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Abstract

Gastric cancer is regarded as the fifth most common cancer globally but the third most common cancer death. Although
systemic chemotherapy is the primary treatment for advanced gastric cancer patients, the outcome of chemotherapy is
unsatisfactory. Novel therapeutic strategies and potential alternative treatments are therefore needed to overcome the impact
of this disease. At a cellular level, mitochondria play an important role in cell survival and apoptosis. A growing body of
studies have shown that mitochondria play a central role in the regulation of cellular function, metabolism, and cell death
during carcinogenesis. Interestingly, the impact of mitochondrial dynamics, including fission/fusion and mitophagy, on
carcinogenesis and cancer progression has also been reported, suggesting the potential targeting of mitochondrial dynamics
for the treatment of cancer. This review not only comprehensively summarizes the homeostasis of gastric cancer cells, but
the potential therapeutic interventions for the targeting of mitochondria for gastric cancer therapy are also highlighted and

discussed.
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Introduction

Gastric cancer is the fifth most common cancer worldwide
with a mortality rate of between 8 and 13% [1-6]. However,
the etiology of gastric cancer cannot be specified with any
high degree of certainty due to the involvement of multiple
factors, including tumor suppressor genes, deoxyribonucleic
acid (DNA) repair genes, and cell cycle signaling [7, 8].
A previous study has shown that infection with Helicobac-
ter pylori (HP) is a risk factor of non-cardia gastric cancer,
whereas cardia gastric cancer may be associated with HP
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infection or reflux [1]. Besides HP infection, dietary factors
including dietary salt, a low fruit diet, grilled meat, alcohol
drinking and smoking may increase the risk of gastric cancer
[1,9].

Gastric cancer is classified using various pathohistologi-
cal classifications, including the World Health Organization
(WHO) classification, Lauren’s classification, and the modi-
fied WHO classification [10, 11]. The WHO classification
is divided into five categories: papillary, tubular, mucinous,
mixed, and poorly cohesive [10, 11]. The Lauren’s classifica-
tion consists of intestinal, diffuse, and indeterminate types
[10, 11]. The modified WHO classification includes group-
ing into differentiated and undifferentiated types [10, 11].
Although there are several widely recognized classifications
for gastric cancer, there is no definite classification for the
correlation of prediction outcome between the type of gas-
tric cancer and the treatment [10]. This limitation is due to
the heterogeneity of disease.

As regards diagnosis the WHO and Lauren classifica-
tions are the most used systems regarding clinical practice
guidelines [8, 10, 11]. The optimal treatment for gastric
cancer depends on the stage of disease, resection being
the standard curative treatment [12, 13]. The primary
therapy for locally advanced gastric cancer is neoadjuvant
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chemotherapy followed by surgery [3, 5, 14, 15]. However,
the overall response rate to systemic treatment is between 20
and 40% as the anticancer therapy is not effective [3, 16—18].
The 5-year survival rate is 70-95% in early cancer and only
5-25% in advanced cancer [5, 6, 14, 19]. In addition, half
of the resectable gastric cancer cases require adjuvant treat-
ment in which drug resistance may occur [3, 10, 17, 19].
Metastatic gastric cancer patients are predicted as a poor
overall survival group [2, 19]. The median overall survival
time is 6—-13 months [20].

Unfortunately, the outcome of the current treatment is not
satisfactory, therefore novel alternative strategies to improve
gastric cancer treatment outcomes are urgently needed. A
growing body of research has shown that targeting mito-
chondria is a potential alternative treatment because gas-
tric cancer homeostasis and cell death depend mainly on
mitochondria and oxidative stress (OS). Several steps have
been identified as potential targets for intervention, includ-
ing mitophagy, autophagy, mitochondrial fission and fusion,
ROS production and elimination, apoptosis, ATP produc-
tion, and cell cycle arrest. In this review, we not only com-
prehensively summarize the homeostasis of gastric cancer
cells, but the potential therapeutic interventions for the tar-
geting of mitochondria for gastric cancer therapy are also
highlighted and discussed.

Gastric cancer homeostasis

There are low levels of certainty as regards the risk fac-
tors or mechanisms involved in gastric cancer development.
However, OS plays an important role in tumor proliferation
and progression [7, 21, 22]. At a cellular level, mitochon-
dria are essential organelles that regulate the homeostasis
of cancer cells and programmed cell death [7, 23]. One of
the key regulatory processes is mitophagy which decreases
mitochondrial OS, inhibits mitochondrial pro-apoptotic fac-
tor leakage, and increases intracellular adenosine triphos-
phate (ATP) generation [2]. In addition to mitophagy, mito-
chondrial dynamics, calcium buffering by the endoplasmic
reticulum (ER), and autophagy of the damaged organelles
are also involved in the homeostasis of gastric cancer [23].
Noticeably, OS is a typical influencer in all previously men-
tioned mechanisms, and mitochondria are the main source
of production of cellular reactive oxygen species (ROS) [7,
23]. OS is an important factor that induces cell apoptosis
by causing DNA damage through caspase-dependent and
caspase-independent pathways [24, 25]. However, the role
of OS in mitochondrial dynamics is uncertain. One report
showed that mitochondrial ROS induced mitochondrial
fragmentation, and ATP is generated by mitochondrial res-
piration using oxidative phosphorylation [26]. For survival
under low oxygen conditions, the cancer cell can produce
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ATP by increasing glucose uptake and carrying out aerobic
glycolysis, a process known as the Warburg effect [26, 27].
Although there is homeostatic regulation in cancer cells,
overproduction of ROS above specific levels could result
in decreased cell viability due to apoptosis [2, 23, 28], as
shown in Fig. 1.

Current status of chemotherapy for gastric
cancer

Chemotherapy is the major treatment of gastric cancer,
especially in advanced gastric cancer patients. However,
its efficacy is limited by drug resistance and poor response.
For better treatment outcomes, a combination of anticancer
agents is the preferred approach [29]. Chemotoxicity is a
major issue therefore a two-drug regimen is frequently a bet-
ter option in comparison to a three-drug regimen [29]. How-
ever, triple agents are an option in the case of medically fit
selected patients [29]. The National Comprehensive Cancer
Network (NCCN) guidelines version 2.2021 suggest fluo-
ropyrimidine (fluorouracil or capecitabine) plus oxaliplatin
for postoperative regimens [29]. For unresectable patients,
fluorouracil plus oxaliplatin or fluorouracil plus cisplatin
are recommended [29]. Fluoropyrimidine (fluorouracil or
capecitabine) plus paclitaxel are the other regimens for unre-
sectable cases [29]. The Asia guidelines, including Japanese
and Korean guidelines, recommend S-1 or capecitabine plus
oxaliplatin or cisplatin for adjuvant chemotherapy [20, 30].
Mechanistically, these anticancer drugs affect cancer cells by
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Fig.1 Gastric cancer homeostasis. Targeting homeostasis in gas-
tric cancer cells has the potential to improve the efficacy of systemic
therapy with the purposes of decreasing cell viability and invasion
by inhibiting mitophagy and autophagy, disturbing mitochondrial
dynamics, decreasing calcium buffering and cellular ATP, activating
the pro-apoptosis pathway, and promoting OS. In addition, the cell
cycle arrest may be interrupted to knock out tumor proliferation and
progression. OS oxidative stress, X inhibition
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inducing DNA damage, angiogenesis inhibition, and apop-
tosis [31].

Fluoropyrimidine is recommended by several regimens
[32]. There are oral and intravenous forms, capecitabine and
S-1 are the oral forms, and the intravenous form is 5-fluo-
rouracil (5-FU) [32]. Capecitabine is a prodrug converted
to fluorouracil by three enzymes specifically carboxylester-
ase, cytidine deaminase, and thymidine phosphorylase [32,
33]. In gastric cancer tissue, cytidine deaminase and thy-
midine phosphorylase are highly specific therefore, there is
higher amount of fluorouracil in cancer tissue than normal
tissue [32]. S-1 is tegafur in combination with gimeracil:
a dihydropyridine dehydrogenase inhibitor which prevents
fluorouracil degradation, and oteracil: a pyrimidine phos-
phoribosyltransferase inhibitor which inhibits fluorouracil
phosphorylation in the gastrointestinal tract [32]. Hence,
there are lower gastrointestinal side effects in comparison
with 5-FU [32]. 5-FU is an antimetabolite agent which is
used in gastrointestinal cancer therapy [28, 34]. However,
the monotherapy of 5-FU is ineffective [12, 28]. The antican-
cer effect depends on fluorodeoxyuridine monophosphate,
the active metabolite that inhibits thymidine synthase which
is associated with DNA replication [28, 34]. Fluorouridine
triphosphate and fluorodeoxyuridine triphosphate inhibit rib-
onucleic acid (RNA) mutation and induce DNA disruption
[28]. Previous studies reported that apoptosis induced by
5-FU was associated with p53 phosphorylation and the p53
increased OS by activating mitochondrial ferredoxin reduc-
tase [28]. The increased OS damaged DNA a finding veri-
fied by 8-OH-dG expression [28]. Although the excessive
OS induced cell death, a lack of antioxidant enzymes could
have the same effect on cell viability [28]. The authors of
the study concluded that the response rate of 5-FU therapy
depended on OS induced by p53 expression [28].

Platinum-based chemotherapy consists of oxaliplatin,
cisplatin and carboplatin. Both oxaliplatin and cisplatin
are used in gastric cancer treatment [29]. Oxaliplatin is a
diaminocyclohexane carrier ligand that induces apoptosis
by inhibiting DNA replication and repair [35]. Cisplatin was
shown to cause cancer cell apoptosis by damaging the DNA
damage [36]. Although both oxaliplatin and cisplatin pro-
vide therapeutic effects in gastric cancer treatment, the toxic-
ity of cisplatin is higher than oxaliplatin regimens [29, 32].
Paclitaxel is a taxane which induces tubulin polymerization,
DNA fragmentation and apoptosis however the exact mecha-
nism of its ability to induce cell death is unknown [37].

Some anticancer agents are not recommended in the cur-
rent guidelines. However, previous studies have shown that
they have therapeutic potential for treating gastric cancer
[38—40]. Doxorubicin (DOX) is an example of a gastric can-
cer chemotherapy agent which is not recommended recently
because there are other agents which give a better response
rate and have a lower incidence of side effects. DOX is an

anthracyclin which inhibits DNA and RNA synthesis [38].
Additionally, anticancer effects and side effects of DOX are
associated with the mitochondrial apoptotic pathway which
is induced by releasing cytochrome ¢ (Cyto ¢) from mito-
chondria [39, 40]. Previous studies have shown that DOX
increased ROS production and decreased extracellular sig-
nal-related kinase (ERK) 1/2 phosphorylation which sig-
naled via the caspase-dependent pathway and caused inter-
nal programmed cell death resulting in apoptosis [40, 41].
ERK protein is one of the mitogen-activated protein kinases
(MAPKSs) which are involved in cell survival and cell death,
other MAPKSs being c-Jun N-terminal kinase (JNK) and p38
[41]. Although chemotherapy agents are often viewed as
a strategy that mainly affects cancer cells, accumulating
evidence indicates that these agents also affect normal cell
function resulting in various side effects. Therefore, highly
effective strategies and novel alternative treatments for gas-
tric cancer are required.

Mitochondrial targeting therapy
as an alternative treatment for gastric cancer

Mitochondria play an essential role in the regulation of
cancer cell homeostasis and programmed cell death [7, 23].
Therefore, mitochondrial targeting therapy may be a poten-
tial alternative strategy for treating gastric cancer. There
are several steps during cellular stress responses that have
been identified as potential targets for intervention includ-
ing mitophagy, autophagy, mitochondrial fission and fusion,
ROS production and elimination, apoptosis, ATP production
and cell cycle arrest.

Targeting mitophagy and autophagy

Mitophagy is selective mitochondrial degradation by
autophagy, whereas autophagy is general organelle degra-
dation to prevent persistent cell damage and maintain cel-
lular health [23]. These processes are essential in cancer
cell homeostasis, the cells responding to excessive OS by
reducing mitochondrial injury, inhibiting pro-apoptotic fac-
tor leakage, and increasing ATP synthesis [2]. There are
several pathways involved in mitophagy and autophagy.
The inhibition of mitophagy or autophagy enhances anti-
cancer effects by increasing ROS and inducing apoptosis.
The agents that have been designed to target mitophagy and
autophagy are indomethacin, transient receptor potential
melastatin-2 (TRPM2), and Yes-associated protein (YAP)
knockdown [2, 3].

Indomethacin, a nonsteroidal anti-inflammatory drug
or NSAID, was found to induce lysosomal dysfunction
and inhibit autophagy which induced mammalian target
of rapamycin (mTOR)-independent apoptosis in gastric
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cancer cells [42]. Indomethacin increased oxaliplatin
chemosensitivity [42]. Together with a TRPM2 channel
blocker, such as clotrimazole, they have been shown to
inhibit autophagy and mitophagy in gastric cancer [3,
43]. Previous studies have shown that TRPM?2 knock-
down inhibited autophagy through downregulation of the
mTOR-independent but JNK-dependent pathway which
interfered with mitochondrial metabolism, increasing
ROS, and leading to cell damage [3, 43]. Moreover, they
suggested that TRPM2 knockdown inhibited mitophagy
by lowering Bcl-2/adenovirus E1B 19-kDa-interacting
protein 3 (BNIP3) expression (Table 3) [3]. Outer mito-
chondrial membrane fusion mediator mitofusin 2 (MFN?2),
which is located at the mitochondrial outer membrane,
plays an important role in the mitochondrial fusion process
[44]. Additionally, a previous study has shown that the
Hippo-YAP pathway was associated with cancer cell pro-
gression [2]. Specifically, the YAP-knockdown inhibited
mitophagy-SIRT1/MFN2 pathway which increased ROS
and apoptosis (Table 3) [2].

Targeting mitochondrial dynamics

Mitochondrial dynamics regulate mitochondrial size, shape,
and distribution [26, 45]. This process consists of fission
and fusion, which protects the cell from mitochondrial
DNA mutations [26]. Mitochondrial fission is the process
by which mitochondria divide, which is mediated by the
constricting action of GTPase Dynamin-related protein 1
(DRP1) [45]. Mitochondrial fusion has two separate pro-
cesses, one which is mediated by MFN1 and MFN2 and
occurs in the outer mitochondrial membrane, and one in
the inner membrane, which is mediated by optic atrophy 1
(OPA1) [45]. Interestingly, a previous study has shown that
indomethacin disrupts mitochondrial dynamics by increas-
ing mitochondrial fission through protein kinase-C (PKC)
activation followed by p38 phosphorylation and DRP1 acti-
vation, leading to apoptosis of both gastric cancer and nor-
mal gastric cells (Table 3) [23].

In addition to the inhibition of mitophagy, YAP-knock-
down was found to inhibit mitochondrial fusion mediated
by MFN2, resulting in cancer cell apoptosis (Table 3) [2].
In vitro and in vivo studies have shown that MFN2 expres-
sion was lower in gastric cancer tissue compared with nor-
mal gastric tissue, and lower MFN2 expression was directly
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correlated to small tumor size [44]. MFN2 inhibited cell
proliferation, decreased cell invasion, and induced apoptosis
suggesting that MFN2 suppression may be used as an anti-
cancer agent [44]. These findings suggest that activation of
mitochondrial fission or inhibition of mitochondrial fusion
could promote apoptosis and cell death in gastric cancer
cells.

Targeting antioxidant enzymes

There is a higher level of OS in cancer cells in comparison to
normal cells [46]. ROS are generated in ER, cytoplasm, the
cell membrane, and especially in the mitochondria [24]. The
common forms of ROS are superoxide anions, hydroxyl radi-
cals, and hydrogen peroxide (H,0,) [7]. The mitochondrial
ROS are produced by the electron transport chain (ETC) on
the inner mitochondrial membrane during oxidative phos-
phorylation [26]. Mitochondrial ROS are also induced by the
production of pro-inflammatory cytokines [26].

Mitochondrial antioxidant enzymes are transferred into
the mitochondria and attenuate mitochondrial ROS and
toxicity [26]. There are several antioxidant enzymes includ-
ing superoxide dismutase (SODs), glutathione peroxidase
(GPx), catalase, peroxiredoxins and thioredoxins [26]. In
mammals, there are three isoforms of SOD: SOD1/copper-
zinc SOD (CuZnSOD) which is found in the nucleus and
mitochondria, SOD2/MnSOD which is a scavenger of the
superoxide in mitochondria, and SOD3 which is a metal-
loenzyme predominantly located in the extracellular space.
[22, 26, 46, 47].

MnSOD plays an important role during cancer cell pro-
liferation and invasion; however, the role of mitochondrial
ROS in cancer cell invasion is controversial. Tamaru et al.
reported that MnSOD decreased mitochondrial ROS levels
leading to the inhibition of tumor cell invasion [22]. In con-
trast, a previous study has shown that MnSOD promoted
interaction of actin, S1I00A4 and Talin, and enhanced rat
gastric tumor cell invasion [46]. The effects of MnSOD over-
expression on cell viability and invasion of rat gastric cancer
cells were shown in Table 1. In a clinical study, patients
with early stage gastric cancer had lower MnSOD expres-
sion in comparison with advanced gastric cancer patients
[47]. Moreover, under certain conditions, non-mitochondrial
generated ROS were found to augment mitochondrial ROS
production, a process known as “ROS-induced ROS” [26].
p47P1%* cytosolic subunit translocation activated phagosomal
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Table 1 Effects of chemical and genetic interventions on cell viability and invasion in rat and human gastric cancer cells: reports from in vitro

studies
Study model Study protocol (drug/ Major findings Interpretation References
dose/duration) — - -
Oxidative stress  Apoptosis Mito- Others
chondrial
function
Rat gastric cell RGM-1 (+) Hydroxy N/A N/A |Cell invasion ~ MnSOD [22]
line (control) radical, ROS overexpres-
RGK-1 1 Hydroxy radi- sion decreased
RGK-1 cal, ROS ROS and cell
+MnSOD transfected/6, |ROS invasion.
12,24 h
Rat gastric can- RGK-1 (+) Reduced N/A N/A (+) Actin, cell ~ MnSOD over- [46]
cer cell line (control) thiols invasion, expression
RGK-1 <> Reduced S100A4, Talin increased cell
+MnSOD cDNA inser- thiols 1 Actin, cell invasion asso-
tion/24 h invasion, ciated with
RGK-1 S100A4, Talin ~ Talin, SI00A4
+MnSOD cDNA inser- and actin.
tion/24 h
+H,0,/0.5 mM/20 min
Human gastric =~ BGC-823 (control) TROS LASCT2* TATP* |Proliferation Topotecan [48]
cancer cell line BGC-823 |Glutamine 1Cleaved- |MMP | Proliferation, induces
+ Topotecan uptake, GLS1,  caspase 3, |MMP p70S6K apoptosis via
0.01,0.1, 1 uM/48 h GSH cleaved-PARP ASCT2 medi-

BGC-823

+ GPNA (ASCT2
inhibitor)/500 puM/

48 h

BGCB823

+ Lentivirus medi-
ated knockdown of
ASCT2/48 h

BGC-823

+ Topotecan/0.1 uM

+ Lentivirus mediated
knockdown of ASCT2

+NAC/5 mM/

48 h

TROS

|GSH

TROS

| Glutamine
uptake

IROS

11 cleaved-cas-
pase 9

T Apoptotic cells,
Bax, cleaved-
caspase 9,
11cleaved-
caspase 3,
cleaved-PARP

| ASCT2, Bcl-2

1Bcl-2

|Bax

ated oxidative
stress.

ASCT?2: alanine-serine-cysteine transporter; ATP: adenosine triphosphate; Bak or Bax: Bcl-associated x protein; Bcl-2: B-cell lymphoma 2;
BGC-823: human gastric cancer cell line; cDNA: complementary deoxyribonucleic acid; GLS1: glutaminase 1 isoform; GPNA: L-y-Glutamyl-
p-nitroanilide; GSH: glutathione; H,0,: hydrogen peroxide; MMP: mitochondrial membrane potential; MnSOD: manganase superoxide dis-
mutase; p70S6K: mitogen-activated Serine/Threonine protein; PARP: poly-ADP (adenosine diphosphate)-ribose polymerase; RGK-1: rat gastric
carcinoma cell line; RGM-1: rat gastric epithelial cell line; ROS: reactive oxidative stress; S100A4: S100 calcium-binding protein A; 1: increase;
|: decrease; <>: no change; (4): positive; *: dose dependent; Hr: hour; min: minute; mM: millimole; pM: micromole; N/A: not available
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Table 2 (continued)

(5

cell line; MMP: mitochondrial membrane potential; NAC: N-acetyl-L-cysteine; NG: 0?-(2,4-dinitro-5-{[2-(12-en-28-p-p-galactopyranosyl-oleanolate-3-yl)-oxy-2-oxoethyl] amino} phenyl)
1-(N-hydroxyethylmethylamino) diazen-1-ium-1,2-diolate: a novel nitric oxide-releasing prodrug with antitumor effects; NO: nitric oxide; p-ERK1/2: phospho-extracellular signal-related kinase

Bcl-2: B-cell lymphoma 2; BSO: L-Buthionine sulfoximine; Ca**: calcium; Cyto c: cytochrome ¢; DNA: deoxyribonucleic acid; DOX: doxorubicin; Fas: apoptosis antigen 1; Fas-L: Fas ligand;
GSH: glutathione hormone; H202: hydrogen peroxide; MDA: malondialdehyde; MGC-803: Gastric mucinous adenocarcinoma cell line; MKN-28: human well differentiated gastric cancer

SF: Ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid; AC-DEVD-CHO: caspase-3 inhibitor; AIF: apoptosis inducing factor; ATP: adenosine triphosphate; Bax: Bcl-associated x protein;

Springer

1/2; PARP: poly-ADP (adenosine diphosphate)-ribose polymeras; PDOX: Ac-Phe-Lys-PABC-DOX; PITC: propyl isothiocyanate; pRb: retinoblastoma protein; ROS: reactive oxidative stress;

SGC-7901: human stage 4 gastric cancer with peritoneal invasion cell line; shRNA: short hairpin ribonucleic acid; SL3: sesquiterpene lactone 3; Smac/DIABLO: Second mitochondria-derived
activator of caspase/direct inhibitor of apoptosis-binding protein with low pl; SOD: superoxide dismutase; TMC-1: human moderately differentiated gastric adenocarcinoma cell line; tNOX:

tumor-associated NADH oxidase; WATP: purified polysaccharide; Z-DEVD-FMK, Z-DEVE-FMK: caspase-3 inhibitor; Z-LEHD-FMK: caspase 9 inhibitor; 1: increase; |: decrease; *: dose

dependent; **: time dependent; ***: dose and time dependent; Hr: hour; L: liter; min: minute; ml: milliliter; mM: millimole; mg: milligram; pg: microgram; pM: micromole; N/A: not available

NADPH oxidase resulting in increased ROS and cell apopto-
sis (Table 3) [25]. Tumor-associated NADH oxidase (tNOX)
has been shown to exert anti OS effects [4].

Several agents targeted antioxidant enzymes, which
played a significant role in decreasing ROS levels and
increasing apoptosis [4, 22]. TPT, a Topo I inhibitor could
inhibit glutamine uptake by reducing alanine-serine-cysteine
transporter (ASCT?2) glutamine transporter activities [48].
ASCT?2 knockdown markedly decreased GSH and increased
ROS in gastric cancer cell lines, resulting in induced cas-
pase-dependent apoptosis, reduced cell proliferation, and
invasion (Tables 1 and 3) [48]. A previous study has shown
that capsaicin suppressed the activity of tNOX, leading
to excessive ROS levels and activation of the caspase-
dependent apoptotic pathway (Table 2) [4]. In addition, the
inhibition of SOD and GSH-Px activities by a novel nitric
oxide prodrug (NG) resulted in increased ROS from lipid
peroxidation products, which verified by malondialdehyde
(MDA: a reactive aldehyde) levels (Table 2) [13]. The etha-
nol extraction of Vitex has been shown to exert anti-tumor
effects in human cell lines including cells from breast cancer,
lung cancer, gastric cancer, colon cancer, ovarian cancer,
uterine cervical carcinoma, and uterine cervical fibroblast
[49]. Additionally, a previous study reported that Vitex
increased OS, measured by mRNA levels of tumor necro-
sis factor-alpha (TNF-alpha), heme oxygenase-1 (HO-1),
CU/ZnSOD, and thioredoxin (TXN) [49]. An increase in
ROS production resulted in early apoptosis (Table 3) [49].
SL3 from Artemisia argyi, a Chinese herb, significantly
increased ROS production by activating NADPH oxidase
levels in the p47P"* cytomembrane resulting in cell apop-
tosis (Table 3) [25]. Decreased expression of MnSOD by
17-DMAG, a heat shock protein 90 (HSP90) inhibitor,
promoted gastric cancer cell apoptosis and decreased cell
proliferation (Table 3) [15]. Furthermore, several natural or
novel agents could increase ROS synthesis without directly
involving antioxidant enzymes, which induced apoptosis via
both caspase-dependent and caspase-independent pathways.
These findings suggest that OS are an important factor in
the induction of cell apoptosis through caspase-dependent,
caspase-independent pathways and DNA damage [24, 25].

Targeting pro-apoptotic factors

Apoptosis is an essential mechanism in the maintenance of
cancer cell homeostasis [24]. Thus, apoptosis is the target
of cancer treatment bases on the evidence showing a lack in
apoptosis increases carcinogenesis [50]. This internal pro-
gramming cell death is regulated by pro-apoptotic proteins
such as Bax and Bak, and anti-apoptotic proteins includ-
ing Bcl-2 and Bcl-XL [24, 50]. There are several apoptotic
pathways including mitochondrial, death receptor, and ER
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pathways [48]. The caspase-dependent apoptotic pathway
is related to mitochondrial pathways [48]. The caspases are
classified into three groups by peptide analysis, including:
(1) caspase-1,4, and 5 (2) caspase-2,3, and 7 (3) caspase-6,
8, and 9 [50]. In addition to apoptosis, group 1 is involved in
cytokine production, whereas the role of group 2 is apoptotic
activation, and group 3 is a cell death signal magnifier [50].
The most common trigger of the mitochondrial-mediated
apoptotic pathway is OS, which increases mitochondrial
membrane permeability, and causes a decrease in mito-
chondrial membrane potential (MMP) [7, 13, 48]. Following
this apoptotic proteins are released into the cytoplasm and
subsequently apoptosis occurs [13]. Several studies pointed
out that the mitochondrial-dependent apoptotic pathway
could be detected by a decrease in mitochondrial membrane
potential (MMP), including SF, topotecan, capsaicin, far-
rerol, indomethacin, melittin, PDOX, tomentosin, TRPM2
knockdown and purified polysaccharide (WATP) [2, 4, 5,
14, 18, 23, 24, 40, 48, 51]. A previous study suggested that
excessive H,0, induced p53 phosphorylation, upregulated
pro-apoptotic Bax, and downregulated anti-apoptotic Bcl-2
(Table 2) [7].

ROS production induced apoptosis via both caspase-
dependent and caspase-independent pathways. It has been
found that many agents revealed are involved in the multi-
tude of steps leading to apoptosis. Several agents increased
ROS production and were involved with apoptotic pro-
tein, controlling internal programming cell death, includ-
ing capsaicin, TPT. Capsaicin, present in chilies, induced
Bcl-2 related apoptosis in a AGS cell line and decreased
cell viability (Table 3) [9]. Tomentosin induced apoptosis
by increasing the expression of Bax and decreasing that
of Bcl-2 (Table 3) [14]. Moreover, the downregulation of
ASCT?2 by TPT increased Bax and decreased Bcl-2 levels,
which resulted in apoptosis (Tables 1 and 3) [48]. In addi-
tion, Mito-FF was selectively taken up into the mitochon-
dria, which resulted in mitochondrial membrane disruption
and the leakage of mitochondrial contents, and cell apoptosis
(Table 3) [17].

Cyto c release into the cytoplasm was the first trigger
point in the case of various targeting agents which induced
gastric cancer cell apoptosis. Anemarrhena asphodelodies
induced apoptosis via Cyto c release into the cytoplasm fol-
lowed by the stimulation of the caspase-3 dependent but
p53-independent pathway and inhibited cancer cell growth
[50]. PDOX, a doxorubicin prodrug, increased ROS produc-
tion and decreased ERK1 phosphorylation which initiated
by the release of Cyto c from the mitochondria resulting in
caspase-dependent apoptosis (Table 2) [40]. The mechanism
underlying its anticancer effect was not different from DOX
but its side effects were lower [40]. Isothiocyanate (ITC),
a compound found in cruciferous plant, could inhibit cell
proliferation and increase cell apoptosis in various cancer

tease activating factor 1; AIF: apoptosis inducing factor; ASCT2: alanine-serine-cysteine transporter; ATG: autophagy protein; ATP: adenosine triphosphate; Bax: Bcl-associated x protein,
Bcl-2: B-cell lymphoma 2, Bid: Bcl-2 interacting protein; BNIP3: Bcl2/adenovirus E1B 19-kDA interacting protein 3; c-IAP-1: cellular inhibitor of apoptosis protein 1; CAT: catalase; Cyto
c: cytochrome c; DNA: deoxyribonucleic acid; Fas: apoptosis antigen 1; DRP-1: dynamin-related protein 1 (pro-fission master-switch); FCCP: Carbonyl cyanide-4-(trifluoromethoxy) phenyl-

hydrazone; GPNA: L-y-Glutamyl-p-nitroanilide; GPx: glutathione peroxidase; GSH: glutathione hormone; H202: hydrogen peroxide;HGC-27: human undifferentiated gastric cancer cell line;
HO-1: heme oxygenase-1; HSP: Heat shock protein; IL: interleukin; JNK: c-Jun N-terminal kinase; KATO-III: human gastric signet ring cell adenocarcinoma cell line; LC3: autophagy marker

light chain 3; Mcl-1: myeloid cell leukemia 1; MDA: malondialdehyde; MFF: Mitochondrial fission factor; MFN: outer mitochondrial membrane fusion mediator mitofusin; MGC-803: Gastric
mucinous adenocarcinoma cell line; Mito-FF: mitochondria-accumulating phenylalanine dipeptide with triphenyl phosphonium; MKN-45: human undifferentiated gastric cancer cell line; MMP:

mitochondrial membrane potential; MnSOD: manganase superoxide dismutase; mTOR: mammalian target of rapamycin; NAC: N-acetyl-L-cysteine; NADPH: activated nicotinamide adenine
dinucleotide; NF-k: nuclear factor-x; NRF2: nuclear respiration factor 2; OCR: oxygen consumption rate; OPA1: optic atrophy 1; p38MAPK: Mitogen-activated protein kinase; p47phox:

NCF1 or Neutrophil cytosol factor 1; p-Akt: phospho-protein kinase B or PKB; p-DRP1: phospho-DRP1; p-PKC: phospho-protein kinase C; PARP: poly-ADP (adenosine diphosphate)-ribose

17-DMAG: 17-demethoxygeldanamycin; SF: Ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid; 5-FU: 5-fluorouracil; AGS: human adenocarcinoma gastric cell line; APAF1: apoptotic pro-
polymerase; PITC: propyl isothiocyanate; pRb: retinoblastoma protein; ROS: reactive oxidative stress; Ser-2488: phospho-mTOR, SIRT: Sirtuin; SNU-1: human gastric cancer cell line; SL3:
sesquiterpene lactone 3; SOD: superoxide dismutase; SRT1720: selective SIRT1 activator; TNF: tumor necrosis factor; TNFR2: tumor necrosis factor receptor 2; tNOX: tumor-associated
NADH oxidase; TRPM2: transient receptor potential cation channel subfamily M member 2; TXN: thioredoxin; Yap: Yes-associated protein; Z-DEVE-FMK: caspase-3 inhibitor; 1: increase; |:
decrease; *: dose dependent; **: time dependent; ***: dose and time dependent; Hr: hour; kDa: kilodalton;L: liter; min: minute; ml: milliliter; mM: millimole; pg: microgram; uM: micromole;
N/A: not available

Table 3 (continued)
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cells by acting on thiol groups [6]. The binding of PITC with
GSH reduced cellular antioxidants, followed by an increase
in ROS, DNA fragmentation, mitochondrial damage, and
the release of Cyto c into the cytoplasm [6]. In addition,
initiated p53 phosphorylation and inhibited Bcl-2, could
also induce apoptosis [6] (Tables 2 and 3). PsL, a Chinese
herb with anti-tumor effects, has been shown to induced
ROS production in gastric cancer cell lines via activating
pS3 [24]. Bax decreased MMP and induced cell membrane
disruption followed by the release of apoptosis-inducing
factor (AIF) and Cyto c, causing DNA fragmentation and
the caspase-dependent pathway [24]. However, inhibition
of caspase-3 by Z-DEVE-FMK did not alter cell apoptosis
by 5F (Tables 2 and 3) [24]. Excessive ROS production fol-
lowing NG-induced caspase 3,9 mediated apoptosis through
Bax-Bcl2 regulation and Cyto ¢ and AIF released into the
cytoplasm (Table 2) [13]. Farrerol induced Cyto c releas-
ing and caspase-mediated apoptosis pathway (Table 2) [51].
Melittin is the component in bee venom that induces apop-
tosis in cancer cell lines, including melanoma and ovarian
cancer [5]. In gastric cancer cells, melittin increased ROS
production followed caspase-3 mediated apoptotic [5].
Melittin increased mitochondrial permeability followed by
the release of Cyto c, the mitochondria-derived activator of
caspase/direct inhibitor of apoptosis-binding protein with
low pI (Smac/Diablo), AIF, and EndoG proteins, suggesting
that melittin could induce human gastric cancer cell apop-
tosis via activation of mitochondrial pathway (Table 2) [5].

Death ligand:
s dlla, . N—

Vitex initiated APAF1 and TNF-alpha activation leading to
apoptosis [49]. In addition to the binding of APAFI1, Cyto
¢ was released into the cytoplasm, and both mechanisms
activated the caspase-dependent pathway [49]. Following
the binding of TNF-alpha, Fas-associated death receptor and
caspase-8 were activated [49]. These results suggested that
Vitex induced apoptosis through mitochondrial and death
ligand receptor pathways. A previous study showed the asso-
ciation between GSH reduction and early apoptosis, suggest-
ing that the increase of OS induced early apoptosis (Table 3)
[49]. YAP-knockdown inhibited Bcl-xL anti-apoptotic factor
and induced the caspase-9 apoptotic pathway through the
Hippo-YAP pathway (Table 3) [2].

Thus, there are several potential target pathways for
the induction of apoptosis from both internal and external
stimuli; however, OS seems to be a key player in the induc-
tion of apoptosis. The initial process involves the release or
activation of apoptotic proteins, including those in the Bcl-2
family and Cyto c, both caspase-dependent, and caspase-
independent. The interventions targeting the apoptotic path-
way are illustrated in Fig. 2.

Targeting calcium buffering by ER and ATP
generation

WATP extracted from Aster tataricus, a Chinese herb,
increases intracellular calcium and decreases MMP, fol-
lowed by an increase in cancer cell apoptosis (Table 3)
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Fig.2 Apoptosis as a targeting therapy. There are extrinsic and intrinsic pathways inducing apoptosis, including those involving mitochondrial
dynamics, death receptors, and ER [48]. Potential interventions targeting apoptosis pathways are illustrated
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Table 4 Synergistic effects of chemical and genetical interventions on cell viability and invasion in human gastric cancer: reports from in vitro

studies
Study model Study protocol Major findings Interpretation References
(drug/dose/dura- — - -
tion) Oxidative stress Apoptosis Mito- Others
chondrial
function
Human gastric AGS (control) T1ROS 1 Apoptotic cells, N/A |Proliferation ~ Mito-FF enhanced [17]
cancer cell line  AGS |CAT, GPx, Bax, caspase 3, the apoptotic
+5-FU/1.0, 2.5, NRF2, SOD caspase 9, PARP effect of 5-FU.
5.0, 10 ug/ml {Mcl-1
+ Mito-
FF/1 uM/24,
48 h
Human gastric AGS (control) N/A TApoptotic cells  N/A ||Proliferation TRPM2- knock-  [3]
cancer cell line  AGS 1 Apoptotic cells ||Proliferation ~ down enhanced
+TRPM2 knock- the apoptotic
down+ICy effect of
dose of pacli- paclitaxel and
taxel and/or doxorubicin.
doxorubicin/24,
48,72 h
MKN-45 (control)
MKN-45
+TRPM2 knock-
down +ICy,

dose of pacli-
taxel and/or
doxorubicin/24,
48,72 h

5-FU: 5-fluorouracil; AGS: human adenocarcinoma gastric cell line; Bax: Bcl-associated x protein; CAT: catalase; IC50: the half maximal inhib-
itory concentration; GPx: glutathione peroxidase; Mito-FF: mitochondria-accumulating phenylalanine dipeptide with triphenyl phosphonium;
Mcl-1: myeloid cell leukemia 1; MKN-45: human undifferentiated gastric cancer cell line; NRF2: nuclear respiration factor 2; PARP: poly-ADP
(adenosine diphosphate)-ribose polymerase; ROS: reactive oxidative stress; SOD: superoxide dismutase; TRPM2: transient receptor potential
cation channel subfamily M member 2; 1: increase; |: decrease; Hr: hour; ml: milliliter; pg: microgram; uM: micromole; N/A: not available

[18]. Mechanistically, the initial apoptotic pathway could
possibly involve ER, which is one of the key players that
controls the homeostasis of intracellular calcium. At a cel-
lular level, ATP is generated by mitochondrial respiration
mainly via oxidative phosphorylation, which occurs in the
ETC [26]. Thereby, the inhibition of the ETC could reduce
cellular ATP and ROS production. However, the Warburg
effect enables the cancer cells to escape cell death due to
cell energy depletion. NG inhibits the ETC at complexes
I, II, and IV, decreasing ATP generation (Table 2) [13]. In
addition, 17-DMAG and TRPM2 knockdown significantly
decreased gastric cancer cell survival mainly through the
inhibition of autophagy, mitochondrial function, and ATP
production [15, 43]. Specifically, 17-DMAG competes with
ATP to bind with HSP90, which decreases cancer cell viabil-
ity [15]. It couples with TRPM2, maintaining cancer cell
viability by its involvement in the ETC. TRPM2 knockdown

was accompanied by decreasing ATP levels, and ROS lev-
els were reduced, resulting in the inhibition of autophagy
(Table 3).

Targeting cell cycle arrest

Excessive OS damages DNA, which the cell compensates by
arresting the cell cycle for DNA repair [7]. The prolonged
excessive OS induces irreversible DNA damage, which
leads to cell apoptosis. A few studies showed that antican-
cer interventions inhibited the cell cycle at different phases
[4, 6, 40]. PDOX caused cell cycle arrest at the G2/S phase
(Table 2) [40]. PITC induced cell cycle arrest by increasing
the S-phase and decreasing Cyclin A1 (Tables 2 and 3) [6].
Capsaicin induced cell cycle arrest at the GO/G1 phase, in
association with decreasing Rb phosphorylation, Cyclin D1
and increasing p53 phosphorylation (Tables 2 and 3) [4].
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Others

Yang et al. reported that the pro-inflammatory cytokine lev-
els including interleukin-1 (IL-1), interleukin-6 (IL-6), inter-
leukin-8 (IL-8), and TNF-alpha were decreased in human
gastric cancer cell lines treated with Tomentosin 20 uM/ml
at 24 h which correlated with a reduction in cell proliferation
and an increase in cell apoptosis (Table 3) [14]. An ex vivo
study in primary cell culture and gastric cancer cell lines
found that increasing IL-8 levels predicted chemoresistance
to platinum-based chemotherapy [52]. A decrease in pro-
inflammatory cytokine levels might increase chemosensi-
tivity by decreasing cell proliferation and increasing cell
apoptosis.

In brief, the effects of interventions on gastric cancer cell
lines mainly involve three parts, oxidative stress, apoptosis,
and mitochondrial function. The final endpoints evaluated
are cancer cell proliferation and progression, reported as
changes in cell morphology, proliferation rate, cell growth
rate, percentage of viable cells, rate of apoptosis, number
of cell deaths, percentage of cell migration, and cell cycle
distribution. The effects of interventions can be evaluated by
the differentiation of gastric cancer cell lines coupled with
the WHO classification used in clinical practice guidelines.
Tables 1, 2, 3 and 4 summarize the results from in vitro stud-
ies. Table 1 shows the effects of MnSOD overexpression and
topotecan on cell viability and invasion of rat and xenograft
in nude mice gastric cancer cells. Table 2 shows the results
found from studies on differentiated human gastric cancer
cell lines including MGC-803, MKN-28, TMC-1, and SGC-
7901. Table 3 demonstrates the results of undifferentiated
cell lines KATO-III, HGC-27, MKN-45, AGS, and SNU-1.
A summary of the targets of potential interventions on can-
cer cell proliferation and invasion classified by cancer cell
differentiation are shown in Fig. 3. From the empirical evi-
dence, the chemical and genetic interventions involve mul-
tiple mechanisms associated with decreasing cell viability
and cell invasion. The combination of an anticancer agent
with a mitochondrial targeting agent provides the synergis-
tic effects by increasing apoptosis, as shown in Table 4. In
undifferentiated gastric cancer cell lines, Mito-FF induced
chemosensitivity of 5-FU and TRPM2-knockdown increased
the anticancer effects of paclitaxel and DOX [3, 17]. Addi-
tionally, indomethacin increased oxaliplatin chemosensitiv-
ity by causing cell death [42].

Table 5 shows the effects of chemical interventions
on tumor size of gastric cancer cells in in vivo studies.
Both Mito-FF and 5-FU were proved to have an effect on
antioxidant enzyme downregulation and induce cancer
cell apoptosis which resulted in a decrease in tumor size
[17]. Mito-FF plus 5-FU enhanced the inhibition of tumor
growth by increasing apoptosis and mitochondrial ROS
synthesis [17]. Topotecan exerted its anti-cancer effect

@ Springer

through a reduction in ASCT2 expression in a BALC/c
nude mice model [14, 48]. Similarly, 17-DMAG induced
a reduction in cancer cell proliferation, tumor weight and
volume by decreasing antioxidant enzymes and increasing
apoptosis [15].

Potential markers for gastric cancer
treatment

In addition to the histological expression of gastric cancer
cell lines, the phenotype and genotype could influence the
treatment outcomes. The example gastric cancer cell lines
were used to show p53 expression status. These, included
the MKN-28 cell line: p53 mutation, MKN-45 and MKN-
74 cell lines: wild-type p53, and KATO-III cell line: p53
deletion [53]. The efficacy of several agents was depend-
ent on p53 expression. p53 is a tumor suppressor protein
that regulates cell apoptosis, cell cycle arrest, DNA repair,
and glycolysis [27, 50]. A previous study reported that
wild-type p53 inhibited glycolysis and induced oxidative
phosphorylation, and wild-type p53 mutation increased
cancer cell proliferation and invasion [27]. Accordingly,
gastric cancer patients with a wild-type pS3 mutation were
associated with poor prognosis [27]. The chemosensitivity
of 5-FU was found to be related to pS3 expression [12, 28].
p53 increased OS, which induced cell apoptosis [28]. The
Bcl-2 family has been proposed as a potential apoptotic
activator of targeting agents such as 5F and PITC, which
induce p53-dependent apoptosis [6, 24]. Capsaicin also
increased p53 expression [4]. However, several agents,
including Anemarrhena asphodelodies, have been shown
to induce apoptosis through the p53-independent pathway
[50]. A previous study demonstrated that treatment with
Anemarrhena asphodelodies increased apoptosis in both
MKN-45 and KATO-III cells [50].

From in vivo study, MnSOD was found to be involved
in cancer cell proliferation and invasion; however, the role
of mitochondrial ROS in cancer cell invasion was con-
troversial. In the clinical study, MnSOD expression was
increased in gastric cancer patients, and the early gastric
cancer patients had lower levels of MnSOD expression
in comparison with advanced gastric cancer patients
[47]. Malafa et al. reported that MnSOD expression was
increased in gastric cancer patients with lymph node
metastasis; in contrast, increased MnSOD expression was
not associated with increased tumor depth invasion [47].
High MnSOD expression has been found to predict the
advance of the disease in terms of lymph node metasta-
sis. The analysis of gastrectomy specimens showed that
17-DMAG downregulated the antioxidant enzymes in
both normal and cancerous gastric tissue [15]. TRPM2
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Fig.3 The summary of the targets of potential interventions on can-
cer cell proliferation and invasion classified by cancer cell differentia-
tion. From the empirical evidence, the chemical and genetic interven-
tions involve multiple mechanisms for decreasing cell viability and
cell invasion. a Differentiated gastric cancer cell line. b Undifferenti-
ated gastric cancer cell line. KD knockdown

expression was reported as being associated with a
decrease in overall survival of gastric cancer patients and
inhibition of TRPM?2 increased the chemosensitivity of
paclitaxel and doxorubicin [43]. TRPM?2 expression may
be used as a prognostic factor, particularly in stage 3 and
4 gastric cancer patients, high TRPM2 expression being
associated with poor overall survival [3]. Thus, these find-
ings suggested that p53, MnSOD, and TRPM2 expression
may be used as predictive markers. A summary of the
potential prediction markers for gastric cancer are shown
in Table 6.

Conclusion and perspective

To date, the outcomes of chemotherapy in gastric cancer
cases is unsatisfactory. Thus, to improve the outcomes
of gastric cancer treatment, novel alternative interven-
tions are needed. At a cellular level, mitochondria play an
essential role in cancer cell homeostasis suggesting that
therapies to target mitochondria may be useful in treat-
ment of gastric cancer. Multiple potential targets have been
reported including mitophagy, autophagy, mitochondrial
fission and fusion, ROS production and elimination, apop-
tosis, ATP production, and cell cycle arrest. A growing
body of basic research has shown that several natural,
chemical, and genetic interventions can exert anticancer
effects. However, based on the clinical findings to date,
there is insufficient evidence to demonstrate their benefi-
cial effects against gastric cancer in the affected patients.
Therefore, to proceed with the clinical application of any
of these approaches with any degree of certainty additional
information is required around the mechanisms of action,
appropriate dosage, and side effects before any of these
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Table 5 Effects of chemical interventions on tumor size of gastric cancer: reports from in vivo studies

Study model Study protocol (drug/dose/ Major findings Interpretation References
duration) — - - -
Oxidative stress Apoptosis Mito- Tumor size
chondrial
function
Male BALC/c AGS cell (107) SC |CAT, GPx, tBax, PUMA, N/A | Tumor size Mito-FF plus [17]
nude mice +NSS (control) NRF2, SOD shrinkage | Tumor size 5-FU inhibited
5 weeks AGS cell (107) SC | CAT, GPx, |Bcl-xL, Mcl-1 1 Tumor size tumor growth
+ Mito-FF/50 pg/kg/i.p./3 ~ NRF2,SOD  11Shrinkage by increasing
per wk INRF2 1Bax, PUMA apoptosis and
AGS cell (107) SC 1l CAT, GPx,  |Bcl-xL, Mcl-1 mitochondrial
+5-FU/1.25 mg/kg/i.p./3 SOD 11Bax, PUMA, ROS synthe-
per wk 1CAT, GPx, shrinkage sis.
AGS cell (107) SC SOD }IBcl-xL,
+ Mito-FF&5-FU/same Mcl-1
dose as single agent/ T™™cl-1
i.p./3 per wk |Bax
AGS cell (107) SC
+ Mito-FF&S5-FU + NAC
/10 mM
Parameters were deter-
mined at day 30
Female athymic BGC-823 (10% SC at least N/A |ASCT2 N/A N/A Topotecan [48]
BALB/c 3 times decreased
nude mice (control) ASCT2
5-6 weeks BGC-823 (10 SC at least expression.
3 times
+ Topotecan/0.5 mg/
kgli.v
BALB/c nude AGS cell (107) SCat 2™ |CAT, GPx, tCleaved- N/A |PCNA, sur- 17-DMAG [15]
mice 6 weeks wk MnSOD caspase 3, vivin, tumor inhibited
+NSS (control) cleaved- weight, tumor tumor growth
AGS cell (107) SC at 2" PARP, shrink- volume by decreasing
wk + 17-DMAG/10 mg/ age antioxidant
kg enzyme levels

in NSS 100 pL/
i.p. 3 per wk/dwk

and increasing
apoptosis.

5-FU: 5-fluorouracil; 17-DMAG: 17-demethoxygeldanamycin; AGS: adenocarcinoma gastric cell line; ASCT2: alanine-serine-cysteine trans-
porter; BALB/c: a strain of albino mouse; Bax: Bcl-associated x protein; Bcl-XL: B-cell lymphoma-extra large; BGC-823: human gastric can-
cer cell line; CAT: catalase; GPx: glutathione peroxidase; Mcl-1: myeloid cell leukemia 1; Mito-FF: mitochondria-accumulating phenylalanine
dipeptide with triphenyl phosphonium; MnSOD: manganase superoxide dismutase; NAC: N-acetyl-L-cysteine; NRF2: nuclear respiration factor
2; NSS: normal saline; PARP: poly-ADP (adenosine diphosphate)-ribose polymerase; PCNA: proliferating cell nuclear antigen; PUMA: p53
upregulated modulator of apoptosis; ROS: reactive oxidative stress; SOD: superoxide dismutase; 1: increase; |: decrease; uL: microliter; kg: kil-
ogram; ug: microgram; N/A: not available; SC: subcutaneous injection; i.p.: intraperitoneal injection; i.v.: intravenous injection; Wk(s): week(s)
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Table 6 A summary of potential predictive markers for gastric cancer: reports from clinical studies
Study model Study groups Major findings References
Oxidative stress Clinical outcomes Interpretation
Human gastric tissue  Normal gastric tissue (n=12) (+) CAT, GPx, N/A Antioxidant enzymes [15]
from gastrectomy (control) MnSOD, NRF were markedly
specimen Stage 1 (control among stages) (+) CAT, GPx, expressed in the
(all stages) Stage 2 MnSOD, NRF advanced stage, and
(n=12) Stage 3 |CAT, MnSOD HSP90 inhibitor
Stage 4 1 GPx, NRF decreased anti-
All stage: paired nor- 1CAT, GPx, MnSOD, oxidant enzymes
mal gastric tissue NRF in both normal and
(n=10)+17-DMAG/100 nM/24 h  1CAT, GPx, MnSOD, cancerous gastric
Gastric cancer tissue (n=12) NRF tissue.
(control) |CAT, GPx, MnSOD,
Stage 1 (control among stages) NRF
Stage 2 (+) CAT, GPx,
Stage 3 MnSOD, NRF
Stage 4 (+) CAT, GPx,
All stage: paired gastric cancer tissue ~ MnSOD, NRF
(n=10)+17-DMAG/100 nM/24 h  1CAT, GPx
IMnSOD, NRF
1CAT, GPx, MnSOD
<> NRF
1CAT, GPx, MnSOD
<> NRF
|CAT, GPx, MnSOD,
NRF
Gastric cancer All stage N/A Poor overall survival TRPM?2 expression [3]
patients (n=_876) Low TRPM2 expression (n=439) rate may be used as a
High TRPM2 expression (n=437) Poor overall survival prognostic marker
Stage 3&4 rate specifically for late
Low TRPM2 expression (n=227) stage gastric cancer
High TRPM2 expression (n=228) patients.
Gastric cancer LN (+): 15 (male:14) MnSOD expression/ N/A MnSOD expression  [47]
patients LN (-): 9 (male:9) staining could be used to
(n=24, M/F=23/1) "n predict the advance
i of the disease in

gastric cancer
patients with lymph
node metastasis.

17-DMAG: 17-demethoxygeldanamycin; CAT: catalase; GPx: glutathione peroxidase; HSP90: Heat shock protein 90; LN: lymph node;
MnSOD: manganase superoxide dismutase; NRF: nuclear respiration factor; TRPM2: transient receptor potential cation channel subfamily M
member 2; (+): positive; (—): negative; 1: increase; |: decrease; Hr: hour; nM: nanomole; N/A: not available; M: male; F: female; n: number

alternative interventions in gastric cancer patients can be
used with confidence in the near future.
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