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Abstract
Background: 5-Fluorouracil (5-FU) has been used as a standard first-line treatment for colorectal cancer (CRC) patients. 
Although 5-FU-based chemotherapy and immune checkpoint blockade (ICB) have achieved success in treating CRC, 
drug resistance and low response rates remain substantial limitations. Thus, it is necessary to construct a 5-FU resistance-
related signature (5-FRSig) to predict patient prognosis and identify ideal patients for chemotherapy and immunotherapy. 
Methods: Using bulk and single-cell RNA sequencing data, we established and validated a novel 5-FRSig model using 
stepwise regression and multiple CRC cohorts and evaluated its associations with the prognosis, clinical features, immune 
status, immunotherapy, neoadjuvant therapy, and drug sensitivity of CRC patients through various bioinformatics algo-
rithms. Unsupervised consensus clustering was performed to categorize the 5-FU resistance-related molecular subtypes of 
CRC. The expression levels of 5-FRSig, immune checkpoints, and immunoregulators were determined using quantitative 
real-time polymerase chain reaction (RT‒qPCR). Potential small-molecule agents were identified via Connectivity Map 
(CMap) and molecular docking. Results: The 5-FRSig and cluster were confirmed as independent prognostic factors in 
CRC, as patients in the low-risk group and Cluster 1 had a better prognosis. Notably, 5-FRSig was significantly associ-
ated with 5-FU sensitivity, chemotherapy response, immune cell infiltration, immunoreactivity phenotype, immunotherapy 
efficiency, and drug selection. We predicted 10 potential compounds that bind to the core targets of 5-FRSig with the high-
est affinity. Conclusion: We developed a valid 5-FRSig to predict the prognosis, chemotherapeutic response, and immune 
status of CRC patients, thus optimizing the therapeutic benefits of chemotherapy combined with immunotherapy, which 
can facilitate the development of personalized treatments and novel molecular targeted therapies for patients with CRC.
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Introduction

Colorectal cancer (CRC) is the leading cause of death 
worldwide, with its incidence and mortality rates ranking 
third and second among malignant tumors, respectively 
[1]. In recent years, the incidence and mortality rates of 
CRC have increased significantly [2]. Surgical treatment, 
radiation therapy, and systemic chemotherapy are the main 
therapeutic approaches for treating CRC [3]. Surgery is 
usually the treatment of choice for early-stage CRC. Che-
motherapy drugs such as 5-fluorouracil (5-FU), fluoroura-
cil (capecitabine), and calcium oxide (oxaliplatin) can be 
used as adjuvant treatments to reduce tumor volume, con-
trol postoperative recurrence, or provide remission therapy 
in advanced stages [4–6].

Since the 1990s, fluorouracil (FU)-based adjuvant che-
motherapy has been an essential option for treating advanced 
CRC [7]. The use of adjuvant fluorouracil-based chemo-
therapy in patients with stage III colon cancer is thought to 
be standard care; however, it is not routinely recommended 
for patients with stage II colon cancer [8, 9]. Some patients 
develop resistance to chemotherapy drugs, which is one of 
the main causes of tumor treatment failure [10]. Once che-
moresistance emerges, tumors tend to relapse and metas-
tasize, causing the death of 70 to 80% of cancer patients; 
thus, chemoresistance is one of the greatest challenges in 
the long-term management of incurable metastatic disease 
[11]. 5-FU, an intravenous synthetic fluorouracil analog, 
is currently the most important chemical for treating CRC 
[12]. Using 5-FU can effectively reduce tumor recurrence 
and metastasis and improve the survival rates. However, 
cancer cells gradually develop resistance during chemo-
therapy, leading to the failure of chemotherapy drugs [13]. 
Resistance to 5-FU can result from various factors, includ-
ing metabolic enzymes and cancer stemness. Some studies 
have suggested that mutations in genes and changes in the 
expression levels of genes involved in metabolic pathways 
associated with 5-FU may contribute to the development 
of resistance [14]. Thymidylate synthase polymorphism 
is now an emerging focus of interest responsible for 5-FU 
resistance [15–18]. In addition, cancer stem cells have long 
been associated with chemotherapy resistance [19]. How-
ever, because of the complexity of the tumor microenviron-
ment, the underlying mechanism leading to chemotherapy 
resistance remains unclear.

A tremendous benefit has been achieved with immu-
notherapy in cancer treatment in recent years. The FDA 
approved immune checkpoint regimens in 2017 for CRC 
patients with defective mismatch repair (dMMR) or high 
microsatellite instability (MSI-H) levels. However, immu-
notherapy is inefficient for tumors that are proficient in 
mismatch repair (pMMR), microsatellite stable (MSS), or 

have low levels of microsatellite instability (MSI-L), which 
account for a large proportion of CRCs [20]. Although che-
motherapy and immunotherapy have achieved unexpected 
efficacy in treating CRC, with the development of preci-
sion therapy, the limitations of monotherapy, especially 
chemotherapy resistance and a low rate of immunotherapy 
response, have gradually emerged. Recent research suggests 
that there are complex interactions between the immune 
system and chemotherapy. While immunosuppressive 
effects of chemotherapeutic agents have been reported [21, 
22], studies have shown that chemotherapy can enhance 
the immunogenicity of tumor cells, activate immune effec-
tors, and alleviate tumor-induced immunosuppression [23]. 
However, there are currently no effective biomarkers for 
determining the prognosis of patients with CRC or for pre-
dicting their response to chemotherapy and immunotherapy.

In this study, we first identified genes associated with 
5-FU resistance in CRC patients and constructed a novel 
5-FU resistance-related signature (5-FRSig) according to 
these genes. We systematically investigated and validated 
the prognostic value, chemotherapeutic response, immune 
landscape, and immunotherapy predictive power of the 
signature. Our study demonstrated that the 5-FRSig can 
be used as an independent prognostic factor to predict the 
response to chemotherapy and immunotherapy in CRC 
patients. This study is expected to lead to more accurate and 
effective treatment strategies for patients with CRC, includ-
ing chemotherapy, immunotherapy, targeted therapy, and 
combination therapy, providing guidance strategies for the 
precise diagnosis and treatment of CRC.

Materials and methods

Data sources and processing

The transcriptomic data of parental and 5-FU-resistant 
cells were obtained from the Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) under 
the accession number GSE196900 [24]. Differentially 
expressed genes (DEGs) between 5-FU-resistant cells and 
parental cells in the HCT116 and SW480 cell lines were 
analyzed with the R package “DESeq2” [25]. Genes with an 
absolute value of log2 (fold change (FC)) > 2 and adjusted P 
value < 0.05 were considered DEGs. DEGs with consistent 
trends in both cell lines were considered 5-FU resistance-
related candidate genes. The transcriptomic and clinical 
data of The Cancer Genome Atlas (TCGA) colon adenocar-
cinoma and rectum adenocarcinoma datasets were down-
loaded from the GDC data portal (https://portal.gdc.cancer.
gov/). A total of 597 CRC samples with accessible clini-
cal and survival data were enrolled in the training cohort. 
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External validation was performed using the GSE37892 
[26], GSE17537 [27], GSE192667 [28], and GSE29621 
[29] datasets, all of which were downloaded from the GEO 
database. This study used consensus molecular subtypes 
(CMSs) obtained from the Colorectal Cancer Subtyping 
Consortium Synapse [30].

Construction of the 5-FRSig

Univariate Cox regression was conducted for 5-FU resis-
tance-related candidate genes in the TCGA cohort. Subse-
quently, multivariate stepwise regression was conducted 
using the R package “MASS.” An optimized risk model 
associated with 5-FU resistance was then established, 
including thirteen 5-FU resistance-related genes (5-FRGs). 
For each patient, the risk score was calculated as follows: 
Risk score =

∑13
i=1Expression (mRNAi)× Coefficient (mRNAi).

The correlation between the risk score and the expres-
sion level of the thirteen genes was analyzed using Spear-
man’s correlation. The R package “ComplexHeatmap” was 
applied to depict the results [31].

Prognostic analysis and construction of the 
nomogram

Patients were divided into high- and low-risk groups 
according to the median value of the risk score. The prog-
nostic value of the 5-FRSig was evaluated by Kaplan‒Meier 
(K‒M) survival analysis, multivariate Cox regression anal-
ysis, and time-dependent receiver operating characteristic 
(ROC) curve analysis. A nomogram model integrating all 
independent prognostic factors, including risk factors, was 
established with the R package “rms” to further improve the 
prediction power. Moreover, calibration curves were gen-
erated. Overall survival (OS) and progression-free survival 
(PFS) rates were analyzed in the TCGA cohort. In addition, 
associations between the risk score, stage, and CMS were 
analyzed.

Functional enrichment analysis

DEGs between the high- and low-risk groups were iden-
tified using the R package “DESeq2” with a threshold of 
adjusted P < 0.05 and an absolute value of log2FC > 0.5. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Gene Ontology (GO) analyses, along with gene set enrich-
ment analysis (GSEA), were conducted using the R package 
“clusterProfiler” [32].

Tumor immune microenvironment analysis

First, we assessed the immune scores of risk groups using 
the Estimation of STromal and Immune cells in MAlignant 
Tumors using Expression data (ESTIMATE) algorithm, 
including estimate, immune, and stromal scores [33]. In 
addition, multiple deconvolution algorithms were used 
to evaluate immune subsets, including ESTIMATE [33], 
Tumor Immune Estimation Resource (TIMER) [34], Cell-
type Identification By Estimating Relative Subsets of RNA 
Transcripts (CIBERSORT) [35], Estimating the Propor-
tion of Immune and Cancer cells (EPIC) [36], xCELL [37], 
Microenvironment Cell Populations-counter (MCP-coun-
ter) [38], Quantification of the Tumor Immune Contexture 
from Human RNA-seq Data (quanTIseq) [39] and gene set 
variation analysis (GSVA) [40]. In addition, the expression 
levels of immune-related genes were extracted and com-
pared between the high- and low-risk groups.

Prediction of the response to immunotherapy and 
chemotherapy

The correlation between the gene signature and somatic 
mutations and neoantigens was analyzed. The mutation 
annotation format (MAF) for the TCGA cohort was obtained 
from the TCGA data portal (https://portal.gdc.cancer.gov) 
and analyzed with the R package “maftools.” The numbers 
of somatic mutations and neoantigens were retrieved from 
The Cancer Immunome Atlas (TCIA) (https://tcia.at) [40]. 
Patient responses to immune checkpoint inhibitors were 
predicted using tumor immune dysfunction and exclusion 
(TIDE, http://tide.dfci.harvard.edu) [41], a well-developed 
and accurate method for predicting the efficacy of immu-
notherapy. Four independent cohorts with immunotherapy 
information, namely, the IMvigor210 (n = 298) [42], Check-
Mate 025 (n = 281) [43], GSE176307 (n = 88) [44], and 
GSE78220 (n = 27) [45] cohorts, were retrieved to further 
validate the results in samples with treatment response data. 
Receiver operating characteristic (ROC) curves were used 
to assess the ability of the 5-FRSig to predict the response 
to 5-FU. The data of three GEO cohorts, GSE39582 [46], 
GSE106584 [47], and GSE103479 [48], were retrieved, and 
only samples from patients who received adjuvant 5-FU 
treatment were included in the analysis. For GSE39582, 
GSE103479, and GSE106584, 82, 66, and 35 samples were 
retained, respectively. Patients who experienced relapse 
were considered nonresponders to 5-FU treatment. The R 
package “oncoPredict” [49] was used to analyze the sen-
sitivity of patients to commonly used drugs. This analysis 
was conducted using transcriptomic data and drug sensitiv-
ity data downloaded from Genomics of Drug Sensitivity in 
Cancer (GDSC, https://www.cancerrxgene.org/) [50], The 
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with negative connectivity scores, an FDR q value < 0.05, 
a specific mechanism of action (MoA), and targets were 
considered to have reliable potential to reverse 5FU resis-
tance. Molecular docking was used to verify the reliability 
of these small molecules in reversing 5FU resistance. First, 
the 3D structures of the target proteins were downloaded 
from the RCSB Protein Database Bank (PDB, http://www.
rcsb.org/) or the AlphaFold Protein Structure Database 
(https://alphafold.ebi.ac.uk/). The proteins were dehydrated 
and/or ligand-removed with PyMOL 2.5 software and 
saved in PDB format. The processed target protein was then 
imported into AutoDock Tools 1.5.6 software for hydroge-
nation and charge calculations and stored in PDBQT format. 
Second, the 3D structures of small molecules in SDF for-
mat were downloaded from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) and saved in mol2 format with 
Open Babel 2.3.1 software. Mol2 files of small molecule 
drugs were imported into AutoDock Tools, the total charge 
was detected, the charge was assigned, and flexible rotatable 
bonds were viewed and saved in PDBQT format. The grid 
box was obtained by using the GetBox Plugin in PyMOL. 
Finally, AutoDock Vina 1.1.2 was used to conduct molecu-
lar docking for 10 potential molecules and thirteen target 
proteins. The binding strength was evaluated according to 
the docking binding energy. The results were visualized 
with PyMOL 2.5 software.

Single-cell RNA sequencing analysis

We used the scRNA-seq cohort GSE178318 [56], which 
contains single-cell expression profiling of CRC liver 
metastases from treated patients and untreated patients. The 
R packages “Seurat” [57] and “Harmony” [58] were used 
to read sample data and remove batch effects between the 
samples. We then used the t-SNE method for dimension 
reduction processing to obtain the clusters and performed 
cell type annotation through the R package “SingleR” [59]. 
The score and distribution of the 5-FRSig in the single-cell 
samples were calculated using two methods, namely, Ucell 
and singscore. The Ucell algorithm uses the Mann–Whitney 
U statistic to calculate the gene set enrichment score for a 
single sample based on the gene expression ranking, while 
the singscore algorithm employs a gene enrichment score 
that is calculated based on the gene expression ranking of a 
single sample. This score assesses the distance of the gene 
set from the center. Both of these algorithms can be imple-
mented through the R package “irGSEA.”

Statistical analysis

R software (version 4.1.3) and GraphPad Prism 8.0 (Graph-
Pad Software Inc., San Diego, CA, United States) were used 

Cancer Therapeutics Response Portal (CTRP, https://por-
tals.broadinstitute.org/ctrp.v2.1/) [51], and Profiling Rela-
tive Inhibition Simultaneously in Mixtures (PRISM, https://
www.theprismlab.org/) [52]. The half-maximal inhibi-
tory concentration (IC50) in the GDSC and the area under 
the dose‒response curve (AUC) in the CTRP and PRISM 
cohorts were negatively correlated with drug sensitivity.

Consensus clustering analysis

Sixty-five prognostic genes were identified in the univariate 
Cox regression analysis. Unsupervised consensus cluster-
ing was conducted using the R package “ConsensusClus-
terPlus” with 50 iterations and a resampling rate of 80% 
[53]. K‒M survival, tumor immune microenvironment, 
DEG, and functional enrichment analyses were conducted 
between subclusters to explore the biological properties. 
In addition, the correlation between the gene signature and 
clusters was analyzed.

Real-time quantitative PCR validation

Forty-five pairs of CRC and adjacent normal tissue samples 
were collected from the Affiliated Hospital of Qingdao Uni-
versity for RT–qPCR validation. The ethical considerations 
and the criteria for inclusion and exclusion were used, as 
previously described [54]. Total RNA was extracted using 
an RNeasy kit (Beyotime, Shanghai, China, R0027) accord-
ing to the manufacturer´s instructions. Then, 1 µg of total 
RNA was reverse transcribed with SuperScript II reverse 
transcriptase (Takara, Japan, RR047). Quantitative PCR 
analysis was performed with SYBR Green Mix (Takara, 
Japan, RR820) using an ABI 7900 HT Real-Time PCR Sys-
tem. GAPDH was used as an internal control. The primers 
used in this study are listed in Supplementary Table 1.

Identification and verification of candidate small 
molecules to reverse 5-FU resistance

To improve the clinical application of our signature, we 
used a Connectivity Map (CMap) to predict candidate small 
molecules that might reverse 5-FU resistance. CMap is a 
public resource comprising a comprehensive catalog of cel-
lular signatures representing systematic perturbation with 
genetic and pharmacologic interference. The connectivity 
score, as calculated by CMap, indicates that the molecule 
could enhance a biological property if positive and reverse 
the biological property if negative [55]. In this study, the 
hub genes were divided into upregulated and downregu-
lated groups and imported into the CMap database. Then, 
a list of small molecules was obtained, and these molecules 
were ranked by the connectivity score. Small molecules 
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3), CPA4 (carboxypeptidase A4), DNAH7 (dynein axonemal 
heavy chain 7), FGF2 (fibroblast growth factor 2), HOXD13 
(homeobox D13), NRG1 (neuregulin 1), PPP1R3F (protein 
phosphatase 1 regulatory subunit 3 F), SIX2 (SIX homeo-
box 2), SLC39A8 (solute carrier family 39 member 8), 
TMEM139 (transmembrane protein 139), TNFRSF19 (TNF 
receptor superfamily member 19), ZDHHC2 (zinc finger 
DHHC-type palmitoyltransferase 2), and ZNF607 (zinc fin-
ger protein 607). The patients were divided into high- and 
low-risk groups using the median risk score. Figure  2C 
displays the distribution of risk scores among TCGA-CRC 
patients. Additionally, the expression levels of twelve of 
the thirteen genes were significantly correlated with the 
risk score. Notably, SLC39A8 showed the strongest nega-
tive correlation (r = − 0.485, Fig. 2D). As shown in Fig. 2E, 
HOXD13, NRG1, SIX2, DNAH7, CAP4, ALPK3, and FGF2 
were significantly upregulated in 5-FU-resistant cells, and 
TNFRSF19, TMEM139, PPP1R3F, SLC39A8, ZNF607, 
and ZDHHC were significantly downregulated. In addi-
tion, we analyzed the correlation between the risk score and 
clinicopathological features; the risk score was significantly 
correlated with status, T stage, N stage, and tumor stage 
(Fig. 2F). We then used three external datasets for validation 
and found that the risk scores of the GSE17537, GSE39582, 
and GSE37892 datasets differed significantly at various 
stages (Fig. 2G).

for data analysis and visualization. The continuous variables 
were analyzed using the Wilcoxon or Kruskal‒Wallis tests. 
Categorical variables were analyzed using the chi-square 
test (χ2) or Fisher’s exact test. Relationships between the 
risk scores and the expression levels of different genes 
were examined by Spearman’s correlation analysis. A P 
value < 0.05 was considered to indicate significance.

Results

Construction of a prognostic 5-FRSig

The flowchart provides an overview of the primary design 
of the current investigation (Fig.  1). We selected DEGs 
between 5-FU-resistant cells and parental cells in the 
HCT116 and SW480 cell lines from GSE196900. A total 
of 565 DEGs with a consistent trend in the two cell lines 
were identified; of these 5-FRGs, 513 were identified in 
the TCGA cohort (Fig. 2A). Then, we used univariate Cox 
regression analysis and obtained 65 of the 513 5-FRGs asso-
ciated with prognosis (P < 0.05). Multivariate Cox analysis 
was subsequently applied, and 13 5-FRGs with indepen-
dent prognostic value were identified. Figure  2B shows 
the results of the univariate Cox regression analysis of 13 
5-FRGs. Then, an optimized risk model with 13 5-FRGS 
was established stepwise, including ALPK3 (alpha kinase 

Fig. 1  Flowchart of the entire study
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risk factors (Fig. 4A–C). To confirm the superiority of the 
nomogram, calibration curves and ROC analysis were 
used to validate the nomogram’s prognostic accuracy and 
specificity. The results indicated that the 5-FRSig score and 
nomogram were superior to the stage in predicting OS or 
PFS outcomes in the TCGA cohort and GSE39582 cohort 
(Fig. 4D–E). These results indicate that our risk signature is 
an independent prognostic factor reliable for predicting sur-
vival probability. Furthermore, the nomogram integrating 
the risk score and clinicopathological characteristics was 
more reliable and accurate in predicting survival outcomes.

Prognosis analysis of the 5-FRSig and construction 
of a nomogram

We then evaluated the prognostic capacity of the signature 
using the TCGA cohort. According to K‒M survival curves, 
patients in the high-risk group had significantly worse OS 
(P < 0.0001) and PFS (P < 0.001, Fig. 3A and B) rates. The 
risk score was confirmed to be an independent prognostic 
factor for both OS (HR = 3.136, 95% CI = 1.997–4.924, 
P < 0.001) and PFS (HR = 1.418, 95% CI = 1.002–2.007, 
P = 0.049). This result was validated in four external data-
sets, namely, GSE192667, GSE29621, GSE17537, and 
GSE37892 (Fig.  3C–F). To improve discrimination and 
make the model more applicable, we established a prog-
nostic nomogram integrating the signature and independent 

Fig. 2  Construction and validation of the 5-FU resistance-related sig-
nature. A. The DEGs of two cell lines (HCT116 and SW480) in the 
GSE196900 dataset. B. Univariate Cox analysis of TCGA-OS data 
for the 13 5-FU resistance-related genes used to construct the signa-
ture. C. Distribution of risk score (high and low) and status (dead and 
alive) in the TCGA-CRC cohort; D. The correlation between risk score 

and thirteen genes; E. Expression profiles of the genes in the normal 
and resistant groups in GSE196900. F. Correlation heatmap between 
risk groups and clinical characteristics. G. Validation of the signature 
in the GSE17537 and GSE37892 datasets. ∗P < 0.05, ∗∗P < 0.01, 
∗∗∗P < 0.001
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were analyzed. The results are displayed in a volcano 
plot (Fig. 6A). A total of 1,057 upregulated genes and 664 
downregulated genes were identified with an adjusted P 
value < 0.05 and abs(logFC) > 0.5. GO analysis revealed 
that the DEGs were mainly enriched in inflammation-related 
pathways, including acute inflammatory response and che-
mokine activity. In addition, cancer-related pathways, such 
as ERK1 and ERK2 cascade, and immune-related path-
ways, such as granulocyte migration, were also found to be 
enriched in the analysis (Fig. 6B). GSEA further revealed 
that cancer-related pathways, such as epithelial mesenchy-
mal transition, apical junction, KRAS signaling, WNT beta-
catenin signaling, Hedgehog signaling, angiogenesis and 
hypoxia, were enriched in the high-risk group (Fig.  6C). 
KEGG analysis revealed that the upregulated genes were 
enriched in cancer-related pathways, including the PI3K-
Akt signaling pathway, MAPK signaling pathway, Wnt 
signaling pathway, Rap1 signaling pathway, gastric cancer 
pathway, and TGF-beta signaling pathway (Fig. 6D), while 
the downregulated genes were enriched in immune-related 
pathways, including cytokine‒cytokine receptor interaction, 
the IL-17 signaling pathway, viral protein interaction with 
cytokine and cytokine receptor, rheumatoid arthritis and the 

The 5-FRSig predicts patient response to 5-FU 
therapy

Given that this model was constructed according to 5-FU 
resistance-related genes, we wondered whether it could dis-
criminate patients’ responses to 5-FU treatment. We vali-
dated this idea using CRC samples treated with 5-FU. The 
risk score was calculated, and the association between the 
risk score and patient response to 5-FU treatment was ana-
lyzed. The results revealed that the recurrence rates were 
significantly greater in the high-risk group, and patients who 
experienced relapse had significantly greater risk scores. In 
addition, the AUCs of the ROC curves were 0.782, 0.755, 
and 0.944, all of which were greater than 0.75, demonstrat-
ing the signature’s good discriminative ability (Fig. 5A–C).

Analysis of the underlying biological pathway of the 
5-FRSig

We used GSEA and GO and KEGG analyses to explore 
the underlying molecular mechanism of the 5-FRSig. 
First, the DEGs between subgroups in the TCGA cohort 

Fig. 3  Prognostic analysis and validation of the 5-FU resistance-related signature. K‒M survival curve and multivariate analysis of the TCGA-OS 
(A), TCGA-PFS (B), GSE192667-OS (C), GSE29621-OS (D), GSE17537-OS (E), and GSE37892 (F) cohorts
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were significantly greater in the low-risk group, while the 
stroma score and the numbers of cancer-associated fibro-
blasts and macrophages were significantly greater in the 
high-risk group. In addition, the analyses of immune-related 
genes demonstrated that the low-risk group had significantly 
greater immunostimulator levels and moderately greater 
cytotoxicity and immune inhibitor levels (Fig. 7C). Given 
these findings, we concluded that the low-risk group had 
more immune cell infiltration and greater antitumor activity, 
explaining the better outcomes in this group.

Mutation and immunotherapy response analysis of 
the 5-FRSig

Since immune cells are a prerequisite for immunotherapy, 
we hypothesized that the low-risk group would have a 
greater response rate to immune checkpoint inhibitors. We 
validated this hypothesis from different perspectives. First, 
we investigated the mutational landscape. We identified 
the top 20 mutated genes in the TCGA cohort (Fig. 8A). 
Significantly greater mutation rates were detected in two 
genes in each of the high- and low-risk groups, while no 

TNF signaling pathway (Fig.  6E). The enrichment analy-
sis demonstrated that cancer-immunity interactions may 
explain the prognostic power of our signature.

Immune profile analysis of the 5-FRSig

Multiple computational methods were used to determine the 
degree of immune cell infiltration in each sample to further 
investigate the relationship between the signature and the 
immune system. A heatmap of the cells that differed signifi-
cantly between the subgroups is shown in Fig. 7A. Accord-
ing to the heatmap, the low-risk group exhibited increased 
levels of antitumor immune cells, such as CD4 + T cells 
(EPIC, xCELL), CD8 + T cells (EPIC, xCELL), neutrophils 
(EPIC, xCELL) and B cells (EPIC, xCELL), while the high-
risk group exhibited increased levels of cancer-associated 
fibroblasts (MCPcounter, EPIC, xCELL) and macrophages 
(CIBERSORT, xCELL). We plotted radar charts to bet-
ter visualize the differences between subgroups (Fig. 7B), 
demonstrating that the cytotoxicity score, immune score, 
number of neutrophils, number of CD4 + T cells, number 
of CD8 + T cells, number of B cells and number of NK cells 

Fig. 4  Construction and validation of a nomogram. Nomograms 
constructed with three independent prognostic factors for 1-, 3-, and 
5-year OS rates in the TCGA cohort (A), PFS rate in the TCGA cohort 
(B), and OS rate in the GSE39582 cohort (C). Calibration curves and 

receiver operating characteristic (ROC) curves showing the predic-
tive accuracy of the risk score and nomogram in the TCGA-OS (D), 
TCGA-PFS (E), and GSE39582-OS (F) cohorts
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for responders. Consistent with this finding, a lower TIDE 
score/dysfunction score/exclusion score and higher MSI 
score were found in the low-risk group, all of which indi-
cated a greater response rate. Immunosuppressive MDSCs 
and CAFs were significantly more abundant in the high-
risk group (Fig. 8E). We then analyzed four datasets with 
immunotherapeutic information to validate the above 
results. Consistent results were obtained, including signifi-
cantly greater response rates (CR/PR/SD) in the low-risk 
group and significantly lower risk scores for responders 
(Fig. 8F-I). Therefore, we directly demonstrated the asso-
ciation between a low risk score and a high response rate to 

differences were detected in other genes (Fig. 8B). More-
over, there was no significant difference in the number of 
somatic mutations between the subgroups (Fig. 8C). Thus, 
there were no significant differences in mutations between 
the subgroups. However, there were more neoantigens in 
the low-risk group. Then, we analyzed the expression of 
the immune checkpoints PD-1, PD-L1, PD-L2, and CTLA4. 
The results showed that the expression levels of CD274 
and CTLA4 were significantly greater in the low-risk group 
(Fig. 8D). Subsequently, we applied the TIDE algorithm to 
predict patient response to immune checkpoint blockade 
therapy. We observed a significantly greater response rate 
in the low-risk group and a significantly lower risk score 

Fig. 5  The risk signature predicts 
patient response to 5-FU therapy. 
The 5-FU resistance-related 
signature predicts the recur-
rence of patients who received 
5-FU treatment and the relation-
ship between the risk score and 
recurrence in the GSE39582 (A), 
GSE103479 (B), and GSE106584 
(C) datasets. ∗∗∗P < 0.001
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mainly inflammatory and immune-related pathways (Sup-
plementary Fig. 1B-D). Similarly, we analyzed the immune 
landscape of the clusters, including immune cell infiltration 
and the expression of immunomodulators. We found that 
a greater proportion of inhibitory immune cells infiltrated 
Cluster 2, including CAFs, Tregs, and MDSCs (Supplemen-
tary Fig.  2A–C). Interestingly, in the low-risk group, the 
proportion of patients in Cluster 1 was greater than that in 
Cluster 2, and the risk score of patients in Cluster 1 was 
significantly lower than that in Cluster 2 (Fig. 9F and G). A 
Sankey diagram was constructed to show the connections 
among status, risk score, and cluster (Fig. 9H). In addition, 
we analyzed the ability of the clusters to predict immuno-
therapy efficacy. We found that the response rate of patients 
in Cluster 1 was slightly greater than that of patients in Clus-
ter 2 (Fig.  9I), and the TIDE score of patients in Cluster 
1 was significantly greater than that of patients in Cluster 
2 (Fig. 9J), indicating that patients in Cluster 1 were more 
sensitive to immunotherapy.

immunotherapy. These results suggested that the 5-FRSig 
could predict immunotherapy efficacy.

Construction and prognosis analysis of 5-FU 
resistance-related clusters

The 65 5-FRGs associated with prognosis were subjected to 
unsupervised cluster analysis. The ideal number of clusters 
was found to be two using the consensus CDF curve. After 
unsupervised clustering, we identified two clusters within 
the TCGA cohort (Fig. 9A). Figure 9B displays the distri-
bution of clusters and status. Subsequently, we investigated 
the prognostic value of 5-FU resistance-related clusters. 
The results of the K‒M survival curve and multivariate Cox 
regression analyses showed that patients in Cluster 1 had a 
better survival probability, and this cluster was a significant 
independent prognostic factor for CRC (Fig. 9C and D). As 
shown in Fig.  9E, the cluster was significantly correlated 
with status, MSI status, and CMS status. In addition, we 
conducted functional enrichment analyses of the clusters, 
including GSEA and KEGG and GO analyses. The DEGs 
in Clusters 1 and 2 are shown in Supplementary Fig. 1A. 
We found that the pathways enriched in the clusters were 

Fig. 6  Analysis of the underlying biological pathways of the 5-FU 
resistance-related signature. A. Volcano plot of differentially expressed 
genes in the high- and low-risk groups with a threshold of FDR < 0.05 

and absolute log2(FC) > 0.5. B. GO enrichment of differentially 
expressed genes. C. GSEA enrichment of differentially expressed 
genes. KEGG enrichment of the high- (D) and low-risk groups (E)
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function, which was consistent with the better outcome and 
the predicted greater response rate to immunotherapy in this 
group.

scRNA-seq analysis of the 5-FRSig

The scRNA-seq cohort GSE178318 was used to conduct 
scRNA-seq analysis of the 5-FRSig. After t-SNE reduction 
and cell annotation, we obtained nine cell clusters, includ-
ing B cells, CAFs, cancer cells, endothelial cells, mast cells, 
myeloid cells, NK cells, plasma cells, and T cells (Supple-
mentary Fig. 4A). Supplementary Fig. 5A shows the propor-
tions of different cells in each sample. The cell markers used 
for cell annotation are displayed in Supplementary Fig. 4B 
and Supplementary Fig.  5B. We also analyzed the distri-
bution of cells in diverse types of tissues (Supplementary 
Fig. 4C and 4D). Next, we explored the cellular distribution 
of the 13 5-FRGs used to construct the signature (Supple-
mentary Fig.  5C). Subsequently, we used two methods to 
analyze the distribution of risk scores in the cells and found 
high-risk cells mainly in the tumor cell and myeloid cell 
populations (Supplementary Fig. 4E). Therefore, we spec-
ulated that the poor prognosis of patients in the high-risk 
group was closely related to these cells.

Clinical validation of the 5-FRSig

The expression levels of the 13 5-FRGs were measured by 
RT‒qPCR, and the risk score was calculated according to 
the formula for each patient in the external cohort. Spear-
man’s test was used to assess the correlation between the risk 
score and the 13 5-FRGs. As shown in Fig. 10A, the expres-
sion levels of FGF2 and CPA4 were positively correlated 
with the risk score, while the expression levels of ZNF607, 
SIX2, DNAH7, and TMEM139 were negatively correlated. 
The patients were divided into two subgroups according to 
the median risk score. The risk score significantly correlated 
with N stage. Patients with N0 stage tumors had significantly 
lower risk scores, and the low-risk group had a greater per-
centage of N0-stage tumors (Fig.  10B). Subsequently, we 
examined CD8A and CD8B expression levels in high-risk 
and low-risk samples, and we found no significant differ-
ences between the two groups of patients (Supplementary 
Fig. 3). However, the low-risk group had increased levels of 
cytolytic factors, including GZMA and GZMB. Moreover, 
the low-risk group had increased levels of immune stimula-
tors, including HHLA2, CD28, and CD40LG (Fig. 10C). In 
particular, the low-risk group had significantly greater lev-
els of CTLA4 (Fig. 10D). These data demonstrated that the 
low-risk group had significantly greater antitumor immune 

Fig. 7  Immune profile analysis of the 5-FU resistance-related signature 
in the TCGA-CRC cohort. The heatmap (A) and radar map (B) show 
immune cell infiltration in the high- and low-risk groups calculated by 

multiple algorithms. C. Expression of immunomodulators in the high- 
and low-risk groups. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001
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Candidate small molecules to reverse 5-FU 
resistance

The top 10 small molecules with negative connectivity with 
specific targets were screened out (Fig. 12A). These small 
molecules have the potential to reverse 5-FU resistance by 
inhibiting the upregulation of hub proteins. We verified the 
binding energy of these small molecules to the hub proteins, 
and the results are shown in Fig.  12B. Normally, a bind-
ing energy less than 0 indicates spontaneous binding, and 
the lower the binding energy is, the greater the possibility 
of interaction. As shown in Fig. 12B, the binding energies 
of the 10 potential molecules and the hub proteins were 
typically below − 5 kcal/mol, demonstrating their potential 
interaction. For each protein, the small molecule with the 
lowest binding energy was selected for docking visualiza-
tion (Fig. 12C). In the Fig. 12C, the amino acids to which 
the small molecule binds are labeled, and the dotted lines 
show hydrogen bonds. We screened 10 small molecules that 
have the potential to reverse 5-FU resistance and validated 

Drug sensitivity analysis in the high- and low-risk 
groups

We next assessed the correlation between the signature 
score and drug sensitivity. The GDSC analysis showed that 
the low-risk group was more sensitive to chemotherapy, 
including camptothecin, cisplatin, fluorouracil, oxaliplatin, 
irinotecan and irinotecan. Similarly, the low-risk group was 
more sensitive to drugs targeting EGFR signaling, includ-
ing gefitinib, afatinib, erlotinib, lapatinib, AZD3759 and 
osimertinib. The low-risk group was also more sensitive 
to drugs targeting ERK MAPK signaling and RTK signal-
ing, with one or two exceptions (Fig. 11A). In addition, we 
screened patients in the high-risk group for sensitivity to 
drugs in the CTRP and PRISM databases (Fig. 11B and C). 
The above results demonstrate that our model has good dis-
criminative ability for 5-FU adjuvant therapy and that the 
low-risk group is more sensitive to most chemotherapeutic 
and targeted drugs.

Fig. 8  Mutation and immunotherapy response analysis of the 5-FU 
resistance-related signature. A. The top 20 mutated genes in the high- 
and low-risk groups. B. Comparison of the mutation ratio in the high- 
and low-risk groups. C. Comparison of mutations and neoantigens 
between the high- and low-risk groups. D. Expression of key immune 
checkpoint molecules in the high- and low-risk groups. E. The distri-

bution of different responders and calculated scores in the high- and 
low-risk groups in the TCGA cohort, calculated by the TIDE algo-
rithm. The distribution of different responders in the high- and low-risk 
groups in the IMvigor210 (F), CheckMate 025 (G), GSE176307 (H), 
and GSE78220 (I) datasets. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001
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ZDHHC2, and ZNF607. In a preliminary study, ALPK3 was 
shown to be associated with metastasis in osteosarcoma 
patients [62]. The prognostic value of CPA4 in non-small 
cell lung cancer (NSCLC), pancreatic cancer, and bladder 
cancer has also been reported [63–65]. In addition, muta-
tions in DNAH7 were found to benefit CRC patients receiv-
ing immune checkpoint inhibition therapy [66]. However, 
FGF2 and SIX2 have been found to promote the devel-
opment of NSCLC and breast cancer [67–70]. Similarly, 
HOXD13 has been found to promote the malignant progres-
sion of colon cancer [71], and the overexpression of NRG1 
promotes the progression of gastric cancer [72]. Interest-
ingly, studies have shown that PPP1R3F and TNFRSF19 
are associated with the prognosis of CRC patients [73, 74]. 
Liu et al. reported that SLC39A8 suppressed the progres-
sion of clear cell renal cell carcinoma [75]. Zhang et al [76]. 
reported that TMEM139 prevents NSCLC metastasis by 
inhibiting lysosomal degradation of E-cadherin. Moreover, 
it has been reported that ZDHHC2 and ZNF607 expression 

the binding potential between the small molecules and the 
hub proteins.

Discussion

5-FU is a classic chemotherapy drug that has long played 
a key role in the treatment of cancer, especially CRC and 
breast cancer [60]. Despite the remarkable achievements of 
5-FU in cancer treatment, some patients develop resistance 
to the drug, likely due to individuals’ unique genetic and 
epigenetic makeup [61]. Therefore, there is an urgent need 
for molecular identification to guide clinical chemotherapy. 
In this study, we constructed a 5-FRSig model using 5-FU-
resistant CRC cell lines to explore the related mechanisms 
and provide more evidence for the precise treatment of CRC 
patients.

The 5-FRSig was constructed from thirteen 5-FRGs, 
including ALPK3, CPA4, DNAH7, FGF2, HOXD13, NRG1, 
PPP1R3F, SIX2, SLC39A8, TMEM139, TNFRSF19, 

Fig. 9  Construction and prognosis analysis of 5-FU resistance-related 
clusters. A. Consensus CDF curve of unsupervised cluster analysis. B. 
Distribution of the cluster (Cluster 1 and Clusters) and status (dead and 
alive) in the TCGA-CRC cohort. C. Kaplan‒Meier survival curves of 
clusters in the TCGA cohort. D. Multivariable analysis of clusters in 
the TCGA cohort. E. Heatmap showing the correlations between clus-
ters and clinical characteristics. F. The distribution of clusters in the 

high- and low-risk groups. G. The difference in the risk score between 
Cluster 1 and Cluster 2. H. Sankey diagram combining OS, cluster, 
and risk score data. I. The distribution of different responses in Cluster 
1 and Cluster 2. J. The TIDE algorithm, including the TIDE score, 
dysfunction score, and CAF score, was used to predict patient response 
to immunotherapy in different clusters. ∗P < 0.05, ∗∗∗P < 0.001
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Fig. 11  Drug sensitivity analysis in the high- and low-risk groups. A. 
Compounds in the GSDC database that target chemotherapy, EGFR 
signaling, ERK MAPK signaling, and RTK signaling. B. Com-

pounds in the PRISM database. C. Compounds in the CTRP database. 
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001

 

Fig. 10  Clinical validation of the 5-FU resistance-related signature. 
A. Correlations between the risk score and the expression of thirteen 
genes in tumor samples. B. The difference and distribution of risk 
scores in different clinical stages. C. Expression of immunomodulators 

in high- and low-risk groups in tumor samples. D. Expression of four 
key immune checkpoint molecules in tumor samples from the high- 
and low-risk groups. ∗P < 0.05, ∗∗P < 0.01
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in the prognosis of patients in different risk groups through 
pathway enrichment, the results showed many pathways 
associated with tumor immune pathways. We speculated 
that the occurrence of 5-FU resistance might be related to 
changes in the patients’ immune microenvironment. Further 
analysis of immune cell infiltration and immune regulatory 
factor expression showed that patients in the high-risk group 
presented an immunosuppressive tumor microenvironment. 
The immunotherapy results also demonstrated that low-risk 
patients were more sensitive to immunotherapy. In addition, 
through scRNA-seq, we found that myeloid cells had greater 
risk scores than other immune cells, which could provide a 
new target for the future study of 5-FU resistance. Overall, 
our study links 5-FU resistance to the immune microenvi-
ronment, providing additional evidence for a combination 
of chemotherapy and immunotherapy in patients with CRC.

The results showed that our 5-FRSig has good poten-
tial for diagnosing and treating CRC. Nonetheless, our 
research still has certain limitations. This study provides a 
solid theoretical basis for subsequent research. We obtained 
many novel research results through in-depth data min-
ing. Although we used our own clinical cohort for valida-
tion, we lack sufficient clinical data to validate the ability 
of the 5-FRsig to predict the response to chemotherapy and 
immunotherapy in patients with CRC, and further stud-
ies are needed. Furthermore, the TCGA database lacks 

levels are reduced and increased, respectively, in gastric 
adenocarcinoma patients [77, 78].

In this study, the 5-FRSig constructed from 5-FRGs was 
found to be an independent prognostic factor for CRC. 
Our signature also allowed better patient risk stratification. 
Using the ROC curve to predict patient survival, we can see 
that the AUC for risk score is higher than that for TNM stag-
ing in the TCGA cohort. Compared with traditional TNM 
staging to predict the prognosis of patients, our nomogram 
model based on the risk score has better predictive power. 
Furthermore, the ROC curves for predicting the therapeu-
tic effect of 5-FU demonstrate that all the AUC values are 
above 0.7, indicating that the model exhibits high specific-
ity and sensitivity in predicting the efficacy of 5-FU. In the 
clinical validation of the 5-FRSig, we further demonstrated 
that patients with high risk scores had worse outcomes. In 
addition, as the development of 5-FU resistance is an impor-
tant cause of cancer treatment failure, our signature can pre-
dict the responsiveness of patients to 5-FU treatment and 
immunotherapy well, providing a basis for the precise treat-
ment of patients with CRC.

It has been reported that 5-FU resistance involves vari-
ous complex factors, including noncoding RNA regulation, 
tumor stem cells, tumor cell autophagy, epigenetics, and 
ATP-binding protein overexpression [79–83]. In this study, 
when we explored the mechanism underlying differences 

Fig. 12  Candidate small molecules that reverse 5-FU resistance. A. 
The structures of the top 10 compounds predicted by the CMap web-
site. B. Heatmap displaying the binding energy of the small molecule 

drug and the hub protein. C. Small molecule drug docking targets with 
the lowest binding energy

 

1 3

1140



Apoptosis (2024) 29:1126–1144

Declarations

Ethical statement  The studies involving human participants were re-
viewed and approved by the Research Ethics Committee of The Af-
filiated Hospital of Qingdao University. The patients/participants pro-
vided their written informed consent to participate in this study.

Competing of interests  The authors declare no competing interests.

References

1.	 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal 
A (2018) Global Cancer statistics 2018: Globocan estimates of 
incidence and Mortality Worldwide for 36 cancers in 185 coun-
tries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/
caac.21492. Epub 2018/09/13

2.	 Yang Y, Wang HY, Chen YK, Chen JJ, Song C, Gu J (2020) Cur-
rent status of Surgical treatment of rectal Cancer in China. Chin 
Med J (Engl) 133(22):2703–2711 Epub 2020/09/06. https://doi.
org/10.1097/cm9.0000000000001076

3.	 Costa AF, Campos D, Reis CA, Gomes C (2020) Targeting gly-
cosylation: a New Road for Cancer Drug Discovery. Trends Can-
cer 6(9):757–766 Epub 2020/05/10. https://doi.org/10.1016/j.
trecan.2020.04.002

4.	 André T, Quinaux E, Louvet C, Colin P, Gamelin E, Bouche 
O et al (2007) Phase Iii Study comparing a semimonthly with 
a monthly regimen of Fluorouracil and Leucovorin as Adjuvant 
treatment for stage ii and iii Colon cancer patients: final results of 
Gercor C96.1. J Clin Oncol 25(24):3732–3738 Epub 2007/08/21. 
https://doi.org/10.1200/jco.2007.12.2234

5.	 Gray R, Barnwell J, McConkey C, Hills RK, Williams NS, 
Kerr DJ (2007) Adjuvant chemotherapy Versus Observation 
in patients with colorectal Cancer: a randomised study. Lancet 
370(9604):2020–2029 Epub 2007/12/18. https://doi.org/10.1016/
s0140-6736(07)61866-2

6.	 de Gramont A, Bosset JF, Milan C, Rougier P, Bouché O, Etienne 
PL et al (1997) Randomized trial comparing monthly low-dose 
leucovorin and Fluorouracil Bolus with Bimonthly High-Dose 
Leucovorin and Fluorouracil Bolus Plus continuous infusion for 
Advanced Colorectal Cancer: A French Intergroup Study. J Clin 
Oncol 15(2):808–815 Epub 1997/02/01. https://doi.org/10.1200/
jco.1997.15.2.808

7.	 Allen WL, Johnston PG (2005) Role of genomic markers in 
Colorectal Cancer Treatment. J Clin Oncol 23(20):4545–4552 
Epub 2005/07/09. https://doi.org/10.1200/jco.2005.19.752

8.	 Benson Ar, Schrag D, Somerfield MR, Cohen AM, Figueredo 
AT, Flynn PJ et al (2004) American Society of Clinical Oncology 
Recommendations on adjuvant chemotherapy for stage ii Colon 
cancer. J Clin Oncol 22(16):3408–3419

9.	 Figueredo A, Charette ML, Maroun J, Brouwers MC, Zuraw L 
(2004) Adjuvant therapy for stage ii Colon Cancer: a systematic 
review from the Cancer Care Ontario Program in evidence-based 
Care’s gastrointestinal Cancer Disease Site Group. J Clin Oncol 
22(16):3395–3407

10.	 El Zarif T, Yibirin M, De Oliveira-Gomes D, Machaalani M, 
Nawfal R, Bittar G et al (2022) Overcoming therapy resistance 
in Colon cancer by Drug Repurposing. Cancers (Basel) 14(9). 
https://doi.org/10.3390/cancers14092105. Epub 2022/05/15

11.	 Vasan N, Baselga J, Hyman DM (2019) A view on Drug Resis-
tance in Cancer. Nature 575(7782):299–309 Epub 2019/11/15. 
https://doi.org/10.1038/s41586-019-1730-1

12.	 Akalovich S, Portyanko A, Pundik A, Mezheyeuski A, Doro-
shenko T (2021) 5-Fu resistant colorectal Cancer cells possess 

patient treatment information, preventing direct inspection 
of the signature’s predictive ability for 5-FU efficacy using 
TCGA data. Instead, the efficacy of the signature for pre-
dicting 5-FU treatment outcomes was validated using the 
GEO dataset, which introduces a limitation to our results. 
Finally, the inclusion of an internal cohort, including a 
combination of chemotherapy and immunotherapy, to vali-
date the hypotheses of this study will be the focus of future 
research. Although we conducted a comprehensive analysis 
of multiple independent cohorts and obtained some clini-
cally promising conclusions, the molecular mechanisms of 
the 5-FRSig in CRC prognosis, chemotherapy, and immu-
notherapy need to be further validated in vivo and in vitro.

Conclusion

In this study, 5-FU resistance in CRC was comprehensively 
analyzed using various methods, and a novel 5-FRSig was 
successfully constructed. This signature could be used for 
risk stratification, prognosis prediction, 5-FU sensitivity 
prediction, and immunotherapy prediction in CRC patients. 
In addition, it was found that the underlying mechanism was 
related to tumor immune pathways. Finally, we used drug 
sensitivity analysis and molecular docking technology to 
explore 10 suitable drugs for CRC patients. This study pro-
vided a new perspective on 5-FU resistance in CRC patients 
and a theoretical basis for improvements in chemotherapy, 
immunotherapy, targeted therapy, combination therapy, and 
individualized antitumor therapy.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s10495-
024-01981-2.

Acknowledgements  The authors are thankful for the publicly avail-
able databases.

Author contributions  Writing – original draft: FZ, YH and MY. Writ-
ing – review & editing: MY, ZM, ZY, TL, WG, SL, LY, ZZ and WZ. 
Conceptualization: MY and YH. Investigation: YH, ZY and SL. Soft-
ware: YH and TL. Data curation: JZ, WG and ZZ. Methodology: FZ, 
YH, ZY and SL. Supervision: MY. Formal Analysis: YH, FZ and WZ. 
Validation: YH, FZ and LY. Funding acquisition: MY. Resources: JZ 
and WG. Visualization: FZ and TL.

Funding  This work was supported by the CAMS Innovation Fund for 
Medical Sciences (CIFMS) Grant (2023-I2M-2-009) and the Natural 
Science Foundation of China (NSFC) Grant (No. 81773750).

Data availability  The original contributions presented in the study are 
included in the article and Supplementary Material, and further inqui-
ries can be directed to the corresponding author.

1 3

1141

https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
https://doi.org/10.1097/cm9.0000000000001076
https://doi.org/10.1097/cm9.0000000000001076
https://doi.org/10.1016/j.trecan.2020.04.002
https://doi.org/10.1016/j.trecan.2020.04.002
https://doi.org/10.1200/jco.2007.12.2234
https://doi.org/10.1016/s0140-6736(07)61866-2
https://doi.org/10.1016/s0140-6736(07)61866-2
https://doi.org/10.1200/jco.1997.15.2.808
https://doi.org/10.1200/jco.1997.15.2.808
https://doi.org/10.1200/jco.2005.19.752
https://doi.org/10.3390/cancers14092105
https://doi.org/10.1038/s41586-019-1730-1
https://doi.org/10.1007/s10495-024-01981-2
https://doi.org/10.1007/s10495-024-01981-2


Apoptosis (2024) 29:1126–1144

30.	 Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, 
Soneson C et al (2015) The Consensus Molecular subtypes of 
Colorectal Cancer. Nat Med 21(11):1350–1356 Epub 2015/10/13. 
https://doi.org/10.1038/nm.3967

31.	 Gu Z, Eils R, Schlesner M (2016) Bioinformatics 32(18):2847–
2849 Epub 2016/05/22. https://doi.org/10.1093/bioinformatics/
btw313. Complex Heatmaps Reveal Patterns and Correlations in 
Multidimensional Genomic Data

32.	 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z et al (2021) Cluster-
profiler 4.0: A Universal Enrichment Tool for Interpreting Omics 
Data Innov (Camb) 2(3):100141 Epub 2021/09/25. https://doi.
org/10.1016/j.xinn.2021.100141.

33.	 Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, 
Torres-Garcia W et al (2013) Inferring Tumour Purity and Stromal 
and Immune Cell admixture from expression data. Nat Commun 
4:2612 Epub 2013/10/12. https://doi.org/10.1038/ncomms3612

34.	 Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS et al (2017) Timer: 
a web server for Comprehensive Analysis of Tumor-infiltrating 
Immune cells. Cancer Res 77(21):e108–e110 Epub 2017/11/03. 
https://doi.org/10.1158/0008-5472.CAN-17-0307

35.	 Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA 
(2018) Profiling Tumor infiltrating Immune cells with Cibersort. 
Methods Mol Biol 1711:243–259 Epub 2018/01/19. https://doi.
org/10.1007/978-1-4939-7493-1_12

36.	 Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D 
(2017) Simultaneous Enumeration of Cancer and Immune Cell 
Types from Bulk Tumor Gene Expression Data. Elife 6. Epub 
2017/11/14. https://doi.org/10.7554/eLife.26476

37.	 Aran D, Hu Z, Butte AJ, Xcell (2017) Digitally portraying the 
tissue Cellular Heterogeneity Landscape. Genome Biol 18(1):220 
Epub 2017/11/17. https://doi.org/10.1186/s13059-017-1349-1

38.	 Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petit-
prez F et al (2016) Estimating the population abundance of tis-
sue-infiltrating Immune and stromal cell populations using gene 
expression. Genome Biol 17(1):218 Epub 2016/10/22. https://doi.
org/10.1186/s13059-016-1070-5

39.	 Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl 
H et al (2019) Molecular and pharmacological modulators of the 
Tumor Immune Contexture revealed by Deconvolution of Rna-
Seq Data. Genome Med 11(1):34 Epub 2019/05/28. https://doi.
org/10.1186/s13073-019-0638-6

40.	 Charoentong P, Finotello F, Angelova M, Mayer C, Efremova 
M, Rieder D et al (2017) Pan-cancer immunogenomic analyses 
reveal genotype-immunophenotype relationships and predictors 
of response to checkpoint blockade. Cell Rep 18(1):248–262 
Epub 2017/01/05. https://doi.org/10.1016/j.celrep.2016.12.019

41.	 Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X et al (2018) Signatures 
of T cell dysfunction and Exclusion Predict Cancer Immuno-
therapy Response. Nat Med 24(10):1550–1558 Epub 2018/08/22. 
https://doi.org/10.1038/s41591-018-0136-1

42.	 Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, 
Wang Y et al (2018) Tgfbeta attenuates Tumour response to 
Pd-L1 blockade by contributing to Exclusion of T cells. Nature 
554(7693):544–548 Epub 2018/02/15. https://doi.org/10.1038/
nature25501

43.	 Braun DA, Hou Y, Bakouny Z, Ficial M, Sant’ Angelo M, For-
man J et al (2020) Interplay of somatic alterations and Immune 
Infiltration modulates response to Pd-1 blockade in Advanced 
Clear Cell Renal Cell Carcinoma. Nat Med 26(6):909–918 Epub 
2020/05/31. https://doi.org/10.1038/s41591-020-0839-y

44.	 Rose TL, Weir WH, Mayhew GM, Shibata Y, Eulitt P, Uronis 
JM et al (2021) Fibroblast growth factor receptor 3 altera-
tions and response to Immune Checkpoint Inhibition in Meta-
static Urothelial Cancer: a Real World Experience. Br J Cancer 
125(9):1251–1260 Epub 2021/07/24. https://doi.org/10.1038/
s41416-021-01488-6

improved invasiveness and Β(Iii)-Tubulin expression. Exp Oncol 
43(2):111–117 Epub 2021/07/01. https://doi.org/10.32471/exp-
oncology.2312-8852.vol-43-no-2.16314

13.	 Phipps O, Brookes MJ, Al-Hassi HO (2021) Iron Deficiency, 
Immunology, and Colorectal Cancer. Nutr Rev 79(1):88–97 Epub 
2020/07/18. https://doi.org/10.1093/nutrit/nuaa040

14.	 Zheng H-C (2017) The Molecular mechanisms of Chemoresis-
tance in Cancers. Oncotarget 8(35):59950

15.	 Van der Zee J, Van Eijck C, Hop W, van Dekken H, Dicheva B, 
Seynhaeve A et al (2012) Expression and prognostic significance 
of Thymidylate synthase (Ts) in pancreatic head and Periampul-
lary Cancer. Eur J Surg Oncol (EJSO) 38(11):1058–1064

16.	 Sulzyc-Bielicka V, Domagala P, Bielicki D, Safranow K, Doma-
gala W (2014) Thymidylate Synthase expression and P21 Waf1/
P53 phenotype of Colon cancers identify patients who May Ben-
efit from 5-Fluorouracil Based Therapy. Cell Oncol 37:17–28

17.	 Nagaraju GP, Alese OB, Landry J, Diaz R, El-Rayes BF (2014) 
Hsp90 Inhibition Downregulates Thymidylate Synthase and Sen-
sitizes Colorectal Cancer Cell Lines to the Effect of 5fu-Based 
Chemotherapy. Oncotarget 5(20):9980

18.	 Matsuoka K, Nakagawa F, Kobunai T, Takechi T (2018) Tri-
fluridine/Tipiracil overcomes the resistance of human gastric 
5-Fluorouracil-refractory cells with high Thymidylate synthase 
expression. Oncotarget 9(17):13438

19.	 Chang JC (2016) Cancer Stem Cells: Role in Tumor Growth, 
Recurrence, Metastasis, and Treatment Resistance. Medicine 
95(Suppl 1)

20.	 Kather JN, Halama N, Jaeger D (2018) Genomics and emerg-
ing biomarkers for Immunotherapy of Colorectal Cancer. Semin 
Cancer Biol 52(Pt 2):189–197 Epub 2018/03/05. https://doi.
org/10.1016/j.semcancer.2018.02.010

21.	 Rasmussen L, Arvin A, Chemotherapy-Induced, Immunosuppres-
sion (1982) Environ Health Perspect 43:21–25 Epub 1982/02/01. 
https://doi.org/10.1289/ehp.824321

22.	 Schwartz RS (1968) Are immunosuppressive anticancer drugs 
Self-Defeating? Cancer Res 28(7):1452–1454 Epub 1968/07/01

23.	 Ghiringhelli F, Apetoh L (2014) The interplay between the 
Immune System and Chemotherapy: emerging methods for opti-
mizing therapy. Expert Rev Clin Immunol 10(1):19–30 Epub 
2013/12/07. https://doi.org/10.1586/1744666x.2014.865520

24.	 Roy S, Zhao Y, Yuan YC, Goel A (2022) Metformin and Icg-001 
Act Synergistically to Abrogate Cancer Stem Cells-Mediated 
Chemoresistance in Colorectal Cancer by Promoting Apoptosis 
and Autophagy. Cancers (Basel) 14(5). Epub 2022/03/11. https://
doi.org/10.3390/cancers14051281

25.	 Love MI, Huber W, Anders S (2014) Moderated estimation of fold 
Change and Dispersion for Rna-Seq Data with Deseq2. Genome 
Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

26.	 Laibe S, Lagarde A, Ferrari A, Monges G, Birnbaum D, 
Olschwang S (2012) A seven-gene signature aggregates a sub-
group of stage ii Colon cancers with Stage Iii. Omics 16(10):560–
565 Epub 2012/08/25. https://doi.org/10.1089/omi.2012.0039

27.	 Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A et al 
(2010) Experimentally derived Metastasis Gene expression Pro-
file predicts recurrence and death in patients with Colon cancer. 
Gastroenterology 138(3):958–968 Epub 2009/11/17. https://doi.
org/10.1053/j.gastro.2009.11.005

28.	 Sugawara T, Miya F, Ishikawa T, Lysenko A, Nishino J, Kamatani 
T et al (2022) Immune subtypes and Neoantigen-Related Immune 
Evasion in Advanced Colorectal Cancer. iScience 25(2):103740. 
https://doi.org/10.1016/j.isci.2022.103740. Epub 2022/02/08

29.	 Chen DT, Hernandez JM, Shibata D, McCarthy SM, Humphries 
LA, Clark W et al (2012) Complementary strand micrornas Medi-
ate Acquisition of metastatic potential in Colonic Adenocarci-
noma. J Gastrointest Surg 16(5):905–912 discussion 912 – 903. 
Epub 2012/03/01. https://doi.org/10.1007/s11605-011-1815-0

1 3

1142

https://doi.org/10.1038/nm.3967
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.7554/eLife.26476
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.1038/s41416-021-01488-6
https://doi.org/10.1038/s41416-021-01488-6
https://doi.org/10.32471/exp-oncology.2312-8852.vol-43-no-2.16314
https://doi.org/10.32471/exp-oncology.2312-8852.vol-43-no-2.16314
https://doi.org/10.1093/nutrit/nuaa040
https://doi.org/10.1016/j.semcancer.2018.02.010
https://doi.org/10.1016/j.semcancer.2018.02.010
https://doi.org/10.1289/ehp.824321
https://doi.org/10.1586/1744666x.2014.865520
https://doi.org/10.3390/cancers14051281
https://doi.org/10.3390/cancers14051281
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1089/omi.2012.0039
https://doi.org/10.1053/j.gastro.2009.11.005
https://doi.org/10.1053/j.gastro.2009.11.005
https://doi.org/10.1016/j.isci.2022.103740
https://doi.org/10.1007/s11605-011-1815-0


Apoptosis (2024) 29:1126–1144

59.	 Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A et al (2019) 
Reference-based analysis of lung single-cell sequencing reveals a 
transitional profibrotic macrophage. Nat Immunol 20(2):163–172 
Epub 2019/01/16. https://doi.org/10.1038/s41590-018-0276-y

60.	 Sethy C, Kundu CN (2021) 5-Fluorouracil (5-Fu) Resistance 
and the New Strategy to enhance the sensitivity against Can-
cer: implication of DNA repair inhibition. Biomed Pharmaco-
ther 137:111285 Epub 2021/01/24. https://doi.org/10.1016/j.
biopha.2021.111285

61.	 Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, 
Vymetalkova V (2020) 5-Fluorouracil and other Fluoropyrimi-
dines in Colorectal Cancer: past, Present and Future. Pharmacol 
Ther 206:107447 Epub 2019/11/23. https://doi.org/10.1016/j.
pharmthera.2019.107447

62.	 Dong S, Huo H, Mao Y, Li X, Dong L (2019) A risk score 
model for the prediction of Osteosarcoma Metastasis. FEBS 
Open Bio 9(3):519–526 Epub 2019/03/15. https://doi.
org/10.1002/2211-5463.12592

63.	 Sun L, Wang Y, Yuan H, Burnett J, Pan J, Yang Z et al (2016) 
Cpa4 is a Novel Diagnostic and prognostic marker for human 
non-small-cell Lung Cancer. J Cancer 7(10):1197

64.	 Sun L, Burnett J, Guo C, Xie Y, Pan J, Yang Z et al (2016) Cpa4 
is a Promising Diagnostic serum biomarker for pancreatic Cancer. 
Am J cancer Res 6(1):91

65.	 Wei C, Zhou Y, Xiong Q, Xiong M, Hou Y, Yang X et al (2021) 
Comprehensive Analysis of Cpa4 as a poor prognostic biomarker 
correlated with Immune cells infiltration in bladder Cancer. Biol-
ogy 10(11):1143

66.	 Yang W, Shen Z, Yang T, Wu M (2022) Dnah7 mutations benefit 
Colorectal Cancer patients receiving Immune Checkpoint inhibi-
tors. Ann Transl Med 10(24):1335 Epub 2023/01/21. https://doi.
org/10.21037/atm-22-6166

67.	 Berger W, Setinek U, Mohr T, Kindas-Mügge I, Vetterlein M, 
Dekan G et al (1999) Evidence for a role of Fgf‐2 and Fgf Recep-
tors in the proliferation of non‐small cell Lung Cancer cells. Int J 
Cancer 83(3):415–423

68.	 Giulianelli S, Riggio M, Guillardoy T, Pérez Piñero C, Gorostiaga 
MA, Sequeira G et al (2019) Fgf2 induces breast Cancer growth 
through ligand-independent activation and recruitment of Erα 
and Prbδ4 isoform to Myc Regulatory sequences. Int J Cancer 
145(7):1874–1888

69.	 Hou H, Yu X, Cong P, Zhou Y, Xu Y, Jiang Y (2019) Six2 pro-
motes non–small cell Lung Cancer Cell Stemness Via transcrip-
tionally and epigenetically regulating E-Cadherin. Cell Prolif 
52(4):e12617

70.	 Wang C-A, Drasin D, Pham C, Jedlicka P, Zaberezhnyy V, Guney 
M et al (2014) Homeoprotein Six2 promotes breast Cancer 
Metastasis Via Transcriptional and Epigenetic Control of E-Cad-
herin expression. Cancer Res 74(24):7357–7370

71.	 Yin J, Guo Y (2021) Hoxd13 promotes the malignant progres-
sion of Colon cancer by upregulating Ptprn2. Cancer Med 
10(16):5524–5533

72.	 Han M-E, Kim H-J, Shin DH, Hwang S-H, Kang C-D, Oh S-O 
(2015) Overexpression of Nrg1 promotes progression of gastric 
Cancer by regulating the Self-Renewal of Cancer Stem cells. J 
Gastroenterol 50:645–656

73.	 Wei W, Xi Y, Jiamin X, Jing Z, Shuwen H (2019) Screen-
ing of molecular targets and construction of a Cerna Network 
for Oxaliplatin Resistance in Colorectal Cancer. RSC Adv 
9(54):31413–31424

74.	 Schön S, Flierman I, Ofner A, Stahringer A, Holdt LM, Kolligs 
FT et al (2014) Β-Catenin regulates Nf‐Κb Activity Via Tnfrsf19 
in Colorectal Cancer cells. Int J Cancer 135(8):1800–1811

75.	 Liu L, Hou Y, Hu J, Zhou L, Chen K, Yang X et al (2021) Slc39a8/
Zinc suppresses the progression of Clear Cell Renal Cell Carci-
noma. Front Oncol 11:651921

45.	 Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan 
S et al (2016) Genomic and transcriptomic features of response 
to anti-pd-1 therapy in metastatic melanoma. Cell 165(1):35–44 
Epub 2016/03/22. https://doi.org/10.1016/j.cell.2016.02.065

46.	 Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L 
et al (2013) Gene expression classification of Colon cancer into 
Molecular subtypes: characterization, validation, and Prognostic 
Value. PLoS Med 10(5):e1001453 Epub 20130521. https://doi.
org/10.1371/journal.pmed.1001453

47.	 Zhu J, Deane NG, Lewis KB, Padmanabhan C, Washington MK, 
Ciombor KK et al (2016) Evaluation of frozen tissue-derived 
prognostic gene expression signatures in Ffpe Colorectal Can-
cer samples. Sci Rep 6:33273 Epub 2016/09/15. https://doi.
org/10.1038/srep33273

48.	 Allen WL, Dunne PD, McDade S, Scanlon E, Loughrey M, Cole-
man H et al (2018) Transcriptional Subtyping and Cd8 Immu-
nohistochemistry Identifies Poor Prognosis Stage Ii/Iii Colorectal 
Cancer Patients Who Benefit from Adjuvant Chemotherapy. JCO 
Precis Oncol 2018. Epub 2018/08/09. https://doi.org/10.1200/
po.17.00241

49.	 Maeser D, Gruener RF, Huang RS (2021) Oncopredict: An R 
Package for Predicting in Vivo or Cancer Patient Drug Response 
and Biomarkers from Cell Line Screening Data. Brief Bioinform 
22(6). Epub 2021/07/15. https://doi.org/10.1093/bib/bbab260

50.	 Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes 
S et al (2013) Genomics of Drug Sensitivity in Cancer (Gdsc): 
A Resource for Therapeutic Biomarker Discovery in Cancer 
Cells. Nucleic Acids Res 41(Database issue):D955-961. Epub 
2012/11/28. https://doi.org/10.1093/nar/gks1111

51.	 Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price 
EV, Gill S et al (2016) Correlating Chemical sensitivity and 
basal gene expression reveals mechanism of action. Nat Chem 
Biol 12(2):109–116 Epub 2015/12/15. https://doi.org/10.1038/
nchembio.1986

52.	 Corsello SM, Nagari RT, Spangler RD, Rossen J, Kocak M, 
Bryan JG et al (2020) Discovering the anti-cancer potential of 
non-oncology drugs by systematic viability profiling. Nat Can-
cer 1(2):235–248 Epub 2020/07/03. https://doi.org/10.1038/
s43018-019-0018-6

53.	 Wilkerson MD, Hayes DN (2010) Consensusclusterplus: a Class 
Discovery Tool with confidence assessments and item Tracking. 
Bioinformatics 26(12):1572–1573 Epub 2010/04/30. https://doi.
org/10.1093/bioinformatics/btq170

54.	 Hou Y, Zhang R, Zong J, Wang W, Zhou M, Yan Z et al (2022) 
Comprehensive Analysis of a Cancer-immunity cycle-based sig-
nature for Predicting Prognosis and Immunotherapy Response in 
patients with colorectal Cancer. Front Immunol 13:892512 Epub 
2022/06/18. https://doi.org/10.3389/fimmu.2022.892512

55.	 Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, 
Lu X et al (2017) A Next Generation Connectivity Map: L1000 
platform and the first 1,000,000 profiles. Cell 171(6):1437–
1452 e1417. Epub 2017/12/02. https://doi.org/10.1016/j.
cell.2017.10.049

56.	 Che LH, Liu JW, Huo JP, Luo R, Xu RM, He C et al (2021) A 
single-cell Atlas of Liver metastases of Colorectal Cancer reveals 
reprogramming of the Tumor Microenvironment in Response 
to Preoperative Chemotherapy. Cell Discov 7(1):80 Epub 
2021/09/08. https://doi.org/10.1038/s41421-021-00312-y

57.	 Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Inte-
grating single-cell Transcriptomic Data across different condi-
tions, technologies, and species. Nat Biotechnol 36(5):411–420. 
https://doi.org/10.1038/nbt.4096

58.	 Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K 
et al (2019) Fast, sensitive and accurate integration of single-cell 
data with Harmony. Nat Methods 16(12):1289–1296. https://doi.
org/10.1038/s41592-019-0619-0

1 3

1143

https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1016/j.biopha.2021.111285
https://doi.org/10.1016/j.biopha.2021.111285
https://doi.org/10.1016/j.pharmthera.2019.107447
https://doi.org/10.1016/j.pharmthera.2019.107447
https://doi.org/10.1002/2211-5463.12592
https://doi.org/10.1002/2211-5463.12592
https://doi.org/10.21037/atm-22-6166
https://doi.org/10.21037/atm-22-6166
https://doi.org/10.1016/j.cell.2016.02.065
https://doi.org/10.1371/journal.pmed.1001453
https://doi.org/10.1371/journal.pmed.1001453
https://doi.org/10.1038/srep33273
https://doi.org/10.1038/srep33273
https://doi.org/10.1200/po.17.00241
https://doi.org/10.1200/po.17.00241
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1038/nchembio.1986
https://doi.org/10.1038/nchembio.1986
https://doi.org/10.1038/s43018-019-0018-6
https://doi.org/10.1038/s43018-019-0018-6
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.3389/fimmu.2022.892512
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1038/s41421-021-00312-y
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0


Apoptosis (2024) 29:1126–1144

82.	 Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA (2022) 
Targeting non-coding rnas to Overcome Cancer Therapy Resis-
tance. Signal Transduct Target Ther 7(1):121 Epub 2022/04/15. 
https://doi.org/10.1038/s41392-022-00975-3

83.	 Zhao R, Xia D, Chen Y, Kai Z, Ruan F, Xia C et al (2023) 
Improved diagnosis of Colorectal Cancer using combined bio-
markers including Fusobacterium Nucleatum, Fecal Occult 
blood, transferrin, Cea, Ca19-9, gender, and Age. Cancer Med 
12(13):14636–14645 Epub 2023/05/10. https://doi.org/10.1002/
cam4.6067

Publisher’s Note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

76.	 Zhang S, He Y, Xuan Q, Ling X, Men K, Zhao X et al (2022) 
Tmem139 prevents Nsclc Metastasis by inhibiting lysosomal 
degradation of E-Cadherin. Cancer Sci 113(6):1999–2007

77.	 Yan S-M, Tang J-J, Huang C-Y, Xi S-Y, Huang M-Y, Liang J-Z 
et al (2013) Reduced expression of Zdhhc2 is Associated with 
Lymph Node Metastasis and poor prognosis in gastric adenocar-
cinoma. PLoS ONE 8(2):e56366

78.	 Dastsooz H, Alizadeh A, Habibzadeh P, Nariman A, Hosseini A, 
Mansoori Y et al (2022) Lncrna–Mirna–Mrna Networks of gas-
trointestinal cancers representing common and specific Lncrnas 
and Mrnas. Front Genet 12:791919

79.	 Najafi M, Mortezaee K, Majidpoor J (2019) Cancer Stem Cell 
(Csc) Resistance Drivers. Life Sci 234:116781. Epub 2019/08/21. 
https://doi.org/10.1016/j.lfs.2019.116781

80.	 Onorati AV, Dyczynski M, Ojha R, Amaravadi RK (2018) Tar-
geting Autophagy in Cancer. Cancer 124(16):3307–3318 Epub 
2018/04/20. https://doi.org/10.1002/cncr.31335

81.	 Recillas-Targa F (2022) Cancer epigenetics: an overview. 
Arch Med Res 53(8):732–740 Epub 2022/11/22. https://doi.
org/10.1016/j.arcmed.2022.11.003

1 3

1144

https://doi.org/10.1038/s41392-022-00975-3
https://doi.org/10.1002/cam4.6067
https://doi.org/10.1002/cam4.6067
https://doi.org/10.1016/j.lfs.2019.116781
https://doi.org/10.1002/cncr.31335
https://doi.org/10.1016/j.arcmed.2022.11.003
https://doi.org/10.1016/j.arcmed.2022.11.003

	﻿Integrated analysis reveals a novel 5-fluorouracil resistance-based prognostic signature with promising implications for predicting the efficacy of chemotherapy and immunotherapy in patients with colorectal cancer
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Data sources and processing
	﻿Construction of the 5-FRSig
	﻿Prognostic analysis and construction of the nomogram
	﻿Functional enrichment analysis
	﻿Tumor immune microenvironment analysis
	﻿Prediction of the response to immunotherapy and chemotherapy
	﻿Consensus clustering analysis
	﻿Real-time quantitative PCR validation
	﻿Identification and verification of candidate small molecules to reverse 5-FU resistance
	﻿Single-cell RNA sequencing analysis
	﻿Statistical analysis

	﻿Results
	﻿Construction of a prognostic 5-FRSig
	﻿Prognosis analysis of the 5-FRSig and construction of a nomogram
	﻿The 5-FRSig predicts patient response to 5-FU therapy
	﻿Analysis of the underlying biological pathway of the 5-FRSig
	﻿Immune profile analysis of the 5-FRSig
	﻿Mutation and immunotherapy response analysis of the 5-FRSig
	﻿Construction and prognosis analysis of 5-FU resistance-related clusters
	﻿Clinical validation of the 5-FRSig
	﻿scRNA-seq analysis of the 5-FRSig
	﻿Drug sensitivity analysis in the high- and low-risk groups
	﻿Candidate small molecules to reverse 5-FU resistance

	﻿Discussion
	﻿Conclusion
	﻿References


