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Abstract
The development of targeted therapy such as tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-based 
therapy has gained increasing attention as a promising new approach in cancer therapy. TRAIL specifically targets cancer 
cells while sparing the normal cells, thus, limiting the known side effects of the majority anti-cancer therapies. As more 
extensive research and clinical trials are conducted, resistance to TRAIL molecule has become one of the significant issues 
associated with the failure of TRAIL in treating colorectal cancer (CRC). To date, the exact mechanism by which TRAIL 
resistance may have occurred remains unknown. Interestingly, recent studies have revealed the critical role of the TRAIL 
decoy receptor family; consisting of decoy receptor 1 (DcR1; also known as TRAIL-R3), decoy receptor 2 (DcR2; also 
known as TRAIL-R4), and osteoprotegerin (OPG) in driving TRAIL resistance. This review highlights the expression of 
the decoy receptors in CRC and its possible association with the reduction in sensitivity towards TRAIL treatment based on 
the currently available in vitro, in vivo, and human studies. Additionally, discrepancies between the outcomes from different 
research groups are discussed, and essential areas are highlighted for future investigation of the roles of decoy receptors in 
modulating TRAIL-induced apoptosis. Overcoming TRAIL resistance through modulating the expression(s) and elucidating 
the role(s) of TRAIL decoy receptors hold great promise for TRAIL-based therapies to be extensively explored in treating 
human cancers including CRC.

Keywords  Colorectal cancer · Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) · Apoptosis · 
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Introduction

The crucial role of apoptosis in guarding neoplastic cell 
growth is well established as one of the natural protective 
mechanisms against cancer development [1]. Cells can be 
targeted for apoptosis by activating death receptors (DRs) 
expressed on their surface [2]. Upon binding to the DRs, 
tumour necrosis factor (TNF)-related apoptosis-inducing 
ligand (TRAIL) activates the extrinsic apoptotic pathway 
leading to cellular apoptosis [3]. To date, there are two 
major receptors known to interact with TRAIL to induce 

apoptosis, named death receptor 4, DR4 [4] (also known as 
TRAIL-R1) and death receptor 5, DR5 [5–7] (also known as 
TRAIL-R2). Alternatively, TRAIL is capable of binding to 
the anti-apoptotic decoy receptors; decoy receptor 1 (DcR1) 
[5, 7, 8], decoy receptor 2 (DcR2) [9], and osteoprotegerin 
(OPG) [10], where apoptosis will not be induced due to the 
absence of death domain in the biological structures of these 
three receptors (Fig. 1). Recent evidence indicates that the 
ultimate fate of the cells is highly dependent on the recep-
tors that TRAIL activate [Fig. 1a(i)] and the complexes the 
receptors have formed [Fig. 1a(ii)].

The homocomplex of DRs formed upon binding to 
TRAIL leads to the successful recruitment of the death-
inducing signalling complex (DISC). DISC consists of 
the Fas-Associated protein with Death Domain (FADD) 
and pro-caspase 8, which upon recruitment, will undergo 
autoproteolytic cleavage to become active caspase 8. Cas-
pase 8, a crucial initiator of the apoptosis cascade [11–14] 
[Fig. 1b(i)], serves to activate the effector caspase 3, leading 
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Fig. 1   The summary of func-
tional roles of TRAIL recep-
tors. a(i) The five receptors of 
TRAIL; a(ii) The formation of 
trimeric complex upon bind-
ing to TRAIL. b(i) Canonical 
apoptosis inducing pathway 
when formation of DISC is 
successful; b(ii) Formation of 
heterocomplex failed to recruit 
two active pro-caspase 8 for 
auto-cleavage and activation 
of caspase initiating apoptosis 
pathway; b(iii) Absence of 
intracellular domain. Tumour 
necrosis factor (TNF)-related 
apoptosis-inducing ligand 
(TRAIL), Death-Inducing 
Signaling Complex (DISC), 
Fas-associated protein with 
death domain, death receptor 
(DR), decoy receptor (DcR), 
osteoprotegerin (OPG)
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to the induction of apoptosis [15]. On the contrary, when 
a heterocomplex is formed between the DRs and DcR2 
[Fig. 1b(ii)] or homocomplex formed among the decoy 
receptors [Fig.  1b(iii)], the apoptosis cascade will not 
be induced. This inhibition is due to the absence of the 
death domain in the decoy receptors [16, 17]. By regulat-
ing TRAIL-induced apoptosis, these differential mecha-
nisms protect the host from excessive apoptosis induction 
[18]. However, cancer cells can acquire this mechanism 
and escape the immune surveillance of TRAIL-induced 
apoptosis.

Initially, TRAIL has received much attention for its 
potential to induce apoptotic cell death selectively in 
neoplastic cells [12, 19]. Several TRAIL-based therapies 
have been developed for the clinical applications. 
Recombinant human TRAIL; dulanermin [20, 21], modified 
recombinant human TRAIL; circulated permuted TRAIL 
(CPT) [22–24] and TRAIL death receptor agonists; 
namely mapatumumab [25, 26], tigatuzumab [27], and 
conatumumab [28, 29], have entered phase II clinical trials 
with good safety profiles. However, although promising 
results were obtained in preclinical studies and early phase 
clinical trials, these TRAIL-based therapies have yielded 
disappointing outcomes in randomised clinical trials [30]. It 
is presumed that this may have resulted from the insufficient 
clustering of targeted death receptors, where receptors with 
functional death domains did not aggregate to form active 
complexes to induce apoptosis [31]. Moreover, the ability 
of TRAIL decoy receptors to interfere with this complex 
formation in a domain-mediated [32] and ligand-independent 
manner [33] suggests that a better understanding of the 
decoy receptors is required to tackle the ineffectiveness of 
TRAIL therapy.

TRAIL resistance has become one of the significant 
problems in TRAIL-based therapy and has been seen in 
a vast proportion of human cancers [34–37], including 
colorectal cancer (CRC) [38]. Cumulative evidence 
suggests a connection between TRAIL resistance and the 
overexpression of TRAIL decoy receptors in CRC [39, 40]. 
Although the intracellular anti-apoptotic proteins appeared 
to be the dominant negative regulators of TRAIL-induced 
apoptosis, overexpression of the different decoy receptors; 
DcR1, DcR2, and OPG, have also been demonstrated to 
partake in the development of TRAIL resistance [7, 32, 
40–43]. By delaying the onset of TRAIL-induced apoptosis, 
these decoy receptors provide a greater opportunity for 
cancer cells to escape immune surveillance [44], leading to 
the development of more aggressive cancer phenotypes and 
disease progression [45].

Overview of TRAIL decoy receptors

To date, it has been shown that each TRAIL decoy receptors 
possess a distinctive cytoplasmic molecular structure 
[Fig. 1a(i)], resulting in a different inhibitory mechanism of 
TRAIL-induced apoptosis. For instance, DcR1 (also known 
as TRAIL-R3) possesses a glycosyl-phosphatidylinositol 
(GPI)-membrane anchor but lacks an intracellular domain 
[44]. The absence of cytoplasmic death domain limits the 
inhibition of the apoptotic signal to be in the lipid rafts 
[32]. DcR2 (also known as TRAIL-R4), on the other hand, 
is a TRAIL receptor with a truncated death domain [9]. 
The presence of the truncated death domain allows DcR2 
to exhibit additional regulatory mechanisms for TRAIL-
induced apoptosis. As mentioned previously, successful 
signal transduction requires binding of FADD to the death 
domain of death receptors. The formation of inactive 
heterotrimeric complexes with DcR2 disrupts the binding of 
FADD, which eventually inhibits the activation of initiator 
caspase 8 and the downstream apoptotic cascade [32].

Furthermore, the engagement of death receptors and 
DcR2 has been demonstrated to activate the Nuclear Factor 
kappa B (NF-κB) pathway [8, 46]. A significant number 
of human cancer progressions have been correlated to the 
NF-κB activation through the upregulation of several anti-
apoptotic proteins such as c-IAP2 [47], Bcl-2 [48], XIAP 
[49] and DcR1 [50]. Thus, activating the NF-κB pathway 
by the decoy receptor might be a substantial factor leading 
to TRAIL resistance and targeting decoy receptor may 
be helpful in overcoming this resistance [51]. Lastly, the 
only soluble form of the TRAIL decoy receptor named 
osteoprotegerin (OPG) was first identified by Emery et al. 
[10] as a soluble decoy receptor. Upon binding to TRAIL, 
OPG attenuates TRAIL-induced apoptosis with the absence 
of functional cytoplasmic death domains in its biological 
structure [Fig. 1b(iii)].

Increased expression levels of these decoy receptors were 
observed in various inflammatory diseases [52–55] and 
cancers [43, 56–58]. However, the correlation between their 
expression levels and their sensitivity to TRAIL-induced 
apoptosis in CRC remains poorly characterised. Therefore, 
this review provides an insight into how the expression 
levels of these decoy receptors contribute to making CRC 
more invasive and the potential outlook of how targeting 
them could help enhance the efficacy of TRAIL-based 
treatment, especially in CRC.
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Methodology

Literature search strategy and eligibility criteria

Studies related to the focus of the studies were obtained 
through a literature search conducted in the three main 
databases: PubMed, Scopus, and Web of Science. Studies 
from inception until October 2021 were collected inde-
pendently by two reviewers. MeSH terms ‘TRAIL decoy 
receptors’ AND ‘colorectal neoplasms’ were employed in 
the search strategy. Only original articles in the English 
language were selected for the qualitative analysis part 
of the study. The protocol of this systematic review was 
registered at PROSPERO in August 2021 (Registration ID: 
CRD42021260406).

A total of 890 papers were retrieved from the database 
search, and 191 duplicates were removed. The abstracts of 
the original articles were screened to exclude irrelevant arti-
cles based on eligibility criteria (Fig. 2). Complete details 
of the search strategy and criteria for the selection of papers 
are described in the PROSPERO protocol (Registration ID: 
CRD42021260406).

Data extraction

Data on TRAIL decoy receptors’ expressions and func-
tional roles of TRAIL decoy receptors in CRC were 
extracted from relevant studies. Information including 
study methods, model, and publication year was obtained 
and recorded. The key findings obtained are summarised 
in Table 1. All interventions were accepted for this sys-
tematic review to achieve a comprehensive and unbiased 
perspective on the roles of TRAIL decoy receptors in 
CRC.

Quality assessment strategy

Two independent reviewers critically analysed full texts of 
potentially relevant articles to determine their eligibility 
based on the inclusion and exclusion criteria. When dis-
crepancies arose, discussion with a third reviewer was per-
formed to resolve the issue. In the events of missing data, 
corresponding author of the papers will be contacted through 
email twice.

Data synthesis

A qualitative systematic review was performed to encap-
sulate the fundamental knowledge on the expression and 
functional roles of TRAIL decoy receptors in CRC.

Results and discussion

At the end of the screening procedure, 21 papers were 
selected to evaluate the differential expressions of the 
TRAIL decoy receptors and their potential functional roles 
across different study models of CRC. The key findings of 
each study are listed in Table 1, highlighting the approaches 
used to determine the expression of TRAIL decoy receptors 
and the research outcomes.

The expression and role of DcR1, DcR2, and OPG

The expression and distribution of these decoy receptors 
were investigated in biological samples collected from 
human subjects (serum and tumour tissues), human xeno-
grafts in animal models, and various CRC cell lines. The 
effect of TRAIL decoy receptors on TRAIL-induced apop-
tosis has been demonstrated across study models [Table 1].

The expression and role of DcR1, DcR2, and OPG 
in human subjects

Along with the natural variations present within the popula-
tion, the expression patterns of these decoy receptors further 
differ in different organs. A first study by Sheikh et al. in 
1999 revealed that DcR1 mRNA expression was found to be 
highly expressed in CRC tissue samples, whereas in normal 
colon, DcR1 mRNA expression appeared to be negligible 
[59]. Several other studies and data from the gene expression 
profiling analysis (GEPIA) database also indicated elevated 
levels of DcR1 and DcR2 mRNA in the CRC tumour in rela-
tive to its adjacent normal sites [60–62].

A study conducted by Tsikalasis et  al. [63] which 
involved 106 tumour samples from CRC patients, demon-
strated an opposite outcome with the findings discussed 
above. Among these 106 samples, a majority (64%) showed 
the downregulation of DcR1, and DcR2 mRNA expressions. 
However, it is worth noting that the comparison between 
the diseased and healthy samples was inappropriately made, 
as the tumour samples were compared to healthy individu-
als’ blood samples in this study. As DcR1 [6, 7] and DcR2 
[8, 9] are expressed as transmembrane proteins, comparing 
their expressions in tumours against blood samples might 
not illustrate the actual difference in the level of expression. 
In order to accurately investigate the expression levels and 
distribution of DcR1 and DcR2 in CRC, future studies are 
required to take into consideration the sample size and sub-
jects included for comparisons.

Apart from looking at the transcriptional level, several 
studies also investigated the DcR1 and DcR2 expressions at 
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a translational level among the tumour tissue samples [60, 
64–66]. Koornstra et al., compared the DcR1 and DcR2 
protein expressions using 10 normal, 19 adenomas, and 
21 carcinoma tissue samples [64]. The staining intensities 
were similar between all three groups of tissue samples. The 
comparator control tissue to the tumours in this study was, 
however, made using non-paired controls, which is not from 
the same patient. Using non-paired control-tumour samples 
creates difficulties in identifying cancer-specific variations. 
Moreover, the value of using paired control-tumour samples 
in predicting patients’ outcomes has been demonstrated in 
other studies. Paired control-tumour samples accounts for 
the tumour microenvironments and how their interactions 
may affect the tumour behaviour and host immunity [67]. 
This experimental design should be considered for future 
studies to accurately demonstrate the exact expressions and 
roles of the decoy receptors.

The ratio between the level of death and decoy receptors 
has been characterised as one of the causative factors in 
determining the efficacy of TRAIL-induced apoptosis. 
Granci et al. reported that DcR1 and DcR2 were classified as 
highly expressed in the majority of CRC tissue samples [65]. 
The study also indicated a higher risk of disease progression 
in patients who concomitantly expressed low/medium levels 
of DR4 and high levels of DcR1. This suggests that the death 
receptors-decoy receptors axis regulates disease progression. 
Furthermore, utilising the altered expression levels of decoy 
receptors in CRC cell lines as the only parameter might not 
reflect the actual role(s) and function(s) of these decoy 
receptors.

As described above, DcR1 and DcR2 are functional 
transmembrane proteins due to the presence of the 
membrane-anchored or transmembrane region in 
their biological structures. DcR1 and DcR2 bind to 
TRAIL and prevent apoptosis induction by forming 
heterocomplexes with other death receptors on the cell 
surface. Immunohistochemistry (IHC) analysis revealed 
nuclear and cytoplasmic localisation of these two receptors 
in CRC tumour samples [60, 68]. Nevertheless, cell surface 
expression remained as the default parameter in obtaining an 
accurate comparison between the level of expression and the 
development of TRAIL resistance in CRC patients. Hence, 
future studies should not only look at the total expression of 
these two decoy receptors but rather focus on the cell-surface 
localisation as this will be the ultimate factor influencing 
their inhibitory function.

Osteoprotegerin levels are commonly investigated by 
evaluating at their expressions in patients’ serum samples as 
they usually are expressed as a soluble protein in the human 
body. Lipton et al. and De Toni et al. presented consistent 
findings where a higher level of OPG was observed in 
the serum of CRC patients [69]. The level of OPG gene 
expression was also investigated by Tsukamoto et  al.; 

in which the findings were comparable with the protein 
expressions measured by other groups [70]. Interestingly, a 
series of studies conducted by Kim et al. [71, 72] presented 
a contrasting outcome where both human samples and CRC 
cell lines showed a downregulation of OPG expression in 
CRC group compared to healthy group. The discrepancies 
may be explained by the type of samples used among 
research groups. Both Lipton et  al. and De Toni et  al. 
investigated the soluble OPG present in the serum samples 
of CRC patients, whereas Kim et  al. and Moon et  al. 
measured the OPG level in CRC tissues. Notably, OPG 
is required to be secreted extracellularly to gain TRAIL 
access in order to exhibit its decoy mechanism. Hence, 
the extracellular expression level of OPG might represent 
a closer manifestation of its actual role in interfering with 
TRAIL-induced apoptosis.

The expression of DcR1, DcR2, and OPG 
in the animal model

Velthuis et al. implanted rat adenocarcinoma (CC531) cells 
into syngeneic Wag/Rij rats and generated rat CRC cells 
with enhanced metastatic ability through rounds of immune 
selection [73]. Both total and cell surface protein expressions 
were investigated, and no difference in expression levels was 
observed in cells with different metastatic abilities [73, 74]. 
Sugamura et al., on the other hand, used a xenograft of severe 
combined immunodeficiency (SCID) mouse model with 
CRC cells from two independent patients who manifested 
different sensitivity towards TRAIL treatment [75]. There 
were no variations in the expression levels of DcR1 and 
DcR2 despite their difference in TRAIL sensitivity in this 
study. However, it is worth noting that the western blot 
analysis used to determine the protein expression was only 
conducted using the sample collected from one mouse of 
each treatment/control group. Due to a very small data set 
and large uncertainty of whether the results are reproducible, 
the findings obtained from Sugamura’s study should be 
further validated. Future studies using mouse model of CRC 
with a sufficient number of replicates and sample size are 
warranted to appropriately examine the correlation between 
the expression levels of the decoy receptors and the efficacy 
of TRAIL therapy. Certainly, human CRC cell lines- or 
patient-derived xenograft mouse models should be employed 
as one of the experimental research strategies to closely 
analyse the efficacy of TRAIL treatment in the context of a 
human immune system and tumour microenvironment.

The expression of DcR1, DcR2, and OPG in CRC cell 
lines

The efficacy of TRAIL-induced apoptosis has been shown 
to vary across different CRC cell lines. It is still uncertain 
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whether the expression of TRAIL decoy receptors contrib-
utes to this heterogeneity among CRC cell lines. Nonethe-
less, in healthy colon epithelial cells (FHC) that are naturally 
resistant to TRAIL treatment, a significantly higher level of 
DcR2 expressions was observed in comparison to the HT-29 
CRC cell line. Moreover, the expression levels of DcR1 and 
DcR2 decreased as the cell lines' malignancy increased [76, 
77]. This further highlights that healthy cells are naturally 
protected from TRAIL-induced apoptosis in the presence of 
abundant decoy receptors. Additionally, cancer cells are sup-
posed to be exclusively targeted by TRAIL as they develop 
malignancy. However, when the expression of decoy recep-
tors is abnormally upregulated in cancer cells, protection 
towards TRAIL-induced apoptosis may be acquired by these 
cancer cells to escape immune surveillance. This is in coher-
ence with several studies where the upregulation of DcR1 
and/or DcR2 are followed by a significant impairment or 
delay in TRAIL-induced apoptosis [44, 78].

As mentioned previously, DcR1 and DcR2 exhibit differ-
ent inhibitory mechanisms due to their distinctive biologi-
cal structures. These differences were evidenced in a study 
by Lippa et al., where the expression patterns of DcR1 and 
DcR2 differed in CRC cells with contrasting TRAIL sensi-
tivity [79]. In the TRAIL-sensitive Colo205 CRC cells, a 
higher level of DcR1 was observed. However, the inhibition 
of DcR1 towards TRAIL-induced apoptosis appeared to be 
limited due to the absence of an intracellular domain within 
its biological structure [80]. This limitation is indicated by 
the early protection from TRAIL-induced apoptosis, where 
cell viability remained unaffected at low doses of TRAIL 
but followed by a decrease in cell viability as higher doses 
of TRAIL were given. On the other hand, in the TRAIL-
resistant CRC cell line Colo320, a significantly higher level 
of DcR2 expression was observed. Additionally, a study by 
Meng et al. showed the exogenous overexpression of DcR2 
significantly delayed DR5- and TRAIL-induced apoptosis 
in CRC cells [44]. Contrastingly, Hague et al. showed that 

Fig. 2   Search strategies
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despite an increase in DcR2 expression on the cell surface 
of a transformed cell line, cell viability analysis indicates 
that these transformed cells were more sensitive to TRAIL-
induced apoptosis than their parental adenoma cells [77].

The expression of OPG in human CRC cell lines was 
first demonstrated by Pettersen et al., where both mRNA 
and protein of OPG were detected in two CRC cell lines, 
namely SW480 and HT-29 [81]. Furthermore, the protec-
tive role of OPG was revealed when the cell viability of 
these OPG-expressing CRC cells decreased upon treatment 
with OPG-neutralising receptor-activator of NF-κB ligand 
(RANKL). Following that, De Toni et al. observed a simi-
lar finding with eleven other CRC cell lines [39]. However, 
the expression of OPG in normal colon epithelial cells was 
not evaluated in these studies to determine the association 
between OPG level and the pathogenesis of CRC.

Kim et al. conducted the first comparison between three 
CRC cell lines of HT-29, SW620, and HCT116, as well as 
a normal colonic epithelial cell line, CCD 841 CoTr [71]. 
A reduction in OPG expression was observed in both the 
SW620 and HCT116 compared to the normal CCD 841 
CoTr, in which the results obtained from western blotting 
were validated with ELISA and RT-qPCR for mRNA expres-
sion. However, it is worth noting that although HT-29 was 
mentioned in the text for comparison, the result of OPG 
expression in HT-29 was not illustrated, and no explanation 
was given for its absence. In contrast, a recent study by Shao 
et al. compared the expression of OPG in a different normal 
colonic epithelial cell line of NCM460 and five CRC cell 
lines of SW480, SW620, LoVo, HT-29, and HCT116 [82]. 
All five CRC cell lines showed significantly enhanced OPG 
expression compared to the normal control. The discrepan-
cies can be explained by the difference in normal colonic 
epithelial cells used and the amount of total protein loaded 
for the detection with western blotting.

The findings discussed above do not demonstrate distinct 
characteristic(s) of a TRAIL-resistant or -sensitive CRC 
cell lines correlating with expression levels of TRAIL 
decoy receptors. It is not yet ascertained as to whether a cell 
line that naturally overexpresses decoy receptors exhibits 
increased protective mechanism(s) against TRAIL treatment 
and/or vice versa. Therefore, future research is required to 
determine (i) the overall expression levels of DcR1, DcR2 
and OPG across human-derived CRC cell lines and (ii) the 
association between altered level of decoy receptor(s) and 
cellular protection against TRAIL-induced apoptosis leading 
to an increase in the malignancy of CRC cells.

The regulations of DcR1, DcR2, and OPG expression 
in CRC​

Elucidation of signalling pathway(s) that is involved in 
regulating the expression of these decoy receptors is vitally 

important in identifying potential strategies to enhance 
the efficacy of TRAIL-based treatment. Researchers have 
tried to combine TRAIL with chemotherapeutic agents 
such as oxaliplatin to overcome the resistance [38, 83, 84]. 
This combination revealed the role of tumour suppressor 
protein p53 in regulating DcR1 expression. Oxaliplatin, a 
p53-mediated anti-cancer drug, induces overexpression of 
DcR1, specifically in CRC cell lines with wild-type (WT) 
p53 [78]. Similarly, infection with p53-expressing adeno-
virus and ionising radiation-induced p53 also enhances the 
expression of DcR2 in CRC cell lines [44, 85].

Natural compounds such as lupulone [86, 87], carda-
monin [88], cycloheximide [76], ginsenoside compound K 
[89], and bigelovin [90] were shown to enhance TRAIL-
induced apoptosis by downregulating the expressions 
of DcR1 and DcR2. These natural compounds enhance 
TRAIL-induced apoptosis by generating reactive oxygen 
species (ROS) in CRC cells. Reactive oxygen species 
are closely associated with the mutation status of p53. 
In cells with WT p53, ROS production will be induced 
upon cellular stress leading to apoptosis. In contrast, cells 
with mutated p53 inhibit ROS production and promote 
cell survival [91]. This observation may explain how p53 
regulates the fate of cells via modulating the expression 
of TRAIL decoy receptors.

Additionally, treatment with the same regulatory agent 
but in a different order distinctively influenced the expres-
sion levels of TRAIL decoy receptors in CRC cells. Xiang 
et al. demonstrated that DcR1 and DcR2 expression were 
significantly upregulated (fivefold and ninefold, respec-
tively) when cells were treated with TRAIL sequentially 
after exposure to the p53-inducing agent; 7-ethyl-10-hy-
droxycamptothecin (SN-38). On the contrary, co-adminis-
tration of TRAIL and SN-38 downregulates the expression 
of DcR1 and DcR2 [92]. These findings can be correlated 
back to the decoy receptor-inducing role of p53, as dis-
cussed previously and offer a valuable perspective on how 
TRAIL therapy could be administered to achieve its most 
prominent value.

The lack of complexity in the in vitro culture of CRC 
cell lines remains the biggest limitation and may poten-
tially obscure other factors contribute to the overexpres-
sion of TRAIL decoy receptors. A study conducted by 
O’Leary et al. unleashed an alternate potential source 
of TRAIL decoy receptors – the stromal cells within the 
tumour microenvironment. They reported that apart from 
just acting in a cell-autonomous manner, transcellular 
regulations by the neighbouring stromal cells also regu-
late TRAIL-induced apoptosis [93]. Therefore, employing 
new study models to better represent the actual tumour 
microenvironment would be beneficial in elucidating the 
pathogenesis of CRC.
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Concluding remarks and future perspectives

The natural protection over healthy cells allows tumour 
necrosis factor-related apoptosis-inducing ligand (TRAIL) 
to be an ideal candidate of anti-cancer therapy. However, 
considerable numbers of cancers, including CRC, demon-
strates intrinsic resistance to TRAIL-induced apoptosis, and 
some acquire resistance after repeated exposure to TRAIL. 
TRAIL resistance can occur at different cancer stages along 
the apoptosis signalling cascade [94] and the expressions of 
TRAIL decoy receptors could be the first checkpoint where 
TRAIL-induced apoptosis can be modulated.

The role of TRAIL decoy receptors in TRAIL resist-
ance was demonstrated by the enhanced sensitivity towards 
TRAIL-induced apoptosis in CRC cells where decoy recep-
tors were neutralised by antibodies and/or expressions were 
silenced. All the data discussed above indicate the crucial 
role of TRAIL decoy receptors and its potential contribu-
tion to TRAIL resistance. While preclinical studies to under-
stand the mechanism(s) of TRAIL-induced apoptosis and 
its anti-tumour mode of action remain on-going, resistance 
to TRAIL-induced apoptosis is still the major hurdle for 
TRAIL-based therapy to pass through the stall in clinical 
trials. Several ideas may be considered in the future to over-
come this, such as investigations on the expression patterns 
of decoy receptors with a bigger cohort. This may lead to 
better correlations between TRAIL resistance and CRC, as 
well as delineating its associated mechanisms leading to 
TRAIL resistance. Tumour and serum samples from CRC 
patients treated with TRAIL therapy can be collected to 
determine the correlation between their respective TRAIL-
sensitivity and their expression levels of decoy receptors.

Besides the ability of the decoy receptors to directly 
interfere with the activation of TRAIL-induced apoptosis 
by forming malfunctioning heterocomplexes with apopto-
sis-inducing DRs [95], these heterocomplexes also activate 
the anti-apoptotic NF-κB pathway [46]. Growing evidence 
shows NF-κB’s contributions in cellular transformation, 
proliferation, and, more importantly, preventing pre-neo-
plastic and malignant cells’ elimination [96]. The activa-
tion of NF-κB has also been associated with the induction 
of anti-apoptotic proteins [47–49] and the tumorigenesis of 
CRC [97]. Given that the heterocomplexes might provide 
an insight on how TRAIL decoy receptors play a role in not 
just dampening TRAIL-induced apoptosis but also in the 
activation of the anti-apoptotic pathway. Thus, elucidating 
this mechanism in CRC would help clarify the intracellular 
functional role of TRAIL decoy receptors.

The activation of NF-κB was shown to be responsible for 
the overexpression of DcR1 and, consequently the protection 
against TRAIL-induced apoptosis in HeLa cells [50]. How-
ever, more studies are required to elucidate this mechanism 

in the context of CRC to determine whether the decoy recep-
tors and NF-κB can activate one another and facilitate the 
neoplastic cells from escaping immune surveillance. Addi-
tionally, investigating the factors that potentially regulate 
the expression of these decoy receptors in CRC would con-
tribute to developing novel strategies  to enhance TRAIL 
sensitivity.

Undoubtedly, as more research is carried out in this area, 
the exact potential and efficacy of TRAIL-based therapy 
may be realised as a combinatorial agent serving the stand-
ard of care while combating CRC. Studies have progres-
sively revealed the heterogeneity of TRAIL decoy recep-
tors in terms of their expression across different cancers, 
cell types, the severity of the disease, or variations in the 
pathway they are activating. However, the examination of 
available literature also exposes significant research gaps in 
defining the physiological factors that regulate these decoy 
receptors’ expression/secretion in CRC. Further studies are 
needed to determine other crucial components involved in 
the regulatory pathway of TRAIL decoy receptors to gain a 
deeper understanding of how TRAIL therapy can be utilised 
to its fullest potential.
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