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Abstract. A weak type endpoint estimate for the maximal multilinear singular integral
operator

Ta f(X) =sup
e>0

QX=Y) a0 A — -
[ S A0 = Aly) - VA G-y )y

is established, where Q is homogeneous of degree zero, integrable on the unit sphere and
has vanishing moment of order one, and A has derivatives of order one in BMO(R"). A
regularity condition on € which implies an LlogL type estimate of T, is given.
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1 Introduction

We work on R", n > 2. Let Q be homegeneous of degree zero, integrable on the unit sphere
S'-1 and satisfy the vanishing condition

Q(6)6d6 =0. 1
Q-1

Let A be a function on R" having derivatives of order one in BMO(RR"). For x, y € R", set
R(A % y) = AX) — Aly) — VAY) (X Y). @)

Define the multilinear singular integral operator Ta by

Q(x—
Tt =pv. [ SR X ) Fy)dy ®

and the corresponding maximal operator T by

Taf(X) =sup[Ta e F(X)], (4)

>0
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where Ta ¢ f(X) is the truncated operator defined by

Q(x—y)
fo:/ V) RiA:x, ) F(y)dy: 5
Aef(X) wyioe Xy (A; x, y) f(y)dy. (5)
The operators Ta and Tax have been considered by many authors. A well known result of
Cohen [t states that if Q € Lip, (S™?), then T, is a bounded operator on LP(R") with the bound
C||[VA||lgmon) for any 1 < p < . Hofmann[?/ shows that Q € Jq., L9(S"?) is a sufficient
condition such that Ta is bounded on LP(R") for any 1 < p < . Recently, Hu®! gave a regu-
larity condition on Q which is fairly weaker than that Q € Lip, (S*~!) and implies the LP(R")
boundedness of T; for any 1 < p < . For Q € L}(S'"1), define the L1-modulus of continuity
of Q by
@(8) = sup | [Q(px)—Q(x)|dx,
lp|<8 /9
where the supremum is taken over all rotations on the unit sphere, and |p| denotes the distance
of p from the identity rotation. Hu'3l shows that if the L-modulus of continuity of Q satisfies
/1w(5)lo (2+ 1) tas < ®)
A g 55 )
then Ty is bounded on LP(R") for any pwith 1 < p < eo.
For the endpoint estimates of Ty and T, Hu and Yang show in [4] that if Q € Lipﬁ(S”—l)
for some B with 0 < B < 1, then T satisfies an LlogL type estimate, that is, there is a positive
constant C such that for any bounded function f and A > 0,

A

This estimate is obviously an analogy of the weak type endpoint estimate for commutators of
Calderon-Zygmund, which was established by Pérez in [5]. By a Cotlar type inequality and the
weak type estimate for the operator Ta, Hu and Li ¥ show that if Q € Lipﬁ(s‘“l) 0< B <,
then the maximal operator T also satisfies the estimate (7). The main purpose of this paper is
to improve the LlogL type estimate (7) for T; established by Hu and Li. We will show that if Q
satisfies (6), then Ty also satisfies the estimate (7). Precisely, we will prove

Theorem 1. Let Q be homogeneous of degree zero and satisfy the vanishing condition (1),
A have derivatives of order one in BMO(R"). If Q satisfies the regularity condition (6), then
there exists a constant C depending only on n and ||VA|rgmo(rn), such that for any bounded
function f and A > 0,

[{xeR": |TAf(x)|>/l}|§C/Rn“;—X)|Iog<2+M>dx. @)

[{xeR": [TAf(x)| > A} gc/ﬂ%n“;b—xﬂlog<2+@>dx.

It is obvious that the regularity condition (6) is weaker than that Q € Ligg(S”—l) with 0 <
B < 1. We point out that in the proof of Theorem 1, we are very much motivated by the work of
Grafakos!”!.

Throughout this paper, C denotes a constant independent of the main parameters involved
but its value may differ from line to line. For a measurable set E, = denote the characteristic
function of E. For a cube Q and a locally integrable function f, my(f) denote the mean value
of f on Q.
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2 Proof of Theorem 1

We begin with some preliminary lemmas.
Lemmal. Letb beafunction on R" with derivatives of order onein LR") for some g,
Nn<q<eo. Then

909 b0 < Cox (1 [ Vb))

where Q(x, y) isthe cube centered at x and having side length 5,/n|x —y|.
Lemma?2. Thereexists a positive constant C such that for any t,t, > 0 and a > 0,

tat, < C(talog(2+atp) +a ‘expty). 8)

Note that the Young functions ®(t) = tlog(2 +t) and ¥(t) = expt are complementary. It is
well known that there is a positive constant C such that for any t,t, > 0,

tit, <C(P(t1) +W¥(t2)).

The inequality (8) follows from the last inequality immediately.

Proof of Theorem 1. Without loss of generality, we may assume that ||VA|gmorn) = 1.
For each fixed bounded function f and A, applying the Calderon-Zygmund decomposition to f
at the level A, we can obtain a sequence of cubes {Q;} with disjoint interiors such that

1
A<—/ F(x)[dx < 2"2,

Qi Jo, T
If(x)| <A, ae xeR"U;Qj.

Let
9(x) = £ xrmu;q; () + Xj,ﬂ‘oj (F)xq (%)
and
h(x) = f(x) —g(x) = JZ( OO —mg; (F)) g (%)-
Since ||g|j <CA and ||g||l2 < CA| ||z, it follows from L2(R") boundedness of T; (see [3])
[{x€R": TAg(x) > A} <CA?|Tagll2 < CA Y| f]1.

For each fixed j let Qf = 4nQj. Note that

[UjQj| <CYIQil <CA Y| f].
I

Therefore, the proof of Theorem 1 can be reduced to prove that for some positive constant D
independent of f and A,

[{xe R™ Uj Q] : Th(x) > DA}| < CA Y f]s. 9)



310 Y. L Jiao : An Endpoint Estimate for Maximal Multilinear Operators

For each fixed j, let
Aj(y) = Aly) —mg; (VA)y.
Note that for any x, y € R" and any fixed j,
AX) = AlY) — VAWY) (x—y) = Aj(X) = Aj(y) = VA (Y) (X=Y).

For each fixed € > 0 and k with 1 < k < n, define the operator $ by

X — Yk
Sue = [ Koy g rumdy

where K(x) = Q(x)|x|~". Write

e = X[ Koy =AWy
7 pyise

X—Y|
n xk Vi <8kA akA>
+ K(x - hi(y)d
2 oy NIy 2 Ty TGy

= +2$(;(92’;J ()

A well known result in the theory of Calderon and Zygmund tells us that the operator & *

defined by o ‘g; ‘
u(x) = sup | Stu(x

e>0
is bounded from L*(R") to weak L!(R™). Thus by Lemma 2,

[{xeR": i§“*<z<akA(y) —nbj(%))hj)(x) > A

T\ Ik Yk
< ey [, vay) ) - g, (V)| W gy
< cZ/ Iy Il Iog ‘;(L))dx
/ mQJ( )I)dX
< CZ/ d AX 2+‘h‘ ))dx+2j,\Qj!
< C Rn\f;)h g(2+’fi)’)dx,

where we have invoked the John-Nirenberg inequality, which states that there are two positive
constants By and B, such that for any b € BMO(R”) and cube Q,

mo(b)|
d B,.
\Q!/ BlubHBMo )XSZ
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We now turn our attention to the term sup,.,|G?|. Asin [7, p. 175], for each fixed x €
RMUj Qj and & > 0, we define

q(x,e)={j:|[x—y|<eforallyeQ},

h(x,e)={j:|x—y|>eforallyeQj},
and
Bxe)={j: Qin{y: ly—x >¢e}#0, Qn{y: |[y—x <&} #0}.
Set
nix e)=1Q™ | 0ty )

It is easy to see that |hj(x, €)| < 2"A. Write

’ _ A=A,
e = jeh(x.€) ‘/X y|>s Ix—y]| hJ(Y)dY‘
_ A=A
J€J3 X, €) ‘/X y|>s ]X y‘ hJ (y)dY‘
WA A,
: Je;(m /R”K(X V= y h‘(y)dy‘
+ ,132‘ ‘/ K(x W(hj(y))ﬂyﬂyx>g}()/)—hj(x7g))dy‘
jek(x )
" Aj(x) — A (y)
+2 116%8 ‘ o -Y) Xyl dy‘

= Gi(X) +G3(x) + G5(x).
Choose x; € 3Q;\2Q;. For each fixed j, define H;(x) and 1;(x) by

A9~ A )]

L 1K Oc=9) =K = iy )y
R e e LY

1
HRO )1 00 = Al [yl )l

and
100 = [ ko) = kixexo A=Ay
AL = Ay
+ [ Ik xSy

FIQ) MK (= x)) 1A (%) — Aj (%)) =5
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By the vanishing moment of h;, a trivial computation shows that for x € R™\ U; Qf,
GI(X) <CY Hj(x)
j

and

<CY(Hj(x) +A1(x).

j

If we set
A (y) = Aly) — Mg ) (VA)Y,
an application of Lemma 1 tells us that for any x, y € R' with €/2 < [x—y| < 3¢g/2,

A% (X) — A%(y) = VA (y) (x—y)| < Ce(1+[VA(Y) — Mgy e) (VA)]).

Since for x € R"\ U;

U QjcB(x 3e/2)\B(x &/2).
jek(x¢€)

Applying the inequality (8) with a = €", we then have

¢ n IA(X) — A(y) — VA(Y) (X—Y)|
Gi(x) < 2/1]@32“/ K (x—y)| e dy

2% Y / K(x=Y)|[VA(Y) g, (VA)|dy

JER(X,€)

€ _AE o £ -
< 2%/ ]K(x—y)||A (X) —A%(y) — VA*(y)(x y)‘dy
B(x,3¢/2)\B(x,£/2) IX—Y|
+CA Y, /|Kx y)|log(2 + €"|K(x—y)|)dy
j€X](X,€)
VAl VA
+Cre™™ /exp| — My )’)dy
Cz
j€X(X,€)
<cif [K(x=)llog(2-+ €"[K (x~y)|)dy
B(x,3¢/2)\B(x.£/2)
+Chre™" z 1Qjl
j€ek(xe)
< CA.

We thus obtain that for x € R"\Qf,

>0

sup|G®(x)| <CA+CY (Alj(x)+Hj(x)). (10)
]

Now we estimate the integral on R™ U; Qj for Hj and 1. A familiar argument involving
Lemma 1 and the John-Nirenberg inequality gives us that for x € 2Q:\2'~*Q; with | > 1 and
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y€eQj,
AW AW < oyl [ VAE) - mo,(vaa)
QM y)| /i)
< C”X_y|7
and
A (%) = A (X[ < ClIx=xj[,  [Aj(X5) = Aj(Y)] < Clx; =],

where n < g < eo. Thus for x € 2'Q;\2'* Q¢

H;(x)

IN

X—X;)
1 [ Ko=) = K3 Iy ) ey-+ O 0y

[Q(x=x))|

1
e

o 06—y

On the other hand, by the same argument as used in [8], we know that there exist positive
constants C; and C,, such that for any positive integer I,

/zl QT\zl—lQ*

This via a standard computation gives us

Q(X—y) —Q(X—X dx < G2 / 8)—.
(x-) ox<G2Qil [ - ()

Zj‘/R”\Q]‘Hj(X)dX = 22/l H; (x)dx

i =1 Q*\Zl 1Q4<

< h; 112'Q; Q(x—y) —Q(x—x;)|dxd
< Zj'/R"| J(Y)|Zi\ Qjl 2'Q]-‘\2'*1Q]“ (x—y) = Q(x— X)) |dxdy
N QX —x)]|
+ hi||1 ||Q 1/n/ — 7 dx
LTI ICTE A =
<

C¥. [ In)idy <Cl .
J

Similarly, we cam obtain

z/Rn\QJ dx<C22/l

X)dx < CY |Qi| <CA Y| f|s.
> 2 Jagna- 1Q Z\ il [ ]l

We can now conclude the proof of Theorem 1. In fact, by the inequality (10) and the argu-



314 Y. L Jiao : An Endpoint Estimate for Maximal Multilinear Operators

ment used in the estimate for H; and I;, if we choose D large enough, then
[{xe R"\U;Q; : sup\GE(x)\ > (D—1)A}|

\{xeR”\u,Q, ZH (x) > A} + [{xeR"\U; Q] : ZI ) >C}|
<CA~ 12/
+Cz/n\Q*

-1 )
<ch Jz/ermx)rdx@\Q,r.

RMQ;

k k
Combining the estimates for S¢* <Z (g—yA —my, (g—yA))hJ> and sup, |G?| we then get the
j k k

desired result (9).
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