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Abstract
Background:	5-Fluorouracil	(5-FU)	has	been	used	as	a	standard	first-line	treatment	for	colorectal	cancer	(CRC)	patients.	
Although	 5-FU-based	 chemotherapy	 and	 immune	 checkpoint	 blockade	 (ICB)	 have	 achieved	 success	 in	 treating	 CRC,	
drug	resistance	and	low	response	rates	remain	substantial	limitations.	Thus,	it	is	necessary	to	construct	a	5-FU	resistance-
related	signature	(5-FRSig)	to	predict	patient	prognosis	and	identify	ideal	patients	for	chemotherapy	and	immunotherapy.	
Methods: Using bulk and single-cell RNA sequencing data, we established and validated a novel 5-FRSig model using 
stepwise	regression	and	multiple	CRC	cohorts	and	evaluated	its	associations	with	the	prognosis,	clinical	features,	immune	
status,	 immunotherapy,	 neoadjuvant	 therapy,	 and	 drug	 sensitivity	 of	CRC	patients	 through	various	 bioinformatics	 algo-
rithms.	Unsupervised	consensus	clustering	was	performed	to	categorize	the	5-FU	resistance-related	molecular	subtypes	of	
CRC.	The	expression	levels	of	5-FRSig,	immune	checkpoints,	and	immunoregulators	were	determined	using	quantitative	
real-time	polymerase	 chain	 reaction	 (RT‒qPCR).	Potential	 small-molecule	 agents	were	 identified	via	Connectivity	Map	
(CMap)	 and	molecular	docking.	Results:	The	5-FRSig	 and	cluster	were	 confirmed	as	 independent	prognostic	 factors	 in	
CRC,	as	patients	 in	 the	 low-risk	group	and	Cluster	1	had	a	better	prognosis.	Notably,	5-FRSig	was	significantly	associ-
ated	with	5-FU	sensitivity,	chemotherapy	response,	immune	cell	infiltration,	immunoreactivity	phenotype,	immunotherapy	
efficiency,	and	drug	selection.	We	predicted	10	potential	compounds	that	bind	to	the	core	targets	of	5-FRSig	with	the	high-
est	affinity.	Conclusion:	We	developed	a	valid	5-FRSig	to	predict	the	prognosis,	chemotherapeutic	response,	and	immune	
status	of	CRC	patients,	 thus	optimizing	 the	 therapeutic	benefits	of	chemotherapy	combined	with	 immunotherapy,	which	
can	facilitate	the	development	of	personalized	treatments	and	novel	molecular	targeted	therapies	for	patients	with	CRC.
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Introduction

Colorectal cancer (CRC) is the leading cause of death 
worldwide, with its incidence and mortality rates ranking 
third	 and	 second	 among	 malignant	 tumors,	 respectively	
[1]. In recent years, the incidence and mortality rates of 
CRC	 have	 increased	 significantly	 [2]. Surgical treatment, 
radiation	therapy,	and	systemic	chemotherapy	are	the	main	
therapeutic	 approaches	 for	 treating	 CRC	 [3]. Surgery is 
usually the treatment of choice for early-stage CRC. Che-
motherapy	drugs	such	as	5-fluorouracil	 (5-FU),	fluoroura-
cil	 (capecitabine),	 and	 calcium	 oxide	 (oxaliplatin)	 can	 be	
used as adjuvant treatments to reduce tumor volume, con-
trol	postoperative	recurrence,	or	provide	remission	therapy	
in advanced stages [4–6].

Since	 the	1990s,	fluorouracil	 (FU)-based	adjuvant	 che-
motherapy	has	been	an	essential	option	for	treating	advanced	
CRC [7].	 The	 use	 of	 adjuvant	 fluorouracil-based	 chemo-
therapy	in	patients	with	stage	III	colon	cancer	is	thought	to	
be standard care; however, it is not routinely recommended 
for	patients	with	stage	II	colon	cancer	[8, 9].	Some	patients	
develop	resistance	to	chemotherapy	drugs,	which	is	one	of	
the main causes of tumor treatment failure [10]. Once che-
moresistance	 emerges,	 tumors	 tend	 to	 relapse	 and	metas-
tasize,	causing	 the	death	of	70	 to	80%	of	cancer	patients;	
thus, chemoresistance is one of the greatest challenges in 
the long-term management of incurable metastatic disease 
[11].	 5-FU,	 an	 intravenous	 synthetic	 fluorouracil	 analog,	
is	currently	the	most	important	chemical	for	treating	CRC	
[12].	Using	5-FU	can	effectively	 reduce	 tumor	 recurrence	
and	 metastasis	 and	 improve	 the	 survival	 rates.	 However,	
cancer	 cells	 gradually	 develop	 resistance	 during	 chemo-
therapy,	leading	to	the	failure	of	chemotherapy	drugs	[13]. 
Resistance to 5-FU can result from various factors, includ-
ing	metabolic	enzymes	and	cancer	stemness.	Some	studies	
have suggested that mutations in genes and changes in the 
expression	levels	of	genes	involved	in	metabolic	pathways	
associated	with	 5-FU	may	 contribute	 to	 the	 development	
of resistance [14].	 Thymidylate	 synthase	 polymorphism	
is	now	an	emerging	focus	of	interest	responsible	for	5-FU	
resistance [15–18]. In addition, cancer stem cells have long 
been	 associated	with	 chemotherapy	 resistance	 [19]. How-
ever,	because	of	the	complexity	of	the	tumor	microenviron-
ment,	 the	underlying	mechanism	leading	to	chemotherapy	
resistance remains unclear.

A	 tremendous	 benefit	 has	 been	 achieved	 with	 immu-
notherapy	 in	 cancer	 treatment	 in	 recent	 years.	 The	 FDA	
approved	 immune	 checkpoint	 regimens	 in	 2017	 for	 CRC	
patients	with	 defective	mismatch	 repair	 (dMMR)	 or	 high	
microsatellite instability (MSI-H) levels. However, immu-
notherapy	 is	 inefficient	 for	 tumors	 that	 are	 proficient	 in	
mismatch	 repair	 (pMMR),	microsatellite	 stable	 (MSS),	or	

have low levels of microsatellite instability (MSI-L), which 
account	for	a	large	proportion	of	CRCs	[20]. Although che-
motherapy	and	 immunotherapy	have	achieved	unexpected	
efficacy	 in	 treating	 CRC,	 with	 the	 development	 of	 preci-
sion	 therapy,	 the	 limitations	 of	 monotherapy,	 especially	
chemotherapy	resistance	and	a	low	rate	of	immunotherapy	
response,	have	gradually	emerged.	Recent	research	suggests	
that	 there	 are	 complex	 interactions	 between	 the	 immune	
system	 and	 chemotherapy.	 While	 immunosuppressive	
effects	of	chemotherapeutic	agents	have	been	reported	[21, 
22],	 studies	 have	 shown	 that	 chemotherapy	 can	 enhance	
the	immunogenicity	of	tumor	cells,	activate	immune	effec-
tors,	and	alleviate	tumor-induced	immunosuppression	[23]. 
However,	 there	 are	 currently	 no	 effective	 biomarkers	 for	
determining	the	prognosis	of	patients	with	CRC	or	for	pre-
dicting	their	response	to	chemotherapy	and	immunotherapy.

In	 this	 study,	 we	 first	 identified	 genes	 associated	 with	
5-FU	 resistance	 in	CRC	 patients	 and	 constructed	 a	 novel	
5-FU resistance-related signature (5-FRSig) according to 
these	 genes.	We	 systematically	 investigated	 and	 validated	
the	prognostic	value,	 chemotherapeutic	 response,	 immune	
landscape,	 and	 immunotherapy	 predictive	 power	 of	 the	
signature. Our study demonstrated that the 5-FRSig can 
be	used	as	an	independent	prognostic	factor	to	predict	 the	
response	 to	 chemotherapy	 and	 immunotherapy	 in	 CRC	
patients.	This	study	is	expected	to	lead	to	more	accurate	and	
effective	treatment	strategies	for	patients	with	CRC,	includ-
ing	 chemotherapy,	 immunotherapy,	 targeted	 therapy,	 and	
combination	therapy,	providing	guidance	strategies	for	the	
precise	diagnosis	and	treatment	of	CRC.

Materials and methods

Data sources and processing

The	 transcriptomic	 data	 of	 parental	 and	 5-FU-resistant	
cells	 were	 obtained	 from	 the	 Gene	 Expression	 Omnibus	
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) under 
the	 accession	 number	 GSE196900	 [24].	 Differentially	
expressed	genes	(DEGs)	between	5-FU-resistant	cells	and	
parental	 cells	 in	 the	HCT116	 and	 SW480	 cell	 lines	were	
analyzed	with	the	R	package	“DESeq2”	[25]. Genes with an 
absolute value of log2 (fold change (FC)) > 2 and adjusted P 
value < 0.05 were considered DEGs. DEGs with consistent 
trends in both cell lines were considered 5-FU resistance-
related	 candidate	 genes.	 The	 transcriptomic	 and	 clinical	
data of The Cancer Genome Atlas (TCGA) colon adenocar-
cinoma and rectum adenocarcinoma datasets were down-
loaded	from	the	GDC	data	portal	(https://portal.gdc.cancer.
gov/).	A	 total	 of	 597	CRC	 samples	with	 accessible	 clini-
cal and survival data were enrolled in the training cohort. 
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External	 validation	 was	 performed	 using	 the	 GSE37892	
[26], GSE17537 [27],	 GSE192667	 [28],	 and	 GSE29621	
[29] datasets, all of which were downloaded from the GEO 
database.	 This	 study	 used	 consensus	 molecular	 subtypes	
(CMSs)	 obtained	 from	 the	 Colorectal	 Cancer	 Subtyping	
Consortium	Synapse	[30].

Construction of the 5-FRSig

Univariate Cox regression was conducted for 5-FU resis-
tance-related candidate genes in the TCGA cohort. Subse-
quently,	 multivariate	 stepwise	 regression	 was	 conducted	
using	 the	 R	 package	 “MASS.”	An	 optimized	 risk	 model	
associated with 5-FU resistance was then established, 
including thirteen 5-FU resistance-related genes (5-FRGs). 
For	each	patient,	 the	risk	score	was	calculated	as	follows:	
Risk score =

∑13
i=1Expression (mRNAi)× Coefficient (mRNAi).

The	 correlation	between	 the	 risk	 score	 and	 the	 expres-
sion	level	of	the	thirteen	genes	was	analyzed	using	Spear-
man’s	correlation.	The	R	package	“ComplexHeatmap”	was	
applied	to	depict	the	results	[31].

Prognostic analysis and construction of the 
nomogram

Patients	 were	 divided	 into	 high-	 and	 low-risk	 groups	
according	to	the	median	value	of	the	risk	score.	The	prog-
nostic	value	of	the	5-FRSig	was	evaluated	by	Kaplan‒Meier	
(K‒M)	survival	analysis,	multivariate	Cox	regression	anal-
ysis,	 and	 time-dependent	 receiver	 operating	 characteristic	
(ROC) curve analysis. A nomogram model integrating all 
independent	prognostic	factors,	including	risk	factors,	was	
established	with	the	R	package	“rms”	to	further	improve	the	
prediction	 power.	Moreover,	 calibration	 curves	were	 gen-
erated.	Overall	survival	(OS)	and	progression-free	survival	
(PFS)	rates	were	analyzed	in	the	TCGA	cohort.	In	addition,	
associations between the risk score, stage, and CMS were 
analyzed.

Functional enrichment analysis

DEGs	 between	 the	 high-	 and	 low-risk	 groups	were	 iden-
tified	 using	 the	R	package	 “DESeq2”	with	 a	 threshold	 of	
adjusted P < 0.05 and an absolute value of log2FC > 0.5. 
Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	and	
Gene Ontology (GO) analyses, along with gene set enrich-
ment	analysis	(GSEA),	were	conducted	using	the	R	package	
“clusterProfiler”	[32].

Tumor immune microenvironment analysis

First,	we	assessed	the	immune	scores	of	risk	groups	using	
the Estimation of STromal and Immune cells in MAlignant 
Tumors	 using	 Expression	 data	 (ESTIMATE)	 algorithm,	
including estimate, immune, and stromal scores [33]. In 
addition,	 multiple	 deconvolution	 algorithms	 were	 used	
to evaluate immune subsets, including ESTIMATE [33], 
Tumor Immune Estimation Resource (TIMER) [34], Cell-
type	Identification	By	Estimating	Relative	Subsets	of	RNA	
Transcripts	 (CIBERSORT)	 [35],	 Estimating	 the	 Propor-
tion of Immune and Cancer cells (EPIC) [36], xCELL [37], 
Microenvironment	 Cell	 Populations-counter	 (MCP-coun-
ter) [38],	Quantification	of	the	Tumor	Immune	Contexture	
from Human RNA-seq Data (quanTIseq) [39] and gene set 
variation analysis (GSVA) [40].	In	addition,	the	expression	
levels of immune-related genes were extracted and com-
pared	between	the	high-	and	low-risk	groups.

Prediction of the response to immunotherapy and 
chemotherapy

The correlation between the gene signature and somatic 
mutations	 and	 neoantigens	 was	 analyzed.	 The	 mutation	
annotation format (MAF) for the TCGA cohort was obtained 
from	 the	TCGA	data	 portal	 (https://portal.gdc.cancer.gov) 
and	analyzed	with	the	R	package	“maftools.”	The	numbers	
of somatic mutations and neoantigens were retrieved from 
The Cancer Immunome Atlas (TCIA) (https://tcia.at) [40]. 
Patient	 responses	 to	 immune	 checkpoint	 inhibitors	 were	
predicted	using	 tumor	 immune	dysfunction	 and	 exclusion	
(TIDE, http://tide.dfci.harvard.edu) [41],	a	well-developed	
and	 accurate	method	 for	predicting	 the	 efficacy	of	 immu-
notherapy.	Four	 independent	cohorts	with	 immunotherapy	
information, namely, the IMvigor210 (n = 298) [42], Check-
Mate 025 (n = 281) [43],	 GSE176307	 (n = 88) [44], and 
GSE78220 (n = 27) [45] cohorts, were retrieved to further 
validate	the	results	in	samples	with	treatment	response	data.	
Receiver	operating	characteristic	(ROC)	curves	were	used	
to	assess	the	ability	of	the	5-FRSig	to	predict	the	response	
to 5-FU. The data of three GEO cohorts, GSE39582 [46], 
GSE106584	[47], and GSE103479 [48], were retrieved, and 
only	 samples	 from	 patients	 who	 received	 adjuvant	 5-FU	
treatment were included in the analysis. For GSE39582, 
GSE103479,	and	GSE106584,	82,	66,	and	35	samples	were	
retained,	 respectively.	 Patients	 who	 experienced	 relapse	
were	 considered	nonresponders	 to	5-FU	 treatment.	The	R	
package	 “oncoPredict”	 [49]	was	 used	 to	 analyze	 the	 sen-
sitivity	of	patients	 to	commonly	used	drugs.	This	analysis	
was	conducted	using	transcriptomic	data	and	drug	sensitiv-
ity data downloaded from Genomics of Drug Sensitivity in 
Cancer (GDSC, https://www.cancerrxgene.org/) [50], The 

1 3

1128

https://portal.gdc.cancer.gov
https://tcia.at
http://tide.dfci.harvard.edu
https://www.cancerrxgene.org/


Apoptosis (2024) 29:1126–1144

with negative connectivity scores, an FDR q value < 0.05, 
a	 specific	 mechanism	 of	 action	 (MoA),	 and	 targets	 were	
considered	to	have	reliable	potential	 to	reverse	5FU	resis-
tance. Molecular docking was used to verify the reliability 
of these small molecules in reversing 5FU resistance. First, 
the	 3D	 structures	 of	 the	 target	 proteins	were	 downloaded	
from the RCSB Protein Database Bank (PDB, http://www.
rcsb.org/)	 or	 the	 AlphaFold	 Protein	 Structure	 Database	
(https://alphafold.ebi.ac.uk/).	The	proteins	were	dehydrated	
and/or	 ligand-removed	 with	 PyMOL	 2.5	 software	 and	
saved	in	PDB	format.	The	processed	target	protein	was	then	
imported	into	AutoDock	Tools	1.5.6	software	for	hydroge-
nation	and	charge	calculations	and	stored	in	PDBQT	format.	
Second, the 3D structures of small molecules in SDF for-
mat were downloaded from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) and saved in mol2 format with 
Open	Babel	 2.3.1	 software.	Mol2	 files	 of	 small	molecule	
drugs	were	imported	into	AutoDock	Tools,	the	total	charge	
was	detected,	the	charge	was	assigned,	and	flexible	rotatable	
bonds	were	viewed	and	saved	in	PDBQT	format.	The	grid	
box was obtained by using the GetBox Plugin in PyMOL. 
Finally, AutoDock Vina 1.1.2 was used to conduct molecu-
lar	 docking	 for	 10	 potential	molecules	 and	 thirteen	 target	
proteins.	The	binding	strength	was	evaluated	according	to	
the	 docking	 binding	 energy.	 The	 results	 were	 visualized	
with PyMOL 2.5 software.

Single-cell RNA sequencing analysis

We	 used	 the	 scRNA-seq	 cohort	 GSE178318	 [56], which 
contains	 single-cell	 expression	 profiling	 of	 CRC	 liver	
metastases	from	treated	patients	and	untreated	patients.	The	
R	packages	“Seurat”	 [57]	and	“Harmony”	[58] were used 
to	read	sample	data	and	remove	batch	effects	between	the	
samples.	We	 then	 used	 the	 t-SNE	method	 for	 dimension	
reduction	processing	 to	obtain	 the	 clusters	 and	performed	
cell	type	annotation	through	the	R	package	“SingleR”	[59]. 
The score and distribution of the 5-FRSig in the single-cell 
samples	were	calculated	using	two	methods,	namely,	Ucell	
and	singscore.	The	Ucell	algorithm	uses	the	Mann–Whitney	
U statistic to calculate the gene set enrichment score for a 
single	sample	based	on	the	gene	expression	ranking,	while	
the	 singscore	 algorithm	employs	 a	gene	 enrichment	 score	
that	is	calculated	based	on	the	gene	expression	ranking	of	a	
single	sample.	This	score	assesses	the	distance	of	the	gene	
set	from	the	center.	Both	of	these	algorithms	can	be	imple-
mented	through	the	R	package	“irGSEA.”

Statistical analysis

R	software	(version	4.1.3)	and	GraphPad	Prism	8.0	(Graph-
Pad Software Inc., San Diego, CA, United States) were used 

Cancer	 Therapeutics	 Response	 Portal	 (CTRP,	 https://por-
tals.broadinstitute.org/ctrp.v2.1/) [51],	 and	 Profiling	 Rela-
tive Inhibition Simultaneously in Mixtures (PRISM, https://
www.theprismlab.org/) [52]. The half-maximal inhibi-
tory concentration (IC50) in the GDSC and the area under 
the	dose‒response	curve	 (AUC)	 in	 the	CTRP	and	PRISM	
cohorts were negatively correlated with drug sensitivity.

Consensus clustering analysis

Sixty-five	prognostic	genes	were	identified	in	the	univariate	
Cox	 regression	 analysis.	 Unsupervised	 consensus	 cluster-
ing	was	 conducted	 using	 the	R	package	 “ConsensusClus-
terPlus”	with	 50	 iterations	 and	 a	 resampling	 rate	 of	 80%	
[53].	 K‒M	 survival,	 tumor	 immune	 microenvironment,	
DEG, and functional enrichment analyses were conducted 
between	 subclusters	 to	 explore	 the	 biological	 properties.	
In addition, the correlation between the gene signature and 
clusters	was	analyzed.

Real-time quantitative PCR validation

Forty-five	pairs	of	CRC	and	adjacent	normal	tissue	samples	
were	collected	from	the	Affiliated	Hospital	of	Qingdao	Uni-
versity for RT–qPCR validation. The ethical considerations 
and the criteria for inclusion and exclusion were used, as 
previously	described	[54]. Total RNA was extracted using 
an RNeasy kit (Beyotime, Shanghai, China, R0027) accord-
ing to the manufacturer´s instructions. Then, 1 µg of total 
RNA	was	 reverse	 transcribed	with	 SuperScript	 II	 reverse	
transcriptase	 (Takara,	 Japan,	 RR047).	 Quantitative	 PCR	
analysis	 was	 performed	 with	 SYBR	 Green	 Mix	 (Takara,	
Japan,	RR820)	using	an	ABI	7900	HT	Real-Time	PCR	Sys-
tem.	GAPDH	was	used	as	an	internal	control.	The	primers	
used	in	this	study	are	listed	in	Supplementary	Table	1.

Identification and verification of candidate small 
molecules to reverse 5-FU resistance

To	 improve	 the	 clinical	 application	 of	 our	 signature,	 we	
used	a	Connectivity	Map	(CMap)	to	predict	candidate	small	
molecules	 that	might	 reverse	 5-FU	 resistance.	CMap	 is	 a	
public	resource	comprising	a	comprehensive	catalog	of	cel-
lular	 signatures	 representing	 systematic	 perturbation	 with	
genetic	 and	 pharmacologic	 interference.	 The	 connectivity	
score,	as	calculated	by	CMap,	 indicates	 that	 the	molecule	
could	enhance	a	biological	property	if	positive	and	reverse	
the	 biological	 property	 if	 negative	 [55]. In this study, the 
hub	 genes	 were	 divided	 into	 upregulated	 and	 downregu-
lated	groups	and	 imported	 into	 the	CMap	database.	Then,	
a list of small molecules was obtained, and these molecules 
were ranked by the connectivity score. Small molecules 
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3), CPA4	(carboxypeptidase	A4),	DNAH7 (dynein axonemal 
heavy chain 7), FGF2	(fibroblast	growth	factor	2),	HOXD13 
(homeobox D13), NRG1 (neuregulin 1), PPP1R3F	(protein	
phosphatase	1	regulatory	subunit	3	F),	SIX2 (SIX homeo-
box 2), SLC39A8 (solute carrier family 39 member 8), 
TMEM139	(transmembrane	protein	139),	TNFRSF19 (TNF 
receptor	 superfamily	 member	 19),	 ZDHHC2	 (zinc	 finger	
DHHC-type	palmitoyltransferase	2),	and	ZNF607	(zinc	fin-
ger	protein	607).	The	patients	were	divided	into	high-	and	
low-risk	 groups	 using	 the	 median	 risk	 score.	 Figure	 2C 
displays	the	distribution	of	risk	scores	among	TCGA-CRC	
patients.	Additionally,	 the	 expression	 levels	 of	 twelve	 of	
the	 thirteen	 genes	 were	 significantly	 correlated	 with	 the	
risk score. Notably, SLC39A8 showed the strongest nega-
tive correlation (r = − 0.485, Fig. 2D). As shown in Fig. 2E, 
HOXD13, NRG1, SIX2, DNAH7, CAP4, ALPK3, and FGF2 
were	significantly	upregulated	 in	5-FU-resistant	cells,	and	
TNFRSF19, TMEM139, PPP1R3F, SLC39A8, ZNF607, 
and ZDHHC	 were	 significantly	 downregulated.	 In	 addi-
tion,	we	analyzed	the	correlation	between	the	risk	score	and	
clinicopathological	features;	the	risk	score	was	significantly	
correlated with status, T stage, N stage, and tumor stage 
(Fig. 2F).	We	then	used	three	external	datasets	for	validation	
and found that the risk scores of the GSE17537, GSE39582, 
and	 GSE37892	 datasets	 differed	 significantly	 at	 various	
stages (Fig. 2G).

for	data	analysis	and	visualization.	The	continuous	variables	
were	analyzed	using	the	Wilcoxon	or	Kruskal‒Wallis	tests.	
Categorical	 variables	 were	 analyzed	 using	 the	 chi-square	
test	 (χ2)	 or	Fisher’s	 exact	 test.	Relationships	 between	 the	
risk	 scores	 and	 the	 expression	 levels	 of	 different	 genes	
were	 examined	 by	 Spearman’s	 correlation	 analysis.	 A	 P 
value <	0.05	was	considered	to	indicate	significance.

Results

Construction of a prognostic 5-FRSig

The	flowchart	provides	an	overview	of	the	primary	design	
of the current investigation (Fig. 1).	 We	 selected	 DEGs	
between	 5-FU-resistant	 cells	 and	 parental	 cells	 in	 the	
HCT116	 and	SW480	 cell	 lines	 from	GSE196900.	A	 total	
of	565	DEGs	with	a	consistent	 trend	 in	 the	 two	cell	 lines	
were	 identified;	 of	 these	 5-FRGs,	 513	 were	 identified	 in	
the TCGA cohort (Fig. 2A). Then, we used univariate Cox 
regression	analysis	and	obtained	65	of	the	513	5-FRGs	asso-
ciated	with	prognosis	(P < 0.05). Multivariate Cox analysis 
was	 subsequently	 applied,	 and	 13	 5-FRGs	 with	 indepen-
dent	 prognostic	 value	 were	 identified.	 Figure	 2B shows 
the results of the univariate Cox regression analysis of 13 
5-FRGs.	Then,	 an	 optimized	 risk	model	with	 13	 5-FRGS	
was	 established	 stepwise,	 including	ALPK3	 (alpha	 kinase	

Fig. 1 Flowchart of the entire study
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risk factors (Fig. 4A–C).	To	confirm	the	superiority	of	the	
nomogram, calibration curves and ROC analysis were 
used	 to	validate	 the	nomogram’s	prognostic	 accuracy	and	
specificity.	The	results	indicated	that	the	5-FRSig	score	and	
nomogram	were	 superior	 to	 the	 stage	 in	predicting	OS	or	
PFS outcomes in the TCGA cohort and GSE39582 cohort 
(Fig. 4D–E). These results indicate that our risk signature is 
an	independent	prognostic	factor	reliable	for	predicting	sur-
vival	 probability.	 Furthermore,	 the	 nomogram	 integrating	
the	 risk	 score	 and	 clinicopathological	 characteristics	 was	
more	reliable	and	accurate	in	predicting	survival	outcomes.

Prognosis analysis of the 5-FRSig and construction 
of a nomogram

We	then	evaluated	the	prognostic	capacity	of	the	signature	
using	the	TCGA	cohort.	According	to	K‒M	survival	curves,	
patients	in	the	high-risk	group	had	significantly	worse	OS	
(P < 0.0001) and PFS (P < 0.001, Fig. 3A and B) rates. The 
risk	score	was	confirmed	 to	be	an	 independent	prognostic	
factor for both OS (HR =	3.136,	 95%	 CI	= 1.997–4.924, 
P < 0.001) and PFS (HR =	1.418,	 95%	 CI	= 1.002–2.007, 
P = 0.049). This result was validated in four external data-
sets,	 namely,	 GSE192667,	 GSE29621,	 GSE17537,	 and	
GSE37892 (Fig. 3C–F).	 To	 improve	 discrimination	 and	
make	 the	model	more	 applicable,	 we	 established	 a	 prog-
nostic	nomogram	integrating	the	signature	and	independent	

Fig. 2 Construction and validation of the 5-FU resistance-related sig-
nature. A.	The	DEGs	of	 two	cell	 lines	(HCT116	and	SW480)	in	the	
GSE196900	 dataset.	B. Univariate Cox analysis of TCGA-OS data 
for the 13 5-FU resistance-related genes used to construct the signa-
ture. C. Distribution of risk score (high and low) and status (dead and 
alive) in the TCGA-CRC cohort; D. The correlation between risk score 

and thirteen genes; E.	Expression	profiles	of	the	genes	in	the	normal	
and	resistant	groups	in	GSE196900.	F.	Correlation	heatmap	between	
risk	groups	and	clinical	characteristics.	G. Validation of the signature 
in the GSE17537 and GSE37892 datasets. ∗P < 0.05, ∗∗P < 0.01, 
∗∗∗P < 0.001
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were	 analyzed.	 The	 results	 are	 displayed	 in	 a	 volcano	
plot	(Fig.	6A).	A	total	of	1,057	upregulated	genes	and	664	
downregulated	 genes	 were	 identified	 with	 an	 adjusted	 P 
value < 0.05 and abs(logFC) > 0.5. GO analysis revealed 
that	the	DEGs	were	mainly	enriched	in	inflammation-related	
pathways,	including	acute	inflammatory	response	and	che-
mokine	activity.	In	addition,	cancer-related	pathways,	such	
as	 ERK1	 and	 ERK2	 cascade,	 and	 immune-related	 path-
ways, such as granulocyte migration, were also found to be 
enriched in the analysis (Fig. 6B). GSEA further revealed 
that	cancer-related	pathways,	such	as	epithelial	mesenchy-
mal	transition,	apical	junction,	KRAS	signaling,	WNT	beta-
catenin signaling, Hedgehog signaling, angiogenesis and 
hypoxia,	 were	 enriched	 in	 the	 high-risk	 group	 (Fig.	 6C). 
KEGG	 analysis	 revealed	 that	 the	 upregulated	 genes	were	
enriched	 in	 cancer-related	 pathways,	 including	 the	 PI3K-
Akt	 signaling	 pathway,	 MAPK	 signaling	 pathway,	 Wnt	
signaling	pathway,	Rap1	signaling	pathway,	gastric	cancer	
pathway,	and	TGF-beta	signaling	pathway	(Fig.	6D), while 
the downregulated genes were enriched in immune-related 
pathways,	including	cytokine‒cytokine	receptor	interaction,	
the	IL-17	signaling	pathway,	viral	protein	interaction	with	
cytokine	and	cytokine	receptor,	rheumatoid	arthritis	and	the	

The 5-FRSig predicts patient response to 5-FU 
therapy

Given that this model was constructed according to 5-FU 
resistance-related genes, we wondered whether it could dis-
criminate	 patients’	 responses	 to	 5-FU	 treatment.	We	 vali-
dated	this	idea	using	CRC	samples	treated	with	5-FU.	The	
risk score was calculated, and the association between the 
risk	score	and	patient	response	to	5-FU	treatment	was	ana-
lyzed.	The	 results	 revealed	 that	 the	 recurrence	 rates	were	
significantly	greater	in	the	high-risk	group,	and	patients	who	
experienced	relapse	had	significantly	greater	risk	scores.	In	
addition, the AUCs of the ROC curves were 0.782, 0.755, 
and 0.944, all of which were greater than 0.75, demonstrat-
ing the signature’s good discriminative ability (Fig. 5A–C).

Analysis of the underlying biological pathway of the 
5-FRSig

We	 used	 GSEA	 and	 GO	 and	 KEGG	 analyses	 to	 explore	
the underlying molecular mechanism of the 5-FRSig. 
First,	 the	 DEGs	 between	 subgroups	 in	 the	 TCGA	 cohort	

Fig. 3	 Prognostic	analysis	and	validation	of	the	5-FU	resistance-related	signature.	K‒M	survival	curve	and	multivariate	analysis	of	the	TCGA-OS	
(A), TCGA-PFS (B),	GSE192667-OS	(C),	GSE29621-OS	(D), GSE17537-OS (E), and GSE37892 (F) cohorts
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were	significantly	greater	 in	 the	 low-risk	group,	while	 the	
stroma	 score	 and	 the	 numbers	 of	 cancer-associated	 fibro-
blasts	 and	 macrophages	 were	 significantly	 greater	 in	 the	
high-risk	group.	In	addition,	the	analyses	of	immune-related	
genes	demonstrated	that	the	low-risk	group	had	significantly	
greater immunostimulator levels and moderately greater 
cytotoxicity and immune inhibitor levels (Fig. 7C). Given 
these	 findings,	we	 concluded	 that	 the	 low-risk	 group	 had	
more	immune	cell	infiltration	and	greater	antitumor	activity,	
explaining	the	better	outcomes	in	this	group.

Mutation and immunotherapy response analysis of 
the 5-FRSig

Since	immune	cells	are	a	prerequisite	for	 immunotherapy,	
we	 hypothesized	 that	 the	 low-risk	 group	 would	 have	 a	
greater	response	rate	to	immune	checkpoint	inhibitors.	We	
validated	this	hypothesis	from	different	perspectives.	First,	
we	 investigated	 the	 mutational	 landscape.	 We	 identified	
the	 top	 20	mutated	 genes	 in	 the	TCGA	 cohort	 (Fig.	8A). 
Significantly	 greater	 mutation	 rates	 were	 detected	 in	 two	
genes	 in	 each	of	 the	 high-	 and	 low-risk	 groups,	while	 no	

TNF	 signaling	 pathway	 (Fig.	 6E). The enrichment analy-
sis demonstrated that cancer-immunity interactions may 
explain	the	prognostic	power	of	our	signature.

Immune profile analysis of the 5-FRSig

Multiple	computational	methods	were	used	to	determine	the	
degree	of	immune	cell	infiltration	in	each	sample	to	further	
investigate	 the	 relationship	 between	 the	 signature	 and	 the	
immune	system.	A	heatmap	of	the	cells	that	differed	signifi-
cantly	between	the	subgroups	is	shown	in	Fig.	7A. Accord-
ing	to	the	heatmap,	the	low-risk	group	exhibited	increased	
levels of antitumor immune cells, such as CD4 + T cells 
(EPIC, xCELL), CD8 +	T	cells	(EPIC,	xCELL),	neutrophils	
(EPIC, xCELL) and B cells (EPIC, xCELL), while the high-
risk	 group	 exhibited	 increased	 levels	 of	 cancer-associated	
fibroblasts	(MCPcounter,	EPIC,	xCELL)	and	macrophages	
(CIBERSORT,	 xCELL).	 We	 plotted	 radar	 charts	 to	 bet-
ter	visualize	 the	differences	between	subgroups	 (Fig.	7B), 
demonstrating that the cytotoxicity score, immune score, 
number	 of	 neutrophils,	 number	 of	CD4	+ T cells, number 
of CD8 + T cells, number of B cells and number of NK cells 

Fig. 4 Construction and validation of a nomogram. Nomograms 
constructed	with	three	independent	prognostic	factors	for	1-,	3-,	and	
5-year OS rates in the TCGA cohort (A), PFS rate in the TCGA cohort 
(B), and OS rate in the GSE39582 cohort (C). Calibration curves and 

receiver	 operating	 characteristic	 (ROC)	 curves	 showing	 the	 predic-
tive accuracy of the risk score and nomogram in the TCGA-OS (D), 
TCGA-PFS (E), and GSE39582-OS (F) cohorts
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for	responders.	Consistent	with	this	finding,	a	lower	TIDE	
score/dysfunction	 score/exclusion	 score	 and	 higher	 MSI	
score	were	found	in	the	low-risk	group,	all	of	which	indi-
cated	a	greater	response	rate.	Immunosuppressive	MDSCs	
and	 CAFs	 were	 significantly	more	 abundant	 in	 the	 high-
risk	group	(Fig.	8E).	We	 then	analyzed	 four	datasets	with	
immunotherapeutic	 information	 to	 validate	 the	 above	
results.	Consistent	results	were	obtained,	including	signifi-
cantly	 greater	 response	 rates	 (CR/PR/SD)	 in	 the	 low-risk	
group	 and	 significantly	 lower	 risk	 scores	 for	 responders	
(Fig. 8F-I). Therefore, we directly demonstrated the asso-
ciation	between	a	low	risk	score	and	a	high	response	rate	to	

differences	were	detected	 in	other	genes	 (Fig.	8B). More-
over,	 there	was	no	significant	difference	 in	 the	number	of	
somatic	mutations	between	the	subgroups	(Fig.	8C). Thus, 
there	were	no	significant	differences	in	mutations	between	
the	 subgroups.	However,	 there	were	more	 neoantigens	 in	
the	 low-risk	 group.	 Then,	 we	 analyzed	 the	 expression	 of	
the	immune	checkpoints	PD-1, PD-L1, PD-L2, and CTLA4. 
The	 results	 showed	 that	 the	 expression	 levels	 of	CD274 
and CTLA4	were	significantly	greater	in	the	low-risk	group	
(Fig. 8D).	Subsequently,	we	applied	the	TIDE	algorithm	to	
predict	 patient	 response	 to	 immune	 checkpoint	 blockade	
therapy.	We	observed	a	 significantly	greater	 response	 rate	
in	 the	 low-risk	 group	 and	 a	 significantly	 lower	 risk	 score	

Fig. 5	 The	risk	signature	predicts	
patient	response	to	5-FU	therapy.	
The 5-FU resistance-related 
signature	predicts	the	recur-
rence	of	patients	who	received	
5-FU treatment and the relation-
ship	between	the	risk	score	and	
recurrence in the GSE39582 (A), 
GSE103479 (B),	and	GSE106584	
(C) datasets. ∗∗∗P < 0.001
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mainly	 inflammatory	 and	 immune-related	pathways	 (Sup-
plementary	Fig.	1B-D).	Similarly,	we	analyzed	the	immune	
landscape	of	the	clusters,	including	immune	cell	infiltration	
and	 the	 expression	 of	 immunomodulators.	We	 found	 that	
a	greater	proportion	of	 inhibitory	 immune	cells	 infiltrated	
Cluster	2,	including	CAFs,	Tregs,	and	MDSCs	(Supplemen-
tary Fig. 2A–C).	 Interestingly,	 in	 the	 low-risk	 group,	 the	
proportion	of	patients	in	Cluster	1	was	greater	than	that	in	
Cluster	 2,	 and	 the	 risk	 score	 of	 patients	 in	Cluster	 1	was	
significantly	lower	than	that	in	Cluster	2	(Fig.	9F and G). A 
Sankey diagram was constructed to show the connections 
among status, risk score, and cluster (Fig. 9H). In addition, 
we	analyzed	the	ability	of	the	clusters	to	predict	immuno-
therapy	efficacy.	We	found	that	the	response	rate	of	patients	
in	Cluster	1	was	slightly	greater	than	that	of	patients	in	Clus-
ter 2 (Fig. 9I),	 and	 the	TIDE	 score	 of	 patients	 in	Cluster	
1	was	significantly	greater	 than	 that	of	patients	 in	Cluster	
2 (Fig. 9J),	indicating	that	patients	in	Cluster	1	were	more	
sensitive	to	immunotherapy.

immunotherapy.	These	 results	 suggested	 that	 the	 5-FRSig	
could	predict	immunotherapy	efficacy.

Construction and prognosis analysis of 5-FU 
resistance-related clusters

The	65	5-FRGs	associated	with	prognosis	were	subjected	to	
unsupervised	cluster	analysis.	The	ideal	number	of	clusters	
was found to be two using the consensus CDF curve. After 
unsupervised	 clustering,	we	 identified	 two	 clusters	within	
the TCGA cohort (Fig. 9A). Figure 9B	displays	the	distri-
bution of clusters and status. Subsequently, we investigated 
the	 prognostic	 value	 of	 5-FU	 resistance-related	 clusters.	
The	results	of	the	K‒M	survival	curve	and	multivariate	Cox	
regression	analyses	showed	that	patients	in	Cluster	1	had	a	
better	survival	probability,	and	this	cluster	was	a	significant	
independent	prognostic	factor	for	CRC	(Fig.	9C and D). As 
shown in Fig. 9E,	 the	 cluster	was	 significantly	 correlated	
with status, MSI status, and CMS status. In addition, we 
conducted functional enrichment analyses of the clusters, 
including GSEA and KEGG and GO analyses. The DEGs 
in	Clusters	1	and	2	are	 shown	 in	Supplementary	Fig.	1A. 
We	found	 that	 the	pathways	enriched	 in	 the	clusters	were	

Fig. 6	 Analysis	 of	 the	 underlying	 biological	 pathways	 of	 the	 5-FU	
resistance-related signature. A.	Volcano	plot	of	differentially	expressed	
genes	in	the	high-	and	low-risk	groups	with	a	threshold	of	FDR	< 0.05 

and absolute log2(FC) > 0.5. B.	 GO	 enrichment	 of	 differentially	
expressed	 genes.	 C.	 GSEA	 enrichment	 of	 differentially	 expressed	
genes. KEGG enrichment of the high- (D)	and	low-risk	groups	(E)
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function, which was consistent with the better outcome and 
the	predicted	greater	response	rate	to	immunotherapy	in	this	
group.

scRNA-seq analysis of the 5-FRSig

The scRNA-seq cohort GSE178318 was used to conduct 
scRNA-seq analysis of the 5-FRSig. After t-SNE reduction 
and cell annotation, we obtained nine cell clusters, includ-
ing B cells, CAFs, cancer cells, endothelial cells, mast cells, 
myeloid	cells,	NK	cells,	plasma	cells,	and	T	cells	(Supple-
mentary Fig. 4A).	Supplementary	Fig.	5A	shows	the	propor-
tions	of	different	cells	in	each	sample.	The	cell	markers	used	
for	cell	annotation	are	displayed	in	Supplementary	Fig.	4B 
and	 Supplementary	 Fig.	 5B.	We	 also	 analyzed	 the	 distri-
bution	of	 cells	 in	diverse	 types	of	 tissues	 (Supplementary	
Fig. 4C and 4D).	Next,	we	explored	the	cellular	distribution	
of	the	13	5-FRGs	used	to	construct	the	signature	(Supple-
mentary Fig. 5C). Subsequently, we used two methods to 
analyze	the	distribution	of	risk	scores	in	the	cells	and	found	
high-risk cells mainly in the tumor cell and myeloid cell 
populations	(Supplementary	Fig.	4E).	Therefore,	we	spec-
ulated	 that	 the	poor	 prognosis	 of	 patients	 in	 the	high-risk	
group	was	closely	related	to	these	cells.

Clinical validation of the 5-FRSig

The	expression	levels	of	the	13	5-FRGs	were	measured	by	
RT‒qPCR,	and	 the	 risk	score	was	calculated	according	 to	
the	formula	for	each	patient	 in	 the	external	cohort.	Spear-
man’s test was used to assess the correlation between the risk 
score and the 13 5-FRGs. As shown in Fig. 10A,	the	expres-
sion levels of FGF2 and CPA4	were	positively	 correlated	
with	the	risk	score,	while	the	expression	levels	of	ZNF607, 
SIX2, DNAH7, and TMEM139 were negatively correlated. 
The	patients	were	divided	into	two	subgroups	according	to	
the	median	risk	score.	The	risk	score	significantly	correlated	
with	N	stage.	Patients	with	N0	stage	tumors	had	significantly	
lower	risk	scores,	and	the	low-risk	group	had	a	greater	per-
centage of N0-stage tumors (Fig. 10B). Subsequently, we 
examined CD8A and CD8B	 expression	 levels	 in	high-risk	
and	 low-risk	 samples,	 and	we	 found	no	 significant	 differ-
ences	between	 the	 two	groups	of	patients	 (Supplementary	
Fig. 3).	However,	the	low-risk	group	had	increased	levels	of	
cytolytic factors, including GZMA and GZMB. Moreover, 
the	low-risk	group	had	increased	levels	of	immune	stimula-
tors, including HHLA2, CD28, and CD40LG (Fig. 10C). In 
particular,	the	low-risk	group	had	significantly	greater	lev-
els of CTLA4 (Fig. 10D). These data demonstrated that the 
low-risk	group	had	significantly	greater	antitumor	immune	

Fig. 7	 Immune	profile	analysis	of	the	5-FU	resistance-related	signature	
in	the	TCGA-CRC	cohort.	The	heatmap	(A)	and	radar	map	(B) show 
immune	cell	infiltration	in	the	high-	and	low-risk	groups	calculated	by	

multiple	algorithms.	C.	Expression	of	immunomodulators	in	the	high-	
and	low-risk	groups.	∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001
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Candidate small molecules to reverse 5-FU 
resistance

The	top	10	small	molecules	with	negative	connectivity	with	
specific	targets	were	screened	out	(Fig.	12A). These small 
molecules	have	the	potential	to	reverse	5-FU	resistance	by	
inhibiting	the	upregulation	of	hub	proteins.	We	verified	the	
binding	energy	of	these	small	molecules	to	the	hub	proteins,	
and the results are shown in Fig. 12B. Normally, a bind-
ing	energy	 less	 than	0	 indicates	 spontaneous	binding,	and	
the	lower	the	binding	energy	is,	 the	greater	the	possibility	
of interaction. As shown in Fig. 12B, the binding energies 
of	 the	 10	 potential	 molecules	 and	 the	 hub	 proteins	 were	
typically	below	−	5	kcal/mol,	demonstrating	their	potential	
interaction.	For	 each	protein,	 the	 small	molecule	with	 the	
lowest	binding	energy	was	selected	for	docking	visualiza-
tion (Fig. 12C). In the Fig. 12C, the amino acids to which 
the small molecule binds are labeled, and the dotted lines 
show	hydrogen	bonds.	We	screened	10	small	molecules	that	
have	the	potential	to	reverse	5-FU	resistance	and	validated	

Drug sensitivity analysis in the high- and low-risk 
groups

We	 next	 assessed	 the	 correlation	 between	 the	 signature	
score and drug sensitivity. The GDSC analysis showed that 
the	 low-risk	 group	 was	 more	 sensitive	 to	 chemotherapy,	
including	camptothecin,	cisplatin,	fluorouracil,	oxaliplatin,	
irinotecan	and	irinotecan.	Similarly,	the	low-risk	group	was	
more sensitive to drugs targeting EGFR signaling, includ-
ing	 gefitinib,	 afatinib,	 erlotinib,	 lapatinib,	 AZD3759	 and	
osimertinib.	 The	 low-risk	 group	 was	 also	 more	 sensitive	
to drugs targeting ERK MAPK signaling and RTK signal-
ing,	with	one	or	two	exceptions	(Fig.	11A). In addition, we 
screened	 patients	 in	 the	 high-risk	 group	 for	 sensitivity	 to	
drugs in the CTRP and PRISM databases (Fig. 11B and C). 
The above results demonstrate that our model has good dis-
criminative	ability	 for	5-FU	adjuvant	 therapy	and	 that	 the	
low-risk	group	is	more	sensitive	to	most	chemotherapeutic	
and targeted drugs.

Fig. 8	 Mutation	 and	 immunotherapy	 response	 analysis	 of	 the	 5-FU	
resistance-related signature. A.	The	top	20	mutated	genes	in	the	high-	
and	low-risk	groups.	B.	Comparison	of	the	mutation	ratio	in	the	high-	
and	 low-risk	 groups.	C.	 Comparison	 of	 mutations	 and	 neoantigens	
between	the	high-	and	low-risk	groups.	D.	Expression	of	key	immune	
checkpoint	molecules	in	the	high-	and	low-risk	groups.	E. The distri-

bution	of	different	responders	and	calculated	scores	in	the	high-	and	
low-risk	 groups	 in	 the	TCGA	 cohort,	 calculated	 by	 the	TIDE	 algo-
rithm.	The	distribution	of	different	responders	in	the	high-	and	low-risk	
groups	in	the	IMvigor210	(F), CheckMate 025 (G),	GSE176307	(H), 
and GSE78220 (I) datasets. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001
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ZDHHC2, and ZNF607.	In	a	preliminary	study,	ALPK3 was 
shown to be associated with metastasis in osteosarcoma 
patients	 [62].	The	prognostic	 value	of	CPA4 in non-small 
cell	 lung	cancer	 (NSCLC),	pancreatic	cancer,	and	bladder	
cancer	has	 also	been	 reported	 [63–65]. In addition, muta-
tions in DNAH7	were	found	to	benefit	CRC	patients	receiv-
ing	 immune	checkpoint	 inhibition	 therapy	 [66]. However, 
FGF2 and SIX2	 have	 been	 found	 to	 promote	 the	 devel-
opment	 of	 NSCLC	 and	 breast	 cancer	 [67–70]. Similarly, 
HOXD13	has	been	found	to	promote	the	malignant	progres-
sion of colon cancer [71],	and	the	overexpression	of	NRG1 
promotes	 the	 progression	 of	 gastric	 cancer	 [72]. Interest-
ingly, studies have shown that PPP1R3F and TNFRSF19 
are	associated	with	the	prognosis	of	CRC	patients	[73, 74]. 
Liu	 et	 al.	 reported	 that	SLC39A8	 suppressed	 the	 progres-
sion of clear cell renal cell carcinoma [75]. Zhang et al [76]. 
reported	 that	 TMEM139	 prevents	 NSCLC	 metastasis	 by	
inhibiting lysosomal degradation of E-cadherin. Moreover, 
it	has	been	reported	that	ZDHHC2 and ZNF607	expression	

the	binding	potential	between	the	small	molecules	and	the	
hub	proteins.

Discussion

5-FU	is	a	classic	chemotherapy	drug	 that	has	 long	played	
a	key	role	 in	 the	 treatment	of	cancer,	especially	CRC	and	
breast cancer [60].	Despite	the	remarkable	achievements	of	
5-FU	in	cancer	treatment,	some	patients	develop	resistance	
to the drug, likely due to individuals’ unique genetic and 
epigenetic	makeup	[61]. Therefore, there is an urgent need 
for	molecular	identification	to	guide	clinical	chemotherapy.	
In this study, we constructed a 5-FRSig model using 5-FU-
resistant	CRC	cell	lines	to	explore	the	related	mechanisms	
and	provide	more	evidence	for	the	precise	treatment	of	CRC	
patients.

The 5-FRSig was constructed from thirteen 5-FRGs, 
including ALPK3, CPA4, DNAH7, FGF2, HOXD13, NRG1, 
PPP1R3F, SIX2, SLC39A8, TMEM139, TNFRSF19, 

Fig. 9	 Construction	and	prognosis	analysis	of	5-FU	resistance-related	
clusters. A.	Consensus	CDF	curve	of	unsupervised	cluster	analysis.	B. 
Distribution of the cluster (Cluster 1 and Clusters) and status (dead and 
alive) in the TCGA-CRC cohort. C.	Kaplan‒Meier	survival	curves	of	
clusters in the TCGA cohort. D. Multivariable analysis of clusters in 
the TCGA cohort. E.	Heatmap	showing	the	correlations	between	clus-
ters and clinical characteristics. F. The distribution of clusters in the 

high-	and	low-risk	groups.	G.	The	difference	in	the	risk	score	between	
Cluster 1 and Cluster 2. H. Sankey diagram combining OS, cluster, 
and risk score data. I.	The	distribution	of	different	responses	in	Cluster	
1 and Cluster 2. J. The TIDE algorithm, including the TIDE score, 
dysfunction	score,	and	CAF	score,	was	used	to	predict	patient	response	
to	immunotherapy	in	different	clusters.	∗P < 0.05, ∗∗∗P < 0.001

 

1 3

1138



Apoptosis (2024) 29:1126–1144

Fig. 11	 Drug	sensitivity	analysis	in	the	high-	and	low-risk	groups.	A. 
Compounds	 in	 the	GSDC	database	 that	 target	 chemotherapy,	EGFR	
signaling, ERK MAPK signaling, and RTK signaling. B. Com-

pounds	in	the	PRISM	database.	C.	Compounds	in	the	CTRP	database.	
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001

 

Fig. 10 Clinical validation of the 5-FU resistance-related signature. 
A.	Correlations	between	the	risk	score	and	the	expression	of	thirteen	
genes	 in	 tumor	 samples.	B.	 The	 difference	 and	 distribution	 of	 risk	
scores	in	different	clinical	stages.	C.	Expression	of	immunomodulators	

in	high-	and	low-risk	groups	in	tumor	samples.	D.	Expression	of	four	
key	 immune	checkpoint	molecules	 in	 tumor	samples	 from	the	high-	
and	low-risk	groups.	∗P < 0.05, ∗∗P < 0.01
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in	the	prognosis	of	patients	in	different	risk	groups	through	
pathway	 enrichment,	 the	 results	 showed	 many	 pathways	
associated	 with	 tumor	 immune	 pathways.	We	 speculated	
that the occurrence of 5-FU resistance might be related to 
changes	in	the	patients’	immune	microenvironment.	Further	
analysis	of	immune	cell	infiltration	and	immune	regulatory	
factor	expression	showed	that	patients	in	the	high-risk	group	
presented	an	immunosuppressive	tumor	microenvironment.	
The	immunotherapy	results	also	demonstrated	that	low-risk	
patients	were	more	sensitive	to	immunotherapy.	In	addition,	
through scRNA-seq, we found that myeloid cells had greater 
risk	scores	than	other	immune	cells,	which	could	provide	a	
new target for the future study of 5-FU resistance. Overall, 
our study links 5-FU resistance to the immune microenvi-
ronment,	providing	additional	evidence	 for	a	combination	
of	chemotherapy	and	immunotherapy	in	patients	with	CRC.

The	 results	 showed	 that	 our	 5-FRSig	 has	 good	 poten-
tial for diagnosing and treating CRC. Nonetheless, our 
research	still	has	certain	limitations.	This	study	provides	a	
solid	theoretical	basis	for	subsequent	research.	We	obtained	
many	 novel	 research	 results	 through	 in-depth	 data	 min-
ing. Although we used our own clinical cohort for valida-
tion,	we	 lack	sufficient	clinical	data	 to	validate	 the	ability	
of	the	5-FRsig	to	predict	the	response	to	chemotherapy	and	
immunotherapy	 in	 patients	 with	 CRC,	 and	 further	 stud-
ies are needed. Furthermore, the TCGA database lacks 

levels	 are	 reduced	 and	 increased,	 respectively,	 in	 gastric	
adenocarcinoma	patients	[77, 78].

In this study, the 5-FRSig constructed from 5-FRGs was 
found	 to	 be	 an	 independent	 prognostic	 factor	 for	 CRC.	
Our	signature	also	allowed	better	patient	risk	stratification.	
Using	the	ROC	curve	to	predict	patient	survival,	we	can	see	
that the AUC for risk score is higher than that for TNM stag-
ing	 in	 the	TCGA	cohort.	Compared	with	 traditional	TNM	
staging	to	predict	the	prognosis	of	patients,	our	nomogram	
model	based	on	the	risk	score	has	better	predictive	power.	
Furthermore,	 the	ROC	curves	 for	predicting	 the	 therapeu-
tic	effect	of	5-FU	demonstrate	that	all	the	AUC	values	are	
above	0.7,	indicating	that	the	model	exhibits	high	specific-
ity	and	sensitivity	in	predicting	the	efficacy	of	5-FU.	In	the	
clinical validation of the 5-FRSig, we further demonstrated 
that	patients	with	high	risk	scores	had	worse	outcomes.	In	
addition,	as	the	development	of	5-FU	resistance	is	an	impor-
tant	cause	of	cancer	treatment	failure,	our	signature	can	pre-
dict	 the	 responsiveness	 of	 patients	 to	 5-FU	 treatment	 and	
immunotherapy	well,	providing	a	basis	for	the	precise	treat-
ment	of	patients	with	CRC.

It	has	been	reported	that	5-FU	resistance	involves	vari-
ous	complex	factors,	including	noncoding	RNA	regulation,	
tumor	 stem	 cells,	 tumor	 cell	 autophagy,	 epigenetics,	 and	
ATP-binding	protein	overexpression	[79–83]. In this study, 
when	we	 explored	 the	mechanism	 underlying	 differences	

Fig. 12 Candidate small molecules that reverse 5-FU resistance. A. 
The	structures	of	the	top	10	compounds	predicted	by	the	CMap	web-
site. B.	Heatmap	displaying	the	binding	energy	of	the	small	molecule	

drug	and	the	hub	protein.	C. Small molecule drug docking targets with 
the lowest binding energy
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