈J3(x,ε)

|Qj|

≤ Cλ .

We thus obtain that for x ∈ R
n\Q∗

j ,

sup
ε>0

|Gε(x)| ≤Cλ +C∑
j

(
λ I j(x)+ H j(x)

)
. (10)

Now we estimate the integral on R
n\∪ j Q∗

j for H j and I j. A familiar argument involving
Lemma 1 and the John-Nirenberg inequality gives us that for x ∈ 2lQ∗

j\2l−1Q∗
j with l ≥ 1 and
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y ∈ Qj,

|Aj(x)−Aj(y)| ≤ C|x− y|
( 1

|Q̃(x, y)|
∫

Q̃(x,y)
|∇A(z)−mQj(∇A)|qdz

)1/q

≤ Cl|x− y|,

and

|Aj(x j)−Aj(x)| ≤Cl|x− x j|, |Aj(x j)−Aj(y)| ≤C|x j − y|,

where n < q < ∞. Thus for x ∈ 2lQ∗
j\2l−1Q∗

j

H j(x) ≤ Cl
∫

Rn

∣∣K(x− y)−K(x− x j)
∣∣|hj(y)|dy+Cl

|Ω(x− x j)|
|x− x j|n+1 |Qj|1/n‖hj‖1

≤ Cl
|x− x j|n

∫
Rn

∣∣Ω(x− y)−Ω(x− xj)
∣∣dy+Cl

|Ω(x− x j)|
|x− x j|n+1 |Qj|1/n‖hj‖1.

On the other hand, by the same argument as used in [8], we know that there exist positive
constants C1 and C2, such that for any positive integer l,

∫
2lQ∗

j\2l−1Q∗

∣∣Ω(x− y)−Ω(x− xj)
∣∣dx ≤C1|2lQ j|

∫
C22−l−1<δ≤C22−l

ω(δ )
dδ
δ

.

This via a standard computation gives us

∑
j

∫
Rn\Q∗

j

H j(x)dx = ∑
j

∞

∑
l=1

∫
2lQ∗

j\2l−1Q∗
j

H j(x)dx

≤ ∑
j

∫
Rn

|hj(y)|
∞

∑
l=1

l|2lQ j|
∫

2lQ∗
j\2l−1Q∗

j

∣∣Ω(x− y)−Ω(x− xj)
∣∣dxdy

+∑
j

‖hj‖1

∞

∑
l=1

l|Qj|1/n
∫

2lQ∗
j\2l−1Q∗

j

|Ω(x− x j)|
|x− x j|n+1 dx

≤ C∑
j

∫
Rn

|hj(y)|dy ≤C‖ f‖1.

Similarly, we cam obtain

∑
j

∫
Rn\Q∗

j

I j(x)dx ≤C∑
j

∞

∑
l=1

∫
2lQ∗

j\2l−1Q∗
j

I j(x)dx ≤C∑
j
|Qj| ≤Cλ−1‖ f‖1.

We can now conclude the proof of Theorem 1. In fact, by the inequality (10) and the argu-
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ment used in the estimate for Hj and I j, if we choose D large enough, then∣∣{x ∈ R
n\∪ j Q

∗
j : sup

ε>0
|Gε(x)| > (D−1)λ

}∣∣
≤ ∣∣{x ∈ R

n\∪ j Q∗
j : ∑

j

H j(x) > λ
}∣∣+ ∣∣{x ∈ R

n\∪ j Q∗
j : ∑

j

I j(x) > C}∣∣
≤Cλ−1 ∑

j

∫
Rn\Q∗

j

H j(x)dx

+C∑
j

∫
Rn\Q∗

j

I j(x)dx

≤Cλ−1 ∑
j

∫
Qj

| f (x)|dx+∑
j
|Qj|.

Combining the estimates for Sk,∗
(

∑
j

(∂ kA
∂yk

−mQj

(∂ kA
∂yk

))
hj

)
and supε>0 |Gε | we then get the

desired result (9).
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