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Abstract
Chemoresistance of cancer cells is a major problem in treating cancer. Knowledge of how cancer cells may die or resist 
cancer drugs is critical to providing certain strategies to overcome tumour resistance to treatment. Paclitaxel is known as a 
chemotherapy drug that can suppress the proliferation of cancer cells by inducing cell cycle arrest and induction of mitotic 
catastrophe. However, today, it is well known that paclitaxel can induce multiple kinds of cell death in cancers. Besides the 
induction of mitotic catastrophe that occurs during mitosis, paclitaxel has been shown to induce the expression of several 
pro-apoptosis mediators. It also can modulate the activity of anti-apoptosis mediators. However, certain cell-killing mecha-
nisms such as senescence and autophagy can increase resistance to paclitaxel. This review focuses on the mechanisms of 
cell death, including apoptosis, mitotic catastrophe, senescence, autophagic cell death, pyroptosis, etc., following paclitaxel 
treatment. In addition, mechanisms of resistance to cell death due to exposure to paclitaxel and the use of combinations to 
overcome drug resistance will be discussed.
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Introduction

Cancer therapy is dependent on killing clonogenic malig-
nant cells. A tumour can grow when cancer cells can divide 
and produce new cells [1]. Usually, cancer cells can escape 

from the immune system following several mutations. The 
mutations in cancer cells can change the expression of some 
antigens to protect them against immune system attacks. 
Furthermore, cancer cells may undergo further mutations 
to resist cell death. Mutations in tumour suppressor genes, 
oncogenes, pro-and anti-apoptosis genes, cell cycle genes, 
metabolism mediated genes, mitochondria, etc., are the 
most known abnormal changes that can increase survival 
and invasion of cancer cells [2–5]. Anti-cancer agents may 
kill cancer cells via modulating various mechanisms. Some 
drugs may induce the activity of the immune system to 
release pro-apoptosis and necrosis (and also necroptosis) 
mediators [6]. The stimulation of tumour suppressor genes, 
generation of free radicals, and the inhibition of antioxidant 
defence system can induce damage to different organelles 
and macromolecules in cancer cells, which lead to the induc-
tion of various types of cell death such as apoptosis, mitotic 
catastrophe, autophagy cell death, senescence, pyroptosis, 
ferroptosis, and others [7, 8].

Apoptosis is known as the most important biomarker 
of cancer therapy for a wide range of malignancies. The 
upregulation of pro-apoptosis genes such as Bax, and 
downregulation of anti-apoptosis genes such as Bcl-2 can 
predict a better survival for patients with cancer [9, 10]. 
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However, some cancers may show a low level of apoptosis 
[11]. Autophagy is a process that regulates the metabolism 
of cells during starvation and stress conditions such as low 
glucose and oxygen supply [12]. The autophagy process 
may induce resistance of cancer cells to cell death. How-
ever, some autophagy-related proteins (ATG) may be con-
verted to pro-death molecules, leading to the induction of 
autophagic cell death. The blockade of the autophagy pro-
cess leads to the inhibition of autophagic cell death [13]. The 
induction of autophagy in response to anti-cancer drugs may 
have a prodeath or a prosurvival role. Thus, the inhibition or 
stimulation of autophagy may cause different consequences 
in different cancer cell types [14]. Autophagy has an anti-
tumour effect in the early stages of the tumour, however, 
it can facilitate metastasis and invasion in later stages of 
tumours [15, 16]. Radiotherapy and some chemotherapy 
drugs may induce autophagy. Furthermore, these modalities 
that induce the generation of a heavy amount of free radicals 
can stimulate the induction of other types of cell death such 
as senescence, pyroptosis, ferroptosis, necrosis, necroptosis, 
and mitotic catastrophe [17].

To date, a wide range of anti-cancer agents has been 
approved to induce cell death in cancer cells. Paclitaxel is a 
herbal-derived agent that can induce cancer-killing follow-
ing the inhibition of mitosis. However, some studies show 
it may kill cancer cells by some different mechanisms [18]. 
In this review, we aim to explain the induction of different 
mechanisms of cancer-killing by paclitaxel rather than cell 
cycle arrest.

Paclitaxel

Paclitaxel is a herbal-derived agent with formula 
C47H51NO14. For the first time, it was extracted from Taxus 
brevifolia, the bark of the Pacific yew or western yew [19]. 
Indeed, paclitaxel belongs to a type of anti-cancer agent, 
which is known as plant alkaloids. This type of chemo-
therapy drug can be achieved from plants [20]. For the 
first time, paclitaxel was approved by US Food and Drug 
Administration (FDA) for the treatment of ovarian cancer 
[21]. Some years later, FDA approved paclitaxel for breast 
malignancies [22]. Currently, paclitaxel may be prescribed 
for some other malignancies such as advanced prostate and 
breast carcinomas, non-small-cell lung carcinoma (NSCLC), 
endometrial cancer, bladder cancer, cervical carcinoma and 
some others [23–26]. Paclitaxel may be used alone or in the 
combination with some other chemotherapy drugs to treat 
early or advanced stages of cancer. Furthermore, combina-
tion therapy of cancer with radiation and paclitaxel may be 
used to treat patients with recurrent malignancies [27].

Several studies have investigated the cellular and molecu-
lar mechanisms of the anti-cancer effects of paclitaxel. This 

has been demonstrated that the main target of paclitaxel is 
microtubules. Paclitaxel stabilizes microtubules. This effect 
of paclitaxel prevents the depolymerization of microtubules. 
Finally, paclitaxel induces mitosis arrest by interference 
with spindle formation [28]. These modulations by pacli-
taxel stimulate triggering the spindle assembly checkpoint 
to induce cell cycle arrest and abnormal mitosis which 
may lead to cell death [29]. Despite the widespread usage 
of paclitaxel in cancer therapy, its bioavailability remains 
a weakness. It has been suggested that the bioavailability 
of paclitaxel is near 10–30% [30]. Thus, some experiments 
have investigated some strategies to increase the bioavail-
ability of paclitaxel. Using nanotechnology is an interesting 
approach to increase the bioavailability of some drugs and 
adjuvants. To date, some experiments have revealed that 
using nano-carriers and capsules can be useful to increase 
the bioavailability of paclitaxel [31]. Lipid nanoparticles 
have been shown to increase both the absorption and bio-
availability of paclitaxel [30]. A study showed that pacli-
taxel-loaded nanosponges can increase the bioavailability 
of paclitaxel up to threefold [32]. Micelles and liposomes 
are other well-known carriers that can be used to increase 
the bioavailability and absorption of drugs. Micelles and 
liposomes have been shown to increase the absorption of 
paclitaxel in the intestine and also augment bioavailabil-
ity [33–35]. Although some chemical structures have been 
investigated to increase the bioavailability of paclitaxel, it 
seems that nanoparticles and nanocarriers can overcome this 
problem more effectively [36, 37]. The structure of pacli-
taxel and also some well-known carriers are illustrated in 
the following figure (Fig. 1).

Mechanisms of cell death in cancer

The induction of death in cancer cells is the final purpose of 
anti-cancer therapy. To achieve this goal, anti-cancer drugs 
or ionizing radiation may act through different mechanisms. 
Some drugs such as immunotherapy agents try to change the 
environment of tumours in favour of anti-cancer therapy. 
Immunotherapy may induce apoptosis in cancer cells via 
stimulating natural killer (NK) cells and cytotoxic CD8+ T 
lymphocytes (CTLs) to release anti-tumour cytokines such 
as tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-
γ) [38]. The immune cells may induce some other types of 
cell death such as necroptosis. These cells can release some 
other molecules such as perforin and Granzyme B to induce 
the perforation and lysis of cancer cells [39]. Chemotherapy 
agents may kill cancer cells through different mechanisms. 
Classic chemotherapy drugs such as alkylating agents cause 
the generation of a heavy amount of free radicals, damage 
to organelles such as mitochondria, the inhibition of DNA 
repair capacity, and others. These drugs can induce various 



649Apoptosis (2022) 27:647–667	

1 3

types of cell death following damage to DNA and other vital 
organelles. The induction of mitotic catastrophe, apoptosis, 
autophagy, pyroptosis, senescence, ferroptosis, necrosis and 
necroptosis are common following treatment with these 
drugs. A key weakness of these drugs is the severe toxicity 
for normal tissues [40–42].

Ionizing radiation kills cells including both normal and 
malignant cells. Thus, radiotherapy is associated with severe 
cell death in both tumours and normal tissues. However, 
treatment planning techniques try to deliver a high dose 

of radiation into the tumour with fewer side effects for the 
normal organs [43, 44]. Ionizing radiation is a potent clas-
togenic agent. It mainly acts through the induction of DNA 
damage in targeted cells. Ionizing radiation can affect the 
function of other organelles such as mitochondria. It also 
may suppress the antioxidant defence system. These changes 
may cause the activation of different mechanisms of cell 
death including mitotic catastrophe, apoptosis, autophagic 
cell death, senescence, pyroptosis, ferroptosis, necroptosis, 
and necrosis [45].

Paclitaxel is a classic chemotherapy drug that induces 
cell death through different mechanisms. The most known 
consequence of paclitaxel is mitotic arrest, which may lead 
to death in cancer cells. However, it has been suggested that 
paclitaxel may induce cancer-killing through some other 
mechanisms such as activation of the immune system [46]. 
The combination of paclitaxel with radiotherapy or immu-
notherapy may be more effective to eliminate cancer cells, 
however, normal tissue toxicity should be considered as the 
major limiting factor [47]. In this section, we describe the 
induction of various cell death mechanisms following cancer 
therapy with paclitaxel.

Apoptosis

Apoptosis is one of the main targets of paclitaxel in cancer 
cells. It seems that paclitaxel induces apoptosis in cancer 
cells through both extrinsic and intrinsic signalling pathways 
[48]. The main mechanisms for the induction of apoptosis 
by paclitaxel are including the generation of ROS, modula-
tion of mitochondria function, modulation of the cell cycle, 
and also triggering the anti-tumour immunity [49]. In this 
section, we discuss the mechanisms of apoptosis induction 
by paclitaxel in the detail.

Paclitaxel may induce apoptosis via inducing 
anti‑tumour immunity

Paclitaxel can affect various types of immune cells. The 
interactions between paclitaxel and the immune system are 
critical for both single and combination therapy with some 
other modalities such as immunotherapy and radiotherapy 
[50]. The final aim of immunostimulatory agents in can-
cer therapy is an increase in the proliferation of anti-cancer 
cells, which leads to an increase in the release of anti-cancer 
molecules such as perforin, Granzyme B, IFN-γ, TNF-α, 
and others [51]. It has been suggested that paclitaxel can 
stimulate macrophages to release anti-tumour cytokines. 
This is associated with an increase in the proliferation of 
anti-tumour immune cells including CTLs, NK cells, and 
also dendritic cells (DCs) [50]. An increase in the produc-
tion of nitric oxide (NO) by macrophages can stimulate the 

Fig. 1   Chemical structure of paclitaxel is shown in A. some carriers 
to improve the bioavailability of paclitaxel are shown in this figure. 
B: Liposome; C: Lipid Nanoparticle; D and E: Micelle; F: Polymeric 
Nanocapsule; G: Nanosponge.
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release of IL-12 following the administration of paclitaxel. 
This effect of paclitaxel has been observed in mice-bearing 
tumours [52]. The release of IL-12 by macrophages can 
attenuate immunosuppression in tumours [53]. Paclitaxel 
also can suppress the proliferation of Tregs in the tumour 
[54]. The effect of paclitaxel on tumour-associated mac-
rophages (TAMs) is controversial. It may promote the pro-
liferation and infiltration of TAMs [55]. However, paclitaxel 
has been shown to induce reprogramming TAMs toward M1 
macrophages in some cancers [56]. The consequences of 
these effects are very different. The suppression of TAMs 
can boost anti-tumour immunity, while their proliferation 
following treatment with paclitaxel may suppress immune 
responses against cancer cells. Paclitaxel also has been 
shown to interrupt the interactions between CAFs and can-
cer cells [57].

The interactions between the mentioned immune cells 
and cancer cells are very vital for eradicating cancer cells 
and suppressing tumour growth. One of the main effects of 
immune cells including CD4+ and CD8+ T lymphocytes, 
and NK cells is the release of pro-apoptosis molecules such 
as FasL, TRAIL, TNF-α, and IFN-γ [58]. These molecules 
can bind to their receptors on the surface of malignant cells, 
leading to the activation of apoptosis mediators such as cas-
pase proteins [59]. The proliferation of CD4+ and CD8+ T 
lymphocytes, and also NK cells can boost the release of 
these pro-apoptosis molecules. However, an increase in the 
infiltration and recruitment of immunosuppressive cells such 
as Tregs and TAMs can suppress the activity of the men-
tioned anti-tumour immune cells [60, 61]. As paclitaxel can 
suppress Tregs and TAMs, and also induce the release of 
pro-apoptosis molecules by immune cells, it may be interest-
ing to induce apoptosis via modulating anti-tumour immu-
nity [62]. A clinical study confirmed that treatment with 
paclitaxel can induce the anti-tumour activity of NK cells 
and CD8+ T lymphocytes in patients with HER2+ breast 
cancers [63].

Although paclitaxel can induce anti-tumour immunity, 
the expression and release of some immunosuppressive mol-
ecules can induce resistance of malignant cells to paclitaxel. 
TGF-β is an important immunosuppressive cytokine that can 
induce epithelial-mesenchymal transition (EMT) in malig-
nant cells, leading to the resistance of cancer cells to anti-
cancer drugs such as paclitaxel [64]. A study showed that the 
inhibition of TGF-β signalling with a TGF-β type I receptor 
kinase inhibitor can blunt EMT and stemness in breast can-
cer cells. this was associated with the sensitization of cancer 
cells to paclitaxel [65]. EDIL3 (EGF like repeats and discoi-
din domains 3) is an important gene that can induce EMT 
in cancers through stimulation of TGF-β signalling [66]. It 
has been reported that EDIL3 plays a key role in drug resist-
ance and EMT in some cancers such as breast, hepatocellular 
carcinoma, NSCLC, and pancreas malignancies [67–69]. An 

experiment showed plays a key role in EMT and resistance 
of breast and prostate cancer cells to paclitaxel. The results 
indicated that a high expression of EDIL3 is associated 
with EMT in paclitaxel-resistant breast and prostate cancer 
cells. However, the inhibition of EDIL3 reverted EMT and 
induced apoptosis following treatment with paclitaxel [70].

Paclitaxel may induce apoptosis via triggering 
tumour suppressor genes (TSGs)

TSGs play a key role in the suppression of tumour devel-
opment and growth. Usually, cancers show several muta-
tions in some different TSGs. These mutations can weak the 
anti-tumour activity of TSGs. Some TSGs such as BRCA1, 
p53, PTEN, P21, Bax, Fas-associated death domain (FADD) 
protein, and some others are involved in the induction of 
apoptosis in both pre-cancer and cancer cells [71]. The 
mutations in these TSGs can induce resistance to apoptosis 
and also anti-cancer agents. Some studies have revealed that 
the activity of TSGs is crucial for inducing apoptosis by 
paclitaxel. Studies have shown that the presence of BRCA1 
plays a key role in the induction of apoptosis in MCF-7 and 
A549 cancer cells [72, 73]. It has been suggested that pacli-
taxel can induce apoptosis through BRCA1/JNK and p38 
pathway [74]. PTEN and p53 are other TSGs that can be 
activated by paclitaxel to induce apoptosis in cancer cells. 
The induction of miR-22 in cancer cells can induce the activ-
ity of PTEN and reduce paclitaxel resistance in cancer cells, 
indicating a key role of miR-22 in the activation of PTEN 
[75]. Overproduction of ROS following exposure of cancer 
cells to paclitaxel is another mechanism of PTEN activa-
tion by paclitaxel [76]. TP53 is among the most frequent 
mutated TSGs in malignant cells. A decreased activity of 
p53 is responsible for escaping cancer cells from apoptosis. 
Some paclitaxel-resistant cancer cells have low activity of 
p53 and its downstream proteins such as PUMA [77]. Stimu-
lation of p53 in some cancers may reduce the resistance of 
cancer cells to paclitaxel-induced apoptosis [78]. However, 
it seems that this pathway isn’t involved in the paclitaxel-
induced apoptosis in all types of cancers [79, 80].

PI3K/Akt signalling pathway

PI3K and Akt are among the key players in tumour resistance 
to various anti-cancer therapy modalities [81]. PI3K/Akt 
pathway plays a key role in the upregulation of anti-apop-
tosis genes such as Bcl-2, transducer and activator of tran-
scription 3 (STAT3), NF-κB, COX-2, and others [82–84]. In 
the normal cells, PI3K can be suppressed by PTEN. How-
ever, the mutations in PTEN in malignant cells facilitate 
upregulation of PI3K and resistance to apoptosis [85, 86]. 
Several studies have revealed the interactions of paclitaxel 
with the PI3K/Akt pathway. It seems that paclitaxel may 
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reduce the expression of PI3K. However, emerging studies 
indicate the PI3K pathway plays a key role in the resistance 
of cancer cells to paclitaxel [87, 88]. A study showed that 
paclitaxel attenuates the expression and phosphorylation 
of PI3K/Akt through the activation of PTEN. The modula-
tion of this pathway led to an increase in apoptosis in the 
human gastric cancer cells, MGC-803. This effect of pacli-
taxel was observed in both in vitro and xenograft models 
[76]. Another study also suggested that paclitaxel induces 
the regulation of miR-145 in bladder cancer cells, leading 
to a reduction in survival [89]. MiR-145 can inhibit the 
expression of Akt, thus inducing apoptosis in cancer cells 
[90, 91]. Thus, an increase in the regulation of miR-145 
may be responsible for the inhibition of PI3K/Akt and the 
induction of apoptosis following treatment with paclitaxel. 
Downregulation of the PI3K/Akt pathway can attenuate the 
expression of anti-apoptosis genes and stimulate the expres-
sion of pro-apoptosis mediators. Furthermore, stimulation of 
epithelial-mesenchymal transition by the PI3K/Akt pathway 
can suppress apoptosis and induce invasion in cancer cells 
[87]. A key consequence of Akt inhibition is the induction 
of apoptosis through Forkhead Box O3 (Foxo3) pathway 
[92]. Paclitaxel has been shown to stimulate Foxo3 through 
the inhibition of Akt and stimulation of c-Jun NH2-terminal 
kinase 1/2 (JNK1/2). Sunters et al. showed that upregulation 
of JNK1/2 following treatment of MCF-7 breast cancer cells 
with paclitaxel inhibits Akt, which leads to phosphoryla-
tion and nuclear translocation of Foxo3a. These modulatory 
effects of paclitaxel induce apoptosis in breast cancer cells 
[93].

Although the activation of PTEN and downregulation of 
the PI3K/Akt pathway may be involved in the apoptosis of 
cancer cells, it seems that this pathway has a key role in the 
cancer resistance to paclitaxel. Thus, targeting the PI3K/
Akt pathway may be useful to potentiate cancer-killing by 
paclitaxel [94]. It has been revealed that the upregulation 
of SRY (sex determining region Y)-box 2, which is known 
as SOX2 plays a key role in the paclitaxel resistance via 
stimulating the PI3K/Akt pathway. Thus the inhibition of 
this transcription factor may be useful to induce apoptosis 
in the response to paclitaxel therapy [95, 96]. MiR-145 can 
inhibit the expression of SOX2. It has been shown that an 
increase in the regulation of miR-145 can sensitize cancer 
cells to paclitaxel via downregulation of SOX2 [97]. Fur-
thermore, the release of some growth factors within TME 
can induce the expression of PI3K by cancer cells. A study 
showed that CAFs release hepatocyte growth factor (HGF), 
leading to upregulation and phosphorylation of PI3K/Akt 
proteins and resistance of A549 lung cancer cells to pacli-
taxel-induced apoptosis [98]. Some experiments have shown 
that inhibition of PI3K/Akt can amplify apoptosis induction 
by paclitaxel [99, 100]. The beneficial effect of Akt inhibi-
tion in the combination with paclitaxel has been revealed in 

a clinical study. In this double-blind placebo-controlled trial 
study, patients with metastatic triple-negative breast cancer 
received the AKT inhibitor capivasertib or placebo in the 
combination with paclitaxel. Results of this study showed a 
significant increase in overall survival and progression-free 
survival. Results also indicated that patients with PIK3CA/
AKT1/PTEN alterations have a more pronounced response 
to this combination therapy [101] (Fig. 2).

PI3K plays a key role in the upregulation of other anti-
apoptosis genes, including Mcl-1 and Bcl-xL [102, 103]. 
Overexpression of Mcl-1 and Bcl-xL has a key role in the 
resistance of cancer cells to paclitaxel. Thus, inhibiting these 
genes can sensitize cancer cells to paclitaxel [104, 105]. 
The inhibition of Bcl-xL by some small molecules has been 
shown to increase apoptosis in paclitaxel-treated prostate 
and pancreas cancer cells [106–108]. It has been reported 
that paclitaxel can also induce phosphorylation of Bcl-xL. 
This effect of paclitaxel can cause resistance to apoptosis 
following treatment with paclitaxel. Thus, the inhibition of 
Bcl-xL and Mcl-1 using their specific inhibitors in combi-
nation with paclitaxel can increase the anti-tumour effect 
of paclitaxel [109, 110]. Obatoclax is a Bcl-2 pan inhibitor 
that can amplify apoptosis in cancer cells through the inhi-
bition of Mcl-1, Bcl-xL, and Bcl-2 [111]. A synergic effect 
of paclitaxel and obatoclax has been revealed for urothelial 
cancer cells [112]. However, another study showed no syn-
ergic effect of paclitaxel and obatoclax for ovarian cancer 
cells [113].

STAT3 phosphorylation

STAT3 is a transcription factor and signal transducer. The 
aberrant expression of STAT3 can be observed in a wide 
range of malignancies. The upregulation and phosphoryla-
tion of STAT3 are associated with multidrug resistance, 
invasion, angiogenesis, and metastasis of cancers [114]. The 
inhibition of the apoptosis pathway is a key mechanism of 
STAT3 in malignancies. An increase in the expression and 
phosphorylation of STAT3 can attenuate the anti-tumour 
activity of paclitaxel. The release of some cytokines and 
growth factors such as IL-6, IL-10, and IL-22 can induce 
phosphorylation of STAT3, leading to upregulation of 
the expression of anti-apoptosis genes such as Bcl-2 and 
resistance of cancer cells to paclitaxel-induced apoptosis 
[115–117]. Paclitaxel has been shown to downregulate the 
expression of STAT3 [118]. However, it seems that the inhi-
bition of STAT3 using an inhibitor can augment apopto-
sis in cancer cells following therapy with paclitaxel [119]. 
Some studies have shown that the inhibition of STAT3 using 
miRNAs and siRNAs can increase apoptosis induction of 
paclitaxel-resistant cancer cells [120–123].
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Endogenous ROS generation

The generation of ROS plays an important role in the damage 
to cancer cells and suppression of tumour growth. Although 
ROS may trigger angiogenesis, the induction of new muta-
tions and invasion of cancer cells, a huge production of ROS 
during cancer therapy can generate unrepairable damages 
to DNA and other critical organelles [124–127]. Some anti-
cancer drugs such as classic chemotherapy drugs and also 
radiation can induce the production of a heavy amount of 
ROS because of mitochondrial dysfunction and upregulation 
of pro-oxidant enzymes [17]. Paclitaxel has been shown to 
induce apoptosis in cancer cells via inducing endogenous 
production of ROS [128]. Furthermore, several studies have 
revealed that paclitaxel can augment the anti-cancer effects 
of some other agents via stimulating ROS overproduction 
in cancer cells.

Paclitaxel can induce apoptosis in a ROS-dependent 
pathway, which leads to activation of ceramide, p38, JNK, 
and AMP-activated protein kinase (AMPK) [129, 130]. 
Ceramide can be produced following interactions of ROS 
with lipids in the membrane. It can induce some apoptosis 
signalling such as ER stress, AMPK, and also induce mito-
chondrial apoptosis [131, 132]. AMPK also can induce p53 
activity, which is a potent inducer of apoptosis in cancer 
cells [133]. It has been revealed that ROS production by 

paclitaxel can also trigger the activity of PTEN in cancer 
cells [76]. Paclitaxel has also been shown to enhance the 
anti-cancer effect of quercetin via the endoplasmic reticulum 
(ER) stress signalling pathway, which leads to the overpro-
duction of ROS in PC-3 prostate cancer cells [134]. It seems 
that ROS production in cancer cells following treatment with 
paclitaxel can induce both extrinsic and intrinsic pathways 
of apoptosis [135]. Some studies have shown that paclitaxel-
loaded nanoparticles such as silver nanoparticles enhance 
apoptosis in cancers via generating ROS [136–139].

NF‑κB

NF-κB is including 5 subfamilies that regulate a wide range 
of functions within cells. Usually, cancer cells have a higher 
expression of NF-κB [140]. The release of some cytokines 
such as TGF-β, IL-1 and TNF-α by immune cells can trigger 
the upregulation of NF-κB [141]. Usually, NF-κB can be 
degraded by the inhibitor of κB (IκB). During stress condi-
tions such as seen following chemotherapy or exposure to 
ionizing radiation, the release of the mentioned cytokines 
can induce the degradation of IκB, which lead to the upregu-
lation and nuclear translocation of NF-κB [142]. The inter-
action of paclitaxel with NF-κB and its signalling pathways 
need to be more elucidated in various cancer cells. However, 
it seems that paclitaxel may induce the regulation of NF-κB 

Fig. 2   Mechanisms of 
paclitaxel-induced apoptosis in 
cancer cells via targeting the 
PI3K/Akt pathway. Paclitaxel 
can suppress PI3K/Akt pathway 
in some different ways. It 
induces PTEN via stimulation 
of ROS and also upregulation of 
miR-22. Furthermore, upregula-
tion of miR-145 by paclitaxel 
can inhibit Akt. Paclitaxel also 
stimulates phosphorylation of 
Foxo3a, leading to inhibition 
of Bcl-2
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in some cancer cells such as lung carcinoma [143]. The 
upregulation of NF-κB in breast cancer cells can induce can 
increase resistance to paclitaxel via inducing anti-apoptosis 
genes such as tumour necrosis factor receptor-associated 
factor 1 (TRAF1), c-inhibitor of apoptosis 2 (c-IAP2), and 
defender-against cell death (DAD-1). Furthermore, increased 
activity of superoxide dismutase (SOD) can reduce oxida-
tive damage and apoptosis in cancer cells following expo-
sure to paclitaxel [144]. A study also showed that a low 
dose of paclitaxel (1 mg/kg) can upregulate NF-κB and 
induce metastasis in mice-bearing breast tumours. However, 
higher concentrations of paclitaxel (20–50 mg/kg) can sup-
press tumour growth and metastasis remarkably [145]. In 
total, it seems that the inhibition of NF-κB can augment the 
anti-tumour effect of paclitaxel in some cancer cells [146, 
147]. However, paclitaxel may act independently on NF-κB 
in some cancers, thus, the inhibition of NF-κB may don’t 
increase apoptosis by paclitaxel [148].

Epigenetics modulation of apoptosis by paclitaxel

Upregulation or downregulation of some miRNAs may 
be involved in the resistance of cancer cells to paclitaxel. 

Furthermore, paclitaxel may induce apoptosis via modulat-
ing some miRNAs [149]. As earlier mentioned, upregula-
tion of miR-145 by paclitaxel can induce the inhibition of 
the SOX2/Akt signalling pathway, leading to an increase in 
the apoptosis of some malignant cells such as bladder can-
cer cells. By contrast, the upregulation of some miRNAs by 
paclitaxel can attenuate apoptosis in cancer cells. A study 
demonstrated an increase in the expression of miR-125b in 
paclitaxel-resistant cancer cells [150]. The abnormal regu-
lation of some miRNAs in cancer cells can induce resist-
ance of cancer cells to paclitaxel. Downregulation of some 
miRNAs such as miR-22 and upregulation of some others 
such as miR-29c can induce resistance of cancer cells to 
paclitaxel-induced apoptosis [75, 151] (Fig. 3).

Mitotic catastrophe

Mitotic catastrophe is a type of cell death that occurs follow-
ing massive damage to DNA. It is characterized by the accu-
mulation of unrepaired damages in DNA, aberrant mitosis, 
and multiple nuclei that are morphologically similar to apop-
tosis [152]. Although the molecular mechanisms of mitotic 

Fig. 3   A schematic of mechanisms of apoptosis induction in cancer by paclitaxel. Paclitaxel can induce apoptosis via inducing several pathways. 
Some pathways are illustrated in this figure in summary. ER: Endoplasmic reticulum; PTX: Paclitaxel
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catastrophe remained to be illustrated completely, we know 
that it acts as a tumour suppressor mechanism [153]. Fur-
thermore, mitotic catastrophe can enhance the therapeutic 
efficiency of anti-cancer modalities such as radiotherapy and 
chemotherapy. Thus, the stimulation of mitotic catastrophe 
can be suggested to improve cancer therapy outcomes [154]. 
This type of cell death mechanism may occur in partner-
ship with some other types of cell death such as necrosis or 
apoptosis [155]. Mitotic catastrophe occurs independent of 
p53, thus it may be an appropriate target for cancers with 
mutated p53 [156].

Paclitaxel has been shown to induce various types of cell 
death including mitotic catastrophe in cancer cells [157]. 
Some studies have shown a negative cross-talk of p53 and 
mitotic catastrophe in cancer cells that were exposed to 
paclitaxel. Although p53 is essential for the induction of 
apoptosis and senescence, its activity is associated with cell 
cycle arrest, DNA repair, and finally the inhibition of mitotic 
catastrophe in the damaged cells [158]. Thus, antimicro-
tubule agents including paclitaxel may be effective to kill 
cancers with mutated p53. A study showed that silencing of 
the Polo-like kinase family member serum inducible kinase 
(Snk/Plk2), a target of p53, can amplify mitotic catastrophe 
following spindle damage. Furthermore, loss of p53 in the 
human osteosarcoma cell lines (U20S) led to an increase 
in the induction of mitotic catastrophe both short-term and 
long-term following treatment with paclitaxel [159]. The 
combinations of paclitaxel with some other antineoplastic 
drugs such as oxaliplatin, cetuximab, BZML (a colchicine 
binding site inhibitor), pazopanib, BPR0L075 (an antimi-
totic and antivascular agent), and some others have shown 
that sensitize cancer cells via inducing mitotic catastrophe 
[160–164]. Furthermore, some natural-derived agents such 
as fisetin and mulberry water extract have been shown to 
promote mitotic catastrophe and reduce resistance to pacli-
taxel [165, 166]. In addition to these drugs, hyperthermia 
also has been shown to amplify the induction of mitotic 
catastrophe by paclitaxel [167].

A clinical study suggested that the inhibition of mitotic 
catastrophe in patients with ovarian cancer following 
upregulation of inhibitory member of apoptosis-stimulating 
protein of the p53 family (iASPP) is a mechanism for low 
response and poor survival of patients that were treated with 
paclitaxel [168]. Another study showed a key role of fork-
head box protein M1 (FOXM1) in the inhibition of mitotic 
catastrophe and resistance to paclitaxel. FOXM1 is a tran-
scription factor that regulates several biological processes 
such as DNA damage, cell death, proliferation, differentia-
tion, and others. The upregulation of FOXM1 is associated 
with tumorigenesis and also the resistance of tumours to 
therapy. This clinical investigation confirmed a direct rela-
tion of FOXM1 overexpression with poor response of ovar-
ian cancer to paclitaxel via inhibiting mitotic catastrophe 

[169]. Similar results were observed for breast tumour sam-
ples [170].

The mitosis slippage is another mechanism that can affect 
the response of malignant cells to paclitaxel. The spindle 
assembly checkpoint ensures proper chromosome alignment 
at the metaphase before chromosome segregation. However, 
malignant cells may acquire some alternative mechanisms to 
bypass mitotic arrest before the initiation of cell death. This 
alternative mechanism in cancer cells is known as mitosis 
slippage [171, 172]. A long-term cell cycle arrest follow-
ing treatment with paclitaxel may lead to degradation of 
cyclin B1 and mitotic slippage. In this condition, cancer 
cells exit mitosis prematurely, leading to the development 
of aneuploid cells and resistance to paclitaxel. However, 
some cells may undergo post-mitotic cell death or cell cycle 
arrest [173]. In this condition, a combination of paclitaxel 
with anti-apoptosis inhibitors may be an interesting strategy 
to overcome paclitaxel resistance in the remained cancer 
cells [173]. Some recent studies have suggested that target-
ing anti-apoptosis mediators including myeloid cell leukae-
mia-1 (Mcl-1) and Bcl-xL can induce cell death and reduce 
mitosis slippage, which leads to overcoming resistance in 
paclitaxel-resistant cancer cells [174]. Mcl-1 is a member of 
the Bcl-2 family that can be synthesised and degraded dur-
ing mitosis. The upregulation of Mcl-1 in paclitaxel-treated 
cancer cells can prolong mitosis and suppress cell death 
after mitosis slippage. However, the inhibition of Mcl-1 has 
been shown to accelerate post slippage death in paclitaxel-
resistant cells [175]. A study by Bennett et al. confirmed the 
key role of Bcl-xL in mitotic cell death following treatment 
with paclitaxel. This study confirmed that the inhibition of 
Bcl-xL sensitizes cancer cells to mitosis inhibitors such as 
microtubule-binding agents [176].

Autophagy

Autophagy is known as a key regulator of cell metabolism 
during starvation. Autophagy protects cells against stress 
situations such as hypoxia, low glucose levels, and oxidative 
stress. However, this process may cause cancer cell death 
independent of other types of cell death [177]. The dual 
role of autophagy in the survival of cancer cells makes it 
a complicated process in cancer therapy. In some cancers, 
an increase in autophagy may protect them against chemo-
therapy and radiotherapy. However, in some others, it may 
induce autophagic cell death, thus increasing the response 
of tumours to therapy [178, 179]. Autophagic cell death is 
a controversial issue. It has been suggested that autophagy 
may promote cell death in cancers when they lack apoptosis 
mediators such as Bax or caspase proteins. Autophagic cell 
death is a type of cell death that can be blocked by the inhi-
bition of the autophagy process. Other types of cell death 
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shouldn’t consider autophagic cell death [13]. In addition 
to modulation of cell death in cancer cells, autophagy may 
affect the activity of immune responses during radiotherapy 
or chemotherapy [180, 181]. Autophagy also may stimulate 
or inhibit cell death via modulating other cell death path-
ways such as apoptosis and pyroptosis [182].

Paclitaxel may induce autophagic cell death

As mentioned, paclitaxel may suppress the proliferation of 
cancers via inducing autophagy. However, it seems that this 
effect of paclitaxel is highly dependent on the type of can-
cer and concentration of paclitaxel. An experiment showed 
that the inhibition of gastric cancer cells by paclitaxel is 
associated with the appearance of autophagy. This con-
nection was approved by some cell techniques including 
immunofluorescence of cytoplasm structure, western blot 
for autophagy-associated proteins, and also 3–(4,5–dime-
thyl–2–thiazolyl)–2,5–diphenyl–2–H–tetrazolium bromide 
(MTT) assay [183]. Some studies also have revealed that 
stimulation of autophagy in the combination with paclitaxel 
can enhance the cytotoxicity effect of paclitaxel against can-
cer cells. An in vitro examination showed that treatment of 
MDA‑MB‑231 human breast cancer cells with 24 µM pacli-
taxel can induce autophagy without significant inhibition 
of cancer cells. However, the treatment of cancer cells with 
a combination of paclitaxel and pristimerin can enhance 
autophagy and induce a remarkable suppression of cancer 
cells. This combination could enhance the expression of 
autophagy mediators including Beclin-1 and light chain 3B 
(LC3‑II), and also inhibited extracellular signal‑regulated 
kinase (ERK). The inhibition of autophagy or inducing ERK 
showed a reduction in cell death following treatment of cells 
with paclitaxel and pristimerin combination [184].

A study suggested that autophagy has a close relationship 
with apoptosis in v-Ha-ras-transformed fibroblasts. Exposure 
of v-Ha-ras-transformed NIH 3T3 cells to paclitaxel was 
associated with an increase in the expression of autophagy 
proteins such as GFP-LC3 and LC3. The inhibition of either 
apoptosis or autophagy in these cells led to an increase in the 
induction of another mechanism of cell death. This response 
of cells to paclitaxel indicates that both autophagic cell death 
and apoptosis cooperate as two partners to suppress the pro-
liferation of these cells in the response to paclitaxel [185]. 
However, a study suggested that switching from apoptosis to 
autophagic cell death can increase the resistance of MCF-7 
breast cancer cells to paclitaxel [186].

Autophagy attenuates paclitaxel sensitivity in some 
cancer cells

If autophagy doesn’t lead to autophagic cell death or apop-
tosis, it can induce resistance of cancer cells to anti-cancer 

agents including paclitaxel. The upregulation of some 
autophagy-related genes is responsible for increasing tumour 
resistance to paclitaxel. A study showed that the upregula-
tion of taurine up-regulated 1 (TUG1) can enhance paclitaxel 
resistance in ovarian cancer cells via inducing autophagy 
and inhibiting apoptosis. TUG1 is a long noncoding RNA 
(lncRNA) and acts as an oncogene [187]. The deletion of 
TUG1 in ovarian tumours and cancer cells showed a reduc-
tion in the formation of autophagosomes and an increase in 
the induction of apoptosis. Results indicated that autophagy 
is a mechanism of paclitaxel resistance in ovarian cancer 
cells [188]. In some types of cancers such as NSCLC and 
ovarian cancer cells, it seems that autophagy is a mechanism 
for resistance to paclitaxel-induced apoptosis [189, 190].

Hypoxia is known as a key regulator of tumour resistance 
to therapy via inducing autophagy. The Warburg effect and 
glycolysis in cancer cells can upregulate HIF1-α. HIF1-α 
induces autophagy and resistance to paclitaxel. The selective 
inhibition of HIF1-α has been shown to suppress autophagy 
and paclitaxel resistance in HeLa cancer cells via inducing 
apoptosis [191]. Regulated in development and DNA dam-
age (REDD1) is another regulator of autophagy that increase 
resistance to paclitaxel. REDD1 can be upregulated during 
DNA damage, hypoxia, and stress. It induces the expression 
of some inflammatory mediators such as NF-κB and NLRP3 
inflammasome [192]. A study showed that the expression 
of REDD1 in patients with bladder urothelial carcinoma is 
associated with poor patient survival. Further experiments 
also showed that REED1 can induce autophagy in cancer 
cells and its knockdown is associated with the inhibition of 
autophagy markers. Analyses showed that REED1 can be 
inhibited by miR-22, which led to the sensitization of cancer 
cells to paclitaxel [193].

Autophagy inhibition or stimulation to induce 
paclitaxel‑induced apoptosis

The inhibition or stimulation of autophagy may induce 
the induction of apoptosis, depending on the type of can-
cer. Furthermore, the stimulation of autophagy may induce 
both autophagic cell death and apoptosis in the combination 
with other adjuvants including paclitaxel. Most studies have 
shown that the inhibition of autophagy sensitizes cancer 
cells to paclitaxel. However, some other studies have shown 
that stimulation of autophagy can enhance the cytotoxicity 
effect of paclitaxel against breast tumours [194, 195]. The 
inhibition of the mammalian target of rapamycin (mTOR) 
is known as the most famous strategy to induce autophagy 
in cancer cells. A study showed that the inhibition of mTOR 
suppresses the phosphorylation of Akt/mTOR and inhibits 
the proliferation of endometrial cancer cells via inducing 
autophagic cell death and apoptosis in the response to pacli-
taxel [196].
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Inducing autophagy in the response to paclitaxel may 
be involved in the invasion and metastasis [197]. Thus the 
targeting of autophagy may be effective to suppress can-
cer resistance and invasion. It seems that the induction of 
autophagy in NSCLC is a mechanism for resistance to pacli-
taxel [189]. An experiment evaluated the role of autophagy 
inhibition on the paclitaxel resistance and invasive proper-
ties of A549 cells. Inhibition of autophagy in NSCLC cells 
can enhance the generation of ROS and accumulation of 
mitochondria injury following overproduction of superox-
ide [198, 199]. Furthermore, the inhibition of autophagy 
by chloroquine attenuated the phosphorylation of Akt and 
accumulation of β-catenin, thus reducing metastatic prop-
erties of A549 cancer cells [200, 201]. The inhibition of 
autophagy also triggers ER stress, leading to the induction 
of apoptosis [202]. Autophagy inhibition using chloroquine 
has been shown to induce apoptosis in endometrial carci-
noma cells too [203]. Obatoclax is a blocker of autophagy 
flux that may reduce the resistance of some cancer cells to 
paclitaxel. A study evaluated the effect of a combination of 
paclitaxel and obatoclax on resistant bladder cancer cells. 
The results showed that obatoclax can induce the blockade 
of the autophagic flux in paclitaxel-sensitive bladder cancer 
cells. However, it couldn’t remarkably inhibit autophagic 

flux in paclitaxel-resistant bladder cancer cells. A combina-
tion of paclitaxel and obatoclax showed a synergic block-
ade of autophagic flux in paclitaxel-resistant bladder cancer 
cells. The results also confirmed that blockade of autophagic 
flux correlates with the induction of apoptosis in bladder 
cancer cells [112].

Some other studies show the inhibition of autophagy sen-
sitizes cancer cells to paclitaxel via accelerating apoptosis. 
The paclitaxel sensitization effect of autophagy inhibition 
has been observed in human SiHa cervical cells, triple-
negative breast cancers, renal cell carcinoma, [204–207]. A 
clinical study evaluated the effect of autophagy inhibition 
using hydroxychloroquine in the combination with Gemcit-
abine/Nab-Paclitaxel in patients with pancreas tumours. this 
treatment modality resulted in better pathological tumour 
response and increased overall survival without a signifi-
cant increase in side effects [208]. Further clinical studies 
need to illustrate the possible beneficial effects of autophagy 
inhibitors to overcome paclitaxel resistance in various types 
of tumours (Fig. 4).

Fig. 4   Mechanisms of autophagy modulation by paclitaxel and its 
effects on the induction or suppression of autophagic cell death and 
apoptosis. Upregulation of PI3K following downregulation of PTEN 
or upregulation of some stimulators causes phosphorylation and acti-
vation of Akt and mTOR, leading to suppression of autophagic cell 
death and apoptosis. Paclitaxel can stimulate the activity of PTEN 

and also inhibit Akt to reactivate apoptosis and autophagic cell death 
pathways. In some cancer cells, autophagy itself can suppress apop-
tosis via inhibiting ER stress. However, paclitaxel may reverse this 
effect of autophagy. Paclitaxel also can downregulate pro-survival 
mediators in cancer cells via inhibiting REED1
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Senescence

Cellular senescence is a type of cell death that may occur 
following damage to DNA, shortening of telomere, oxida-
tive stress, and also activation of some oncogenes [209]. 
Senescence has some specific properties such as irrevers-
ible cell cycle arrest, dysregulation of the normal metab-
olism of senescent cells, and an abnormal increase in the 
β-galactosidase [210]. Senescence may suppress the pro-
liferation of cancer cells. However, senescence-associated 
secretory phenotype (SASP) may modulate TME in the 
favour of tumour progression [211]. Due to these properties 
of cellular senescence, the effect of each anti-cancer modal-
ity on the senescence and its consequences on the tumour 
should be evaluated separately.

Studies have revealed that paclitaxel can induce senes-
cence in cancer cells [212]. However, consequences of 
senescence can increase resistance to paclitaxel. Senescence 
may occur dependent or independent of p53. A study showed 
that paclitaxel can induce premature senescence in NSCLC 
cells independent of p53 and p21 [213]. However, another 
experiment showed that transfection of p53 into null p53 
NSCLC H358 cells can induce senescence. Interestingly, 
results indicated that transfection of p53 could increase the 
resistance of cancer cells to paclitaxel [214]. Another study 
showed that senescence in ovarian cancer cells is associ-
ated with upregulation of p21, p16, and p53 [215]. Some 
adjuvants have been shown to sensitize cancer cells to pacli-
taxel via inducing both apoptosis and senescence [216, 217]. 
However, it seems that SASP can attenuate the induction of 
apoptosis, thus inducing resistance of cancer cells to pacli-
taxel [218, 219]. It has been reported that SASP following 
exposure of cancer cells to paclitaxel is associated with the 
release of some inflammatory cytokines such as IL-6 and 
IL-8 that induce migration and resistance of adjacent cells 
[220]. Similar results were observed in an in vivo model 
of ovarian tumours. Results of this study also showed that 
senescence can increase the resistance of neighbouring cells 
in TME to paclitaxel [221].

Pyroptosis

Pyroptosis is the inflammatory model of cell death that is 
associated with the activation of the inflammasome and the 
release of inflammatory cytokines including IL-1 and IL-18. 
Caspase 1 and gasdermin family proteins including gasder-
min E (GSDME) and gasdermin D (GSDMD) play key roles 
in the activation of inflammasome and execution of pyropto-
sis [222]. Pyroptosis can be suggested as a target to induce 
cancer cell death [223]. Pyroptosis may be a mechanism 
for the sensitization of cancer cells to paclitaxel. A study 

showed that knockdown of GSDME in MCF-7 breast cancer 
cells can reduce paclitaxel sensitivity of cancer cells [224]. 
Paclitaxel has been shown to induce pyroptosis through both 
caspase 1/GSDMD and caspase 3/ GSDME pathways. A 
study examined the effect of paclitaxel on pyroptosis via 
the caspase 3/ GSDME pathway in A549 lung cancer cells. 
Results of this study indicated that although activation of 
caspase 3 can induce apoptosis in most cancer cells, how-
ever, it mediated cleavage of GSDME in some cancer cells, 
leading to pyroptosis. Results also showed that the inhibition 
of pyroptosis via knockdown of GSDME is associated with 
a reduction in cancer cell death [225]. Another experiment 
showed that paclitaxel stimulates pyroptosis in advanced 
nasopharyngeal carcinoma via inducing Caspase-1/GSDMD. 
Results also confirmed a significant increase in the release 
of IL-1 and IL-18 up to sixfold. the selective inhibition of 
GSDMD using siRNA caused the suppression of pyroptosis 
and increased resistance of cancer cells to paclitaxel [226]. 
In addition to the direct induction of caspase 1/GSDMD 
pathway and pyroptosis by paclitaxel, inducing pyroptosis 
by other adjuvants may be useful to ameliorate paclitaxel-
resistance of cancer cells. A study confirmed that activation 
of caspase 1/GSDMD can sensitize A549 cells to paclitaxel 
via inducing pyroptosis [227]. Pyroptosis may stimulate 
the immune system against cancer cells in the tumour. In 
a murine model of the tumour, the induction of pyroptosis 
following exposure of the tumour to paclitaxel led to the 
maturation of dendritic cells and expansion of anti-tumour 
T lymphocytes [228]. However, the immunologic effects of 
pyroptosis following administration of paclitaxel need to be 
more elucidated (Fig. 5).

Ferroptosis

Ferroptosis is an iron-dependent mechanism of programmed 
cell death. This type of cell death was introduced in 2012 
[229]. Iron ions can induce the generation of ROS through 
the Fenton reaction. ROS can interact with phospholipids, 
leading to the production of lipid peroxidation. Antioxi-
dant defence mediators including glutathione (GSH) and 
glutathione peroxidase 4 (GPX4) inhibit the production of 
lipid peroxidation, thus preventing ferroptosis. However, the 
inhibition of the antioxidant defence system during oxidative 
stress may lead to ferroptosis [230]. Targeting ferroptosis 
has been suggested as a strategy for cancer therapy [231]. 
Paclitaxel may induce cancer cell death via triggering fer-
roptosis. Furthermore, the stimulation of ferroptosis using 
other agents may be useful to overcome resistance to pacli-
taxel. An experiment showed that a low concentration of 
paclitaxel induces ferroptosis in mutant p53 hypopharyn-
geal squamous cell carcinoma. Furthermore, treatment of 
cells with a combination of paclitaxel and RSL3 showed a 
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synergic effect on the induction of ferroptosis. This com-
bination inhibited the activity of GPX4, leading to lipid 
peroxidation and ferroptosis. Interestingly, results indicated 
that the status of p53 plays a key role in the promotion of 
ferroptosis. Upregulation of mutant p53 was associated with 
an increase in ferroptosis via inhibiting SLC7A11 (xCT) in 
the treated cancer cells [232]. Another study also confirmed 
the role of xCT inhibition in the induction of ferroptosis. The 
inhibition of xCT using sulfasalazine showed that induced 
ferroptosis in paclitaxel-resistant uterine serous carcinoma. 
This was associated with an increase in the generation of 
ROS and upregulation of JNK in paclitaxel-resistant cancer 
cells, not in paclitaxel-sensitive cells [233]. These results 
were observed for paclitaxel-tolerant persister cancer cells 
using different xCT inhibitors [234]. Some other studies 
have revealed that the induction of ferroptosis enhances 
the anti-tumour efficiency of paclitaxel, while its inhibition 
increases resistance to paclitaxel [235–237].

Necroptosis

Necroptosis is a type of cell death that occurs independently 
of caspase proteins. Necroptosis can be induced following 
activation of the immune system, the release of anti-tumour 
molecules including TNF-α and FasL, and also upregulation 
of some receptors such as toll-like receptors (TLRs) [238]. 

The main mediators of necroptosis are including receptor-
interacting protein kinase 1 (RIP1), RIP3, and also RIP3-
mixed lineage kinase domain-like protein (MLKL) [239]. 
Necroptosis is an immunologic type of cell death; thus it can 
enhance anti-tumour immunity against cancer cells. On the 
other hand, paclitaxel can stimulate the immune system and 
release inflammatory cytokines, which may induce necrop-
tosis in cancer cells. However, this effect of paclitaxel needs 
to be elucidated. Some limited experiments have been per-
formed to show the induction of necroptosis by paclitaxel. 
A study showed that treatment of paclitaxel induces necrop-
tosis in A549 lung adenocarcinoma cells via phosphoryla-
tion of caspase-8 and also activation of RIPK1 and RIPK3. 
Results of this study indicated that phosphorylation of cas-
pase 8 is associated with resistance of cancer cells to both 
apoptosis and necroptosis. The dephosphorylation of cas-
pase 8 using a c-Src inhibitor led to a synergic induction of 
necroptosis by paclitaxel [240]. Another study reported that 
Fluoxetine (an anti-depression drug with anti-cancer proper-
ties) can amplify necroptosis by paclitaxel [241]. Targeting 
necroptosis in apoptosis-resistant cancer cells is a strategy to 
kill cancer cells using some specific anti-cancer drugs such 
as paclitaxel [242]. However, paclitaxel-induced necroptosis 
may lead to upregulation of some tumour-promoting mol-
ecules such as C-X-C-motif chemokine receptor-2 (CXCR2) 
that need to be considered [243].

Fig. 5   Paclitaxel can induce 
pyroptosis via inducing caspase 
3/gasdemine E and inflam-
masome/caspase 1 pathways. 
Overproduction of ROS and 
inhibition of antioxidant defence 
system play key roles in the 
initiation of pyroptosis. Upregu-
lation of caspase 3 may cause 
induction of either apoptosis or 
pyroptosis
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Summary and conclusion

To date, a large number of anti-cancer drugs have been 
developed or discovered. Herbal-derived drugs are among 
anti-tumour candidates since long years ago. Paclitaxel 
is a herb-derived agent that has been used to treat some 
malignancies since a long time ago. Similar to other herbal-
derived agents, paclitaxel has low bioavailability and absorp-
tion in the intestine. To overcome this problem, scientists 
have developed some carriers such as micelles, liposomes, 
nanocapsules, and some others. Evidence shows that these 
carriers can improve the anti-tumour activity of drugs like 
paclitaxel. First evaluations indicated that paclitaxel induces 
cell death in cancers via inhibiting mitosis. However, further 
experiments during the two last decades show that paclitaxel 
can induce cancer-killing via modulating several signalling 
pathways.

Killing all cancer cells with at least normal tissue side 
effects is an ideal goal in cancer therapy. Knowledge of 
how cancer cells respond to different types of cell death 
can illustrate mechanisms of resistance to anti-cancer drugs 
and also provide new ways to overcome cancer resistance. 
The first evaluations showed that paclitaxel induces cancer 
cell death during both mitosis and interphase. Paclitaxel 
can induce apoptosis via stimulating TSGs such as p53 and 
PTEN. However, it seems that cancers with mutated p53 are 
vulnerable to mitotic catastrophe following treatment with 
paclitaxel. Furthermore, the induction of endogenous ROS 
generation by paclitaxel can induce both types of cell death. 
Paclitaxel can stimulate anti-tumour immunity, leading to 
an increase in the release of pro-apoptosis molecules like 
FasL and TRAIL, and also some cytokines such as TNF-α 
and IFN-γ. All these products of anti-tumour immune cells 
induce apoptosis via binding to their receptors such as Fas, 
FADD, TNFR, and dead receptors. These molecules can 
induce extrinsic apoptosis via stimulating caspase 8 and 10.

The inhibition of the PI3K/Akt pathway plays a key role 
in overcoming apoptosis resistance in cancer cells. paclitaxel 
can target these proteins via different pathways. Paclitaxel 
can activate PTEN by ROS overproduction, which leads to 
the inhibition of the PI3K signalling pathway. Furthermore, 
overexpression of miR-22 by paclitaxel can induce the activ-
ity of PTEN. Paclitaxel also can upregulate miR-145, which 
directly inhibits Akt activity. The suppression of the PI3K/
Akt pathway is associated with the downregulation of Bcl-
2. An increase in the Bax/Bcl-2 ratio is associated with the 
induction of mitochondrial apoptosis. Another pathway of 
apoptosis induction by paclitaxel is the phosphorylation of 
Foxo3, which causes upregulation of BIM and downregula-
tion of Bcl-2.

Other mechanisms that can be involved in the anti-
tumour activity of paclitaxel are including pyroptosis, 
ferroptosis, necroptosis, senescence, and also autophagic 
cell death. It seems that the induction of oxidative stress 
plays a central role in the induction of these types of cell 
death. Oxidative stress following treatment with paclitaxel 
may cause telomere shortening, leading to senescence. An 
increase in the release of pro-inflammatory cytokines and 
pro-apoptosis molecules by the immune system can aug-
ment the probability of necroptosis following oxidative 
injury. In addition to ROS generation by mitochondria, 
ER stress and the inhibition of antioxidant enzymes and 
peptides such as GSH and GPX4 are involved in oxida-
tive injury and cell death caused by paclitaxel. The inhi-
bition of GPX4 and increased oxidative stress can cause 
ferroptosis or pyroptosis. Increased release of iron ions is 
a marker of ferroptosis. However, pyroptosis is associated 
with upregulation of caspase 1/gasdermine D and caspase 
3/gasdermine E.

The induction of cell death or survival by autophagy 
is a complicated issue during cancer therapy. Although 
autophagy is known as a mechanism to increase the resist-
ance of cells to stress conditions, some experiments show 
that it may induce cancer cell death via inducing apopto-
sis or autophagic cell death. Autophagy may suppress ER 
stress in cancer cells, leading to resistance to apoptosis and 
autophagic cell death. However, paclitaxel has been shown 
to suppress autophagy, leading to ER stress. Paclitaxel also 
may induce autophagic cell death and apoptosis via sup-
pressing REED1. The combination of paclitaxel with some 
other adjuvant to suppress autophagy may be interesting 
to enhance therapy effectiveness.

Emerging evidence from this review shows that pacli-
taxel can induce killing cancer cells via enhancing apop-
tosis, mitotic catastrophe, senescence, pyroptosis, and fer-
roptosis. Furthermore, paclitaxel may induce autophagic 
cell death in some cancers. However, an increase in 
autophagy may be involved in the suppression of other 
types of cell death. It seems that considering the type of 
cell death or upregulation of survival-related mediators 
should be noted for each type of cancer. Using some com-
binations with paclitaxel may enhance tumour control 
probability.
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