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Abstract
Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance 
could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control 
a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, 
complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic 
design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their 
associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on 
therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold 
atmospheric plasma as an emerging redox controller with translational potential in clinics.
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Introduction

Cancer is a complex disease, the initiation and development 
of which requires intensive cross talks with its microen-
vironment and is highly regulated by cellular redox level. 
Reactive oxygen species (ROS) have been shown to play 
diverse roles in many critical transition stages of cancer 
cells such as the life/death transition, tumor angiogenetic 
switch, and epithelial mesenchymal transition (EMT) [1]. 
Cancer cells typically have a relatively higher redox level 
than normal cells due to their chaoticities in organizing cel-
lular functionalities, rendering malignant cells more fragile 
under redox stress than healthy cells. On the other hand, 
cancer cells are naturally faced with oxidative stress as a 
result of imbalanced ROS production and disordered anti-
oxidant defense ability [2]. That is, ROS are excessively 
generated in malignant cells due to increased metabolic 

rate, accumulated mitochondria dysfunction, elevated cell 
signaling, enhanced expression of oncogenes, and acceler-
ated peroxisome activities [3], which is a required feature of 
malignant cells. Therapeutic strategies taking advantages of 
redox stress may kill cancer cells by triggering programmed 
cell death (PCD) events. PCD such as apoptosis, parapto-
sis, mitotic catastrophy, autophagic cell death, ferroptosis, 
necroptosis, and pyroptosis represents a set of highly ordered 
and programmed cellular death events that enable the elim-
ination of cells running chaotic or being destined to die. 
Failed PCD may lead to uncontrolled cell proliferation that 
is one important cancer hallmark [4]. Thus, it is important 
to explore differences and commonalities of these varied 
PCD programs as well as their differential associations with 
cellular redox imbalance to enable our improved understand-
ings and design on onco-therapeutic strategies relying on 
redox level control.

Among the various PCD programs identified so far, 
we selected apoptosis, paraptosis, mitotic catastrophy, 
autophagic cell death, ferroptosis, necroptosis, and pyrop-
tosis in this review given their representativeness on the 
stimulating source and their prevalence in literatures. We 
focus on differences of these diverse PCD events and their 
associations with redox imbalance in this review, with the 
aim of differentiating these PCD events by the source of 
redox imbalance, identifying the link of these programs, 
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and pushing forward possible onco-therapeutic solutions 
that rely on redox control.

Programmed cell death associated 
with redox imbalance imposed by DNA 
damage

Apoptosis

Basics of apoptosis

Apoptosis is the most well-known PCD event that is care-
fully regulated by many cellular processes to balance cell 
turnover in proliferating tissues and selectively remove cells 
that hamper proper organ development and functioning [5]. 
Apoptosis is accompanied by membrane microvilli loss, 
cytoplasm condensation, nucleus segmentation, and chromo-
somal DNA degradation into 180 bp oligomers. During early 
apoptosis, cells shrink and undergo pyknosis [6] as a result 
of chromatin condensation [7].Then, budding (i.e., forming 
a wide range of plasma membrane bubbles) occurs followed 
by nucleus break and separation of cellular debris corpus-
cles into the apoptosis body. These small apoptosis bodies 
are phagocytosed by macrophages, parenchymal cells, or 
neoplastic cells and degraded within phagolysosomes. Yet, 
the organelle integrity remains, which is enclosed within the 
intact plasma membrane.

One important feature of apoptosis is the flipping of phos-
phatidyl serine groups to the outer membrane surface that 
enables the common strategy of apoptosis detection through 
combined use of annexin V and cell-impermeable DNA 
staining dye such as propidium (PI) or 7-amino-actinomy-
cin (7-AAD) followed by fluorescent microscopy or flow 
cytometry [8]. Double-stranded breaks could be identified 
through terminal de-oxynucleotidyl transferase (TdT)-medi-
ated dUTP-biotin nick end labeling (TUNEL) technique and 
comet assay [9]. Alternatively, caspase assay and poly-ADP 
ribose polymerase (PARP) cleavage assay [10] could be used 
to evaluate the intermediate modulators of apoptosis.

Caspase-dependent apoptosis can be endogenous or 
exogenous.

Endogenous apoptosis pathway The endogenous pathway 
is originated from mitochondria that can be triggered by a 
variety of environmental and chemical stimuli capable of 
imposing oxidative stress. When cell redox homeostasis is 
disrupted, the mitochondrial outer membrane permeability 
alters that leads to the release of cytochrome C from mito-
chondria to the cytoplasm; cytochrome C forms complexes 
with Apaf-1 that further recruits caspase-9 to form the apop-
tosome in the cytoplasm through the CARD domain; cas-

pase-9 is self-cut followed by caspase-3 activation to initi-
ate apoptosis (Fig. 1).

Exogenous apoptosis pathway The exogenous pathway is 
mediated by death receptors. Taking Fas as an example, it 
trimerizes and recruits FADD and procaspase-8 through 
the cytoplasmic domain to form the death inducing sign-
aling complex (DISC). Through self-cutting, procaspase-8 
becomes caspase-8 that cuts procaspase-3 into  caspase-3, 
the executioner of apoptosis (Fig. 1).

Apoptosis in response to DNA damage induced redox 
imbalance

A variety of factors or chemicals capable of initiating DNA 
damage signals such as ionizing radiation, ultraviolet radia-
tion and  H2O2, etc., can cause redox imbalance and trigger 
apoptosis [11].

DNA damage is an inciting cause of endoplasmic reticu-
lum (ER) stress that typically occurs when proteins are not 
or not properly folded. On ER stress, Bax and Bak in the 
ER membrane allow  Ca2+ release from ER to the cytosol 
where it activates m-Calpain and subsequently caspase-12. 
This, on one hand, leads to a sequential activation of cas-
pase family members including procaspase-9 and caspase-3; 
and, on the other hand, causes mitochondrial inner mem-
brane depolarization and the release of cytochrome C to the 
cytoplasm. Consequently, apoptosome forms, a prerequisite 
for endogenous caspase-dependent apoptosis [12]. In addi-
tion, ER stress can suppress the anti-apoptotic functions of 
Bcl2 and activate pro-apoptotic proteins such as Bim, Bax 
and Bak through activating c-Jun N-terminal kinase (JNK) 
and c/EBP homologous protein (CHOP) [13–16], linking 
caspase-independent apoptosis with the ROS/JNK pathway 
as reported in breast cancer cells [17]. Mammals express at 

Fig. 1  Graphic illustration on the crosstalk and differences of 3 exam-
ple DNA damage associated PCD events regarding the mechanism 
and phenotype
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least three different MAPKs, including extracellular signal- 
regulated kinase (ERK), JNK and p38. These kinases share 
60–70% similarity but differ in the signal they sense and the 
size of the avalanche they trigger. While ERK is stimulated 
by proliferative signals, JNK and p38 respond to environ-
mental stimuli including ER stress [18].

Reactive oxygen intermediates (ROI) can react with all 
kinds of unsaturated fatty acids and cholesterols on the cell 
membrane to generate oxidative damage that can directly 
initiate cell apoptosis [19]. On the other hand, ROI could 
cause DNA damage that leads to poly ADP-ribose polymer-
ase (PARP) activation and p53 accumulation [20]. P53 accu-
mulation could activate p21 transcription that arrests cells 
at the G1 phase until DNA damage is repaired. Otherwise, 
p53 will continue accumulating to trigger apoptosis through 
increasing the expression of the pro-apoptotic factor Bax 
and reducing that of the anti-apoptotic factor Bcl2 [21]; and/
or induce apoptosis through activating death receptors such 
as TNF receptor and Fas [21].

Clinical relevance of apoptosis in cancer treatment

Tumor cells can develop resistance to apoptotic agents and 
suppress apoptosis by, e.g., up-regulating anti-apoptotic 
proteins such as Bcl-2 or down-regulating/mutating pro-
apoptotic proteins such as Bax [22]. Members of the steroid/
retinoid superfamily of ligand-activated transcription fac-
tors (SRTFs) could modulate the transcription level of Bcl-2 
and Bcl-xL. For example, as Bcl-2 expression is estrogen-
dependent in the mammary gland, anti-estrogens such as 
tamoxifen could inhibit Bcl-2 expression in breast cancer 
cells and thus promote the sensitivity of tumor cells to anti-
cancer drugs [22]. TNF family cytokines, TRAIL and ago-
nistic antibodies against TRAIL receptors have been dem-
onstrated to possess potent antitumor activity [23]. Synthetic 
triterpenoids such as CDDO and CDDO lm can sensitize 
solid tumor cells to TRAIL induced apoptosis that functions 
in both chemo-sensitive and chemo-refractory tumor cells 
[24–26].

Commercialized onco-therapeutic products triggering 
apoptosis in cancer cells include CDDO for solid tumor 
treatment [24–26], and Venetoclax for treating acute 
myeloid leukemia and small lymphocytic lymphoma [27] 
(Table  1). Many drugs have been under clinical trials, 
including ABBV-621 (NCT: 03082209) [28], GEN1029 
(NCT: 3576131) [29], ALRN-6924 (NCT: 03725436) [30], 
BI907828 (NCT: 03449381) [31]for the treatment of malig-
nant solid tumors, ABBV-155 (NCT: 03595059) for treating 
refractory solid tumors [32], ABT-737 (NCT: 00902018) for 
treating small cell lung cancer and hematological tumors 
[33], APG-1252 (NCT: 03080311) for the treatment of solid 
tumors as represented by small cell lung cancer [34], Sire-
madlin (NCT: 04097821) for treating uveal melanoma [35], 

SMACmimetic (NCT: 02890069) for the treatment of breast 
cancer [36], Lexatumumab (NCT: 00428272) for treating 
osteosarcoma, neuroblastoma and pancreatic cancer [37], 
Mapatumumab (NCT: 00315757) for the treatment of mul-
tiple myeloma, renal carcinoma, bladder cancer, etc. [38], 
MIK665 (NCT: 02992483) for the treatment of multiple 
myeloma and lymphoma [39], Navitoclax (NCT: 01557777) 
[40] and APG-2575 (NCT: 03913949) [41] for the treat-
ment of chronic lymphocytic leukemia, AMG176 (NCT: 
02675452) for treating chronic lymphocytic leukemia and 
acute myeloid leukemia [42], APR-246 (NCT: 04214860) 
for treating myeloid malignancy [43], and AZD5991 (NCT: 
03218683) for the treatment of blood tumors [44] (Table 1).

Paraptosis

Basics of paraptosis

Paraptosis is a form of PCD displaying mitochondria swell-
ing and/or ER and cytoplasmic vacuolization [45, 46]. It 
differs from apoptosis in that it is not affected by caspase 
inhibitors or anti-apoptotic proteins such as Bcl2 [47]. Par-
aptosis is induced by insulin-like growth factor I receptor 
(IGF-IR) and suppressed by ALG-2-interacting protein 
(AIP1) (Fig. 1). IGF-IR induced paraptosis is primarily 
mediated via mitogen-activated protein kinase (MAPK) 
family members.

No assay is so far available for paraptosis detection except 
for electron microscopy where the appearance of multiple 
single-membraned cytoplasmic vacuoles could be consid-
ered as a symbol of paraptosis [48].

Paraptosis in response to DNA damage imposed redox 
imbalance

Paraptosis could be induced through ER stress as a result of 
DNA damage signaling. Lots of studies have suggested the 
association of paraptosis with redox imbalance and accumu-
lation of misfolded proteins in ER [49, 50]. It was reported 
that ginger extract triggers cytoplasmic vacuolation, ER dila-
tion, mitochondrial dysfunction, and DNA fragmentation in 
response to DNA damage induced ER stress that ultimately 
leads to paraptosis as a result of excess ROS generation [51]. 
As a DNA damage response sensor, p53 was reported to sup-
press paraptosis through inhibiting IGF-IR and transactivat-
ing IGF-BP3 expression, whereas the binding of IGF-BP3 
to IGFs suppresses IGF-IR signaling [52, 53].

Clinical relevance of paraptosis in cancer treatment

Many natural compounds such as taxol, cyclosporine A, 
tunicamycin, procyanidins, curcumin, honokiol, ginse-
nosides, tocotrienols, celastrol, ophobiolin A, hesperidin, 
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morusin, 6-shogaol, chalcomoracin, gambogic acid, plum-
bagin, 8-p-hdroxybenzoyl tovarol, cis-nerolidol, manumy-
cin A, DL-selenocystine, 15-deoxy-Δ12,14-prostaglandin 
J2, yessotoxin and 1-desulfoyessotoxin have shown great 
promise and translational potential in triggering paraptosis 
in a variety of human cancer cell lines [54]. Among them, 
taxol [55, 56] (for treating ovarian, breast, and lung cancers) 
and curcumin (for treating colorectal cancer) [54] have been 
commercialized for clinical use (Table 1).

Mitotic catastrophe

Basics of mitotic catastrophe

Mitotic catastrophe is a form of PCD due to failed or incom-
plete mitosis, which is featured by chromosome breaks and 
poor karyokinesis [57]. During mitosis, the CDK1/cyclin B1 
complex promotes the G2/M cell cycle transition and plays 
essential roles in microtubule reorganization, chromatin con-
densation, and nuclear membrane breakdown [58] (Fig. 1). 
Over-activated CDK1 can lead to mitotic catastrophe [59]. 
Prolonged suppression of anaphase-promoting complex 
(APC) can result in mitotic catastrophe [59] as APC could 
degrade cyclin B to promote cells transit from the metaphase 
to anaphase [58].

Dis-functionalities of cell cycle checkpoint regula-
tors are vital to initiate mitotic catastrophe. Inhibition of 
G2/M checkpoint regulators such as checkpoint kinase 1/2 
(Chk1/2), ataxia telangiectasia mutated (ATM), ataxia tel-
angiectasia mutated and Rad3 related (ATR) are known to 
induce mitotic catastrophe [60, 61]. Chemotherapies such 
as 5-fluorouracil and doxorubicin were reported to trig-
ger mitotic catastrophe through increasing cyclin B1 [62]. 
CDK1 promotes mitotic catastrophe through inhibiting the 
phosphorylation of survivin, a protein that promotes mitotic 
progression and inhibits apoptosis [63].

Mitotic catastrophe has been conventionally detected via 
continuous observation under microscopy. An automated 
fluorescence videomicroscopy assay was developed for the 
real-time detection of mitotic catastrophe in a high-through-
put fashion[64].

Mitotic catastrophe in response to DNA damage imposed 
redox imbalance

Mitotic catastrophe is triggered by DNA damage signals 
that can be sensed by p53. P53 is a gatekeeper of genome 
integrity and inhibits mitotic catastrophe through various 
pathways including, e.g., transcriptionally inhibiting CDK1 
and cyclin B1 [65, 66], and upregulating the expression of 
CDK1 inhibitors such as p21 [67]. Thus, mitotic catastrophe 
occurs predominantly in p53-deficient cells as a result of 
genomic instability [68]. On the other hand, p53 may also 

play a promotive role in mitotic catastrophe as it could tran-
scriptionally repress surviving [69].

Clinical relevance of mitotic catastrophe in cancer 
treatment

Induction of mitotic catastrophe such as anti-mitotic agents 
has been implicated as an efficient strategy for cancer man-
agement. Microtubule destabilizers such as vinblastine 
[70] and vincristine [71] have been used in the treatment 
of hematological malignancies; microtubule stabilizers 
such as taxanes drugs paclitaxel [72] and docetaxel [73] 
have been applied in clinics for treating ovarian, breast can-
cer, peritoneal malignancy, and for treating breast cancer, 
ovarian cancer, and non-small cell lung cancer, respectively 
(Table 1). Drugs taking advantages of mitotic catastrophe 
and are being under clinical trials include BI2536) for treat-
ing non-small cell lung cancer [74], ON01910) for treating 
chronic lymphocytic leukemia [75], and MK-1775) for the 
treatment of acute lymphoblastic leukemia and nasopharynx 
cancer [76] (Table 1).

Programmed cell death associated 
with redox imbalance imposed by metabolic 
stress

Autophagic cell death

Basics of autophagic cell death

Autophagic cell death is a type of PCD as a result of 
autophagy [45]. Autophagy is a regulated catabolic lyso-
somal-dependent process that facilitates cells to eliminate 
misfolded proteins, damaged or non-functional cellular com-
ponents, etc. to maintain cellular homeostasis [77]. When 
autophagy occurs, cytoplasmic contents are sequestered 
by phagophores to form autophagosomes that merge with 
lysosomes and form autophagolysomes to degrade engulfed 
materials, where ATG proteins and beclin-1 are well-known 
regulators of autophagy [78] (Fig. 2). Mammalian target of 
rapamycin (mTOR) can inhibit autophagy through suppress-
ing ATG13 and ULK1 [79], where the complex formed by 
ATG13, ULK1 and FIP200 plays essential roles in phago-
phore formation and autophagy [79]. Beclin-1 was shown to 
induce autophagic cell death by promoting autophagosome 
formation [80].

Autophagy is a self-protective phenomenon in response to 
cellular stress such as metabolic stress, whereas cells are com-
mitted to death if the cellular stress is irreversible. Autophagic 
cell death is featured by the presence of large intracellular 



396 Apoptosis (2021) 26:385–414

1 3

vesicles, membrane blebbing, enlarged organelles, and deple-
tion of cytoplasmic organelles without chromatin condensation 
[81].

Autophagic cell death could be detected through direct 
autophagic activity measurement or indirect antibody 
(autophagy specific) based analyses such as western blot, fluo-
rescence microscopy and flow cytometry [82].

Autophagic cell death in response to metabolic stress 
associated redox imbalance

Metabolic stress is characterized by nutrient, oxygen and 
growth factor deprivation [83]. Autophagic cell death is regu-
lated by the endocrine system on nutrient starvation that con-
stitutes a primary source of metabolic stress in cancer cells. 
Specifically, glucose concentration in malignant cells is esti-
mated to be 3-to-10 folds lower than that in normal tissues [84, 
85]. This nutrient deficiency directly reduces ATP production 
and results in excess ROS generation [86].

In response to metabolic stress imposed redox imbalance, 
p53 plays dual roles in autophagic cell death depending on its 
cellular localization. While nuclear p53 promotes autophagy, 
cytoplasmic p53 suppresses it [87]. Nuclear p53 triggers 
autophagy by transactivating its target genes [87, 88]. For 
example, nuclear p53 promotes autophagy through transacti-
vating TSC2 and AMPK, both of which are upstream regula-
tors of mTOR [88, 89]. P53 can also upregulate the AMPK 
activators sestrins ½ [90] and the autophagy activator DRAM 
[91]. Besides, apoptosis-associated genes under p53 regulation 
such as PUMA, BAX, Bnip3, and BAD are also involved in 
autophagy [92–94]. On the other hand, cytoplasmic p53 sup-
presses autophagy through binding Beclin-1 that promotes its 
ubiquitination and degradation [95].

Clinical relevance of autophagic cell death in cancer 
treatment

Impaired autophagy has been associated with many diseases 
including human cancers [96]. Inhibitors of autophagy such 
as chloroquine and hydroxychloroquine have been proposed 
for the treatment of multiple malignancies in clinics despite 
the questionable unresolved safety issues [97].

Clinical therapeutic strategies using autophagic cell death 
include everolimus [98] and CCI-779 [99] for the treatment 
of renal cell carcinoma, as well as vorinostat for treating 
cutaneous T-cell lymphoma [100] (Table 1).

Ferroptosis

Basics of ferroptosis

Ferroptosis, an iron-dependent oxidative PCD, was firstly 
discovered in 2012 by Brent R. Stockwell et al. [101]. Dif-
ferent from apoptosis, cells undergoing ferroptosis do not 
show cell shrinkage and chromatin agglutination, but exhibit 
increased lipid peroxidation, elevated ROS, shrinked mito-
chondria, increased mitochondria membrane density and 
decreased ridge amount. While inhibitors of cell apoptosis, 
autophagy, pyroptosis do not inhibit ferroptosis, this process 
can be suppressed by iron chelators, lipophilic antioxidants, 
lipid peroxidation inhibitors, and polyunsaturated fatty 
acid depletion [102]. Ferroptosis inducers such as erastin 
decreases cellular antioxidant capacity through acting on 
the glutathione peroxidase (GPXs) [103].

Essential ferroptosis suppressor genes have been identi-
fied that can be used in ferroptosis detection. Glutathione 
peroxidase 4 (GPX4), an antioxidant defense enzyme, func-
tions to repair lipid oxidative damage and plays a primary 
suppressive role in ferroptosis [104, 105]. Ferroptosis sup-
pressor protein 1 (FSP1) is a GSH-independent ferropto-
sis suppressor [106] that co-operates with coenzyme Q10 
[107] and acts in parallel with GPX4 to inhibit ferroptosis 
[108]. Several ferroptosis-promotive markers have also been 
reported. For example, acyl-CoA synthetase long-chain fam-
ily member 4 (ACSL4) expression was remarkably lower 
in ferroptosis-resistant than -sensitive cells which, once 
knocked down, inhibited erastin-induced ferroptosis [109]. 
Other pro-ferroptosis factors include, e.g., cox-2, PTGS2, 
NOX1 [110], and transferrin receptor 1 (TfR1) [111]. The 
lethal accumulation of lipid peroxides in plasma membranes 
as characterized by ferroptosis makes it possible to detect 
ferroptosis through determining the amount of lipid perox-
ides in cellular membranes using BODIPY-C11 probe and 
flow cytometry [112].

Ferroptosis has two primary pathways, i.e., the canoni-
cal GPX4-meidated GSH-dependent pathway and the newly 
identified FSP1-meidated GSH-independent pathway.

GPX4‑mediated GSH‑dependent pathway When intracel-
lular cystine transport proteins such as erastin are inhibited, 
intracellular GSH will be exhausted as a result of substrate 
shortage. This will eventually lead to the inactivation of 
GPX4, a GSH peroxidase and perhaps the only enzyme that 
catalyzes liposome peroxide reduction. When cellular redox 
level exceeds a certain threshold, this will result in lipid per-
oxidation accumulation that, ultimately, triggers cell ferrop-
tosis [113, 114] (Fig. 2).

GPX4-mediated GSH-dependent ferroptosis can be initi-
ated by directly eliminating GPX4 using inhibitors such as 
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squalene synthase, HMG-CoA reductase, and RSL3 [101]; 
inputting iron in the form of ferrous iron ions, or consuming 
GSH. Ferroptosis can also be triggered by inhibiting cystine/
glutamate antiporter, namely system xc

−, which is a heter-
odimeric cell surface amino acid antiporter composed of the 
twelve-pass transmembrane transporter protein SLC7A11 
(xCT) and the single-pass transmembrane regulatory protein 
SLC3A2 [115]. System xc

− imports extracellular cysteine 
proteinase inhibitor 2 (Cys2) in exchange for intracellular 
GSH [101, 116]. Through inhibiting system xc

−, cysteine 
absorption is inhibited that leads to reduced GSH and GPX4 
activity [117].

FSP1‑mediated GSH‑independent pathway FSP1 was 
recently identified as a key component of a non-mitochon-
drial CoQ antioxidant system that acts in parallel to canoni-
cal GPX4-mediated GSH-dependent ferroptosis [108].  In 
particular, FSP1 myristoylation allocates itself to the plasma 
membrane and lipid droplets where it reduces coenzyme 
Q10 (CoQ10) via functioning as an oxidoreductase, and this 
results in the generation of a lipophilic radical-trapping anti-
oxidant (RTA) that ultimately halts lipid peroxide propaga-
tion (Fig. 2).

Ferroptosis in response to metabolic stress associated 
redox imbalance

Lipid peroxidation is initiated as a result of chain oxidation 
of unsaturated lipids due to excess ROS accumulation and 
represents a lipid metabolic disorder [118, 119]. Metabolic 
stress, in turn, hampers the homoeostasis between fatty acids 
synthesis and uptake [120, 121].

The tumor suppressor p53 senses metabolic disor-
der associated redox stress [122] and triggers ferropto-
sis through p53-mediated suppression on system xc

−. By 
exposing p53-deficient H1299 cells to ROS, cell viability 
did not alter; yet cells carrying the wildtype p53 underwent 

a mortality rate as high as 90% under ROS stress; by treating 
cells with ferrostatin 1 (a ferroptosis inhibitor), the mortality 
rate of cells dropped about 40% [123], suggesting the role of 
p53 played in ferroptosis and ROS stress response. The same 
study also reported a negative correlation between p53 and 
SLC7A11 [123], implicating that SLC7A11, a core compo-
nent of system xc

−, is a p53 target.

Clinical relevance of ferroptosis in cancer treatment

Erastin, the earliest discovered inhibitor, can effectively 
inhibit the growth of ovarian tumors cells in mice [124]. 
Glutathione synthetase inhibitors such as L-Buthionine-
sulfoximine (L-BSO) can inhibit breast tumor growth in 
mice via suppressing GSH formation and thus triggering 
ferroptosis [125]. Ferroptosis has also been applied in cancer 
diagnosis. For instance, a paper published in 2020 identi-
fied a ferroptosis gene panel composed of 8 genes (ALOX5, 
CISD1, FTL, CD44, FANCD2, NFE2L2, SLC1A5, GOT1) 
that is diagnostic of low-grade glioma [126].

Cisplatin has been applied in clinics for treating solid 
tumors through triggering ferroptosis [127] (Table  1). 
Sorafenib [128], sulfasalazine [129] and ferumoxytol [130] 
have been approved by FDA for the treatment of renal cell 
carcinoma and hepatocellular carcinoma, for the treatment of 
pancreatic cancer, and for the treatment of leukemia, respec-
tively (Table 1).

Programmed cell death associated 
with redox imbalance imposed 
by inflammation

Necroptosis

Basics of necroptosis

Necroptosis is a programmed form of necrosis that is charac-
terized by permeable and rupture of cell membranes, numer-
ous cytoplasmic vacuoles containing cellular remnants, and 
inflammation [131–133]. It is also accompanied with moder-
ate chromatin condensation and clumping, as well as random 
DNA degradation [131–133].

Necroptosis is initiated by the binding of tumor necrosis 
factor (TNF) or FAS to their receptors that promotes inter-
actions between RIPK1 and RIPK3 [134, 135], followed by 
activation of these kinases that recruits MLKL to form the 
necrosome [136] (Fig. 3). RIPK3 phosphorylates MLKL at 
threonine 357 and serine 358 to enhance its oligomerization; 
and then MLKL oligomers are translocated from the cytosol 
to cell membranes to disrupt membrane integrity, triggering 
necroptosis [137].

Fig. 2  Graphic illustration on the crosstalk and differences of 2 exam-
ple metabolic disorder associated PCD events regarding the mecha-
nism and phenotype
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Necroptosis can be detected by examining the loss of 
membrane integrity through the use of cell-impermeable 
DNA binding dyes, measuring the release of cellular con-
tents such as LDH, HMGB1 and cyclophilin A via west-
ern blot, evaluating mitochondrial potential by fluorescent 
probes, and observing necroptosis morphology features 
through electron microscopy [138]. Alternatively, necrop-
tosis can be detected with the aid of necroptosis specific 
inhibitors such as necrostatin-1 [139].

Necroptosis in response to inflammation associated redox 
imbalance

Inflammation and oxidative stress are interconnected. It was 
shown that inflammatory macrophages release proteins in 
the glutathionylated form such as PRDX2 [140]. Extracel-
lular PRDX2 mediates inflammation in a redox-dependent 
manner through the release of TNFα, a primary tumor 
necrosis factor involved in inflammation, from macrophages 
[140].

In response to inflammation associated oxidative stress, 
p53 is accumulated in the mitochondrial matrix that 
enhances the opening of mitochondrial permeability transi-
tion pore (PTP) via direct binding of p53 with a PTP regu-
lator cyclophilin D (cypD), and this leads to mitochondrial 
swelling and necroptosis induction [141]. Besides, p53 tran-
scriptionally upregulates the lncRNA NRF (necrosis-related 
factor) that enhances PIRK1/PIRK3 translation via repress-
ing miR-873, and elevated RIPK1/RIPK3 is a direct trigger 
of necroptosis [142].

Clinical relevance of necroptosis in cancer treatment

Triggering necroptosis has been recently proposed as a 
novel onco-therapeutic strategy, with the feasibility still 
being controversial. Conventional necroptosis inducers or 
chemotherapeutic agents can trigger necrosis in many cancer 
cells especially colorectal cancers and hematopoietic tumors 
such as leukemia and multiple myeloma [143]. Traditional 
chemotherapy and molecular targeted drugs such as VEGFR 
inhibitors and m-TOR inhibitors have recently been identi-
fied as cancer necroptosis triggers and approved for clinical 
trials [144, 145].

Natural products such as shikonin have been shown capa-
ble of triggering necroptosis and used in clinics for bladder 
cancer treatment [146]. Pazopanib [147] and ponatinib [148] 
have received FDA approval for treating advanced renal cell 
carcinoma and soft-tissue sarcoma, and for treating chronic 
myeloid leukemia. respectively (Table 1).

Pyroptosis

Basics of pyroptosis

Pyroptosis is another proinflammatory form of PCD that 
relies on the enzymatic activity of inflammatory proteases 
belonging to the cysteine-dependent aspartate-specific pro-
tease (caspase) family [149]. Destructed cell membrane 
structure integrity and release of intracellular substances 
into the extracellular space are the most notable features 
of pyroptosis. With the activation of caspases-1, ostioles 
are formed on cell membrane that leads to the outflow of 
intracellular contents including pro-inflammatory cytokines, 
intracellular ions, endogenous ligands, alarmins etc., and 
finally contributes to cell dissolvement. This feature is simi-
lar with caspase-independent PCD such as necroptosis, yet 
differs significantly from apoptosis that maintains intact cell 
membrane structure.

Both pyroptosis and necroptosis form pores on the cell 
membrane surface whereas apoptosis does not. Necroptosis 
is more like a burst of cells, and cells undergoing pyroptosis 
become tabular as a result of cytoplasm leak to the extra-
cellular space. Both necroptosis and pyroptosis require the 
oligomerization and transfer of their execution proteins to 
the plasma membrane. However, during necroptosis, mixed 
lineage kinase domain like pseudokinase (MLKL) triggers 
specific ion influx through inducing the ion selective chan-
nel, which leads to cell osmotic swelling and burst; during 
pyroptosis, gasdermin D (GSDMD) forms holes that lack ion 
specificity and selectivity, and this does not lead to increased 
intracellular osmotic pressure nor consequent cell inflate or 
burst [150].

Pyroptosis can be detected via western blot using antibod-
ies against GSDMD (53 Kd) that is cut into 30 Kd pieces 
during pyroptosis [151]. It can also be assayed through 
ELISA by detecting IL-1β and IL-18 that are released into 
cells when pyroptosis occurs [149]. Pyroptosis can also be 
detected through detecting the activity of caspase-1 and 
caspase-4 using the corresponding kits based on spectro-
photometry [151].

Pyroptosis can occur via canonical caspase-1 depend-
ent pyroptosis or non-canonical caspase-1 independent 
pyroptosis.

Caspase‑1 dependent pyroptosis In response to pathogen 
associated molecular patterns (PAMPs) such as viral patho-
gens toxins, bacteria, parasites, etc. and danger associated 
molecular patterns (DAMPs) such as uric acid sodium and 
silicon dioxide, pattern recognition receptors (PRRs) are 
triggered to activate caspase-1 (Fig.  3). PRRs can be cat-
egorized into two classes based on cellular localization. 
While C-type lectin receptors (CLRs) and Toll-like recep-
tors (TLRs) are present on cell membranes to sense exter-
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nal stimuli, the nucleotide-binding domain and leucine-rich 
repeat-containing (NLR) proteins, the AIM2-like receptor 
(ALR), RIG-I-like receptor (RLR) are localized inside the 
cell to detect signals issued by PAMPs or DAMPs [152].

The canonical inflammasome or namely pyroptosome 
that participates in the caspase-1-dependent pathway is com-
posed of apoptosis-associated speck-like protein (ASCs), 
PRRs such as NLRs and ALRs, and procaspase-1 [153]. 
ASCs contain a caspase-activation and recruitment domain 
(CARD) and are recruited by NLRs/ALRs to form a complex 
called ‘SPECK’ that takes on the most important function of 
pyroptosome, i.e., activating caspase-1 [153, 154]. The NLR 
family is further divided into NLR family PYD-containing 
protein (NLRP) and NLR family CARD-containing protein 
(NLRC) receptors based on differences in the N-terminal 
domain composition [153]. Among all NLR family mem-
bers, NLRP1, NLRP3, NLRC4 are the most intensively stud-
ied in pyroptosis, where NLRP3 relies on ASC to recruit 
procaspase-1, and NLRP1 and NLRC4 do not [155].

Caspase‑1 independent pyroptosis The non-canonical cas-
pase-1 independent pathway is primarily induced by cas-
pase-4/5/11 other than caspase-1. Similar with caspase-1, 
caspase-4/5/11 also harbor the CARD domain at the N ter-
minal. Caspase-4/5/11 directly interact with lipopolysaccha-
ride (LPS) to form non-canonical pyroptosome that directly 
lyses the substrate and triggers pyroptosis [156] (Fig.  3). 
Activated caspase-11 can induce the formation of cell mem-
brane pores through GSDMD cleavage, and the produced N 
terminus can also activate caspase-1 [157], rendering cas-
pase-11 another trigger of caspase-1 activation and bridging 
the gap between canonical caspase-1 dependent and non-
canonical caspase-1 independent pathways. Caspase-4 and 5 
are crucial in caspase-1-independent pyroptosis in humans. 
While caspase-4 self-activates through direct interactions 
with LPS, caspase-5 is specifically regulated by IFN–γ and 
LPS [158, 159].

Caspase-3 has also been reported capable of mediat-
ing pyroptosis (Fig. 3B). As caspase-3 is both an execu-
tioner of apoptosis and an upstream regulator of pyroptosis 
[150, 160], pyroptosis and apoptosis are interconnected. In 
response to TNF-α or chemotherapeutic agents, GSDME is 
directly cleaved by caspase-3, and the produced GSDME-
N fragment takes on a similar function as the activated 
GSDMD to penetrate cell membrane and trigger pyroptosis 
[161].

Much more details of non-canonical caspase-1 independ-
ent pyroptosis still await to be deciphered.

Pyroptosis in response to inflammation associated redox 
imbalance

Pyroptosis is typically triggered on pathogen invasion such 
as viruses, bacteria and parasites [162]. ROS play essential 
roles in host immune defenses against pathogen invasion 
[163, 164]. Apart from toxic molecules expressed by patho-
gens, excessive ROS production by activated immune cells 
on pathogen invasion creates cytotoxic signals that can be 
sensed by p53 [163–165]. The p53 protein plays essential 
roles in pyroptosis through up-regulating caspase-1 [166, 
167].

Clinical relevance of pyroptosis in cancer treatment

It has been proved that ZnO nanoparticles (ZnO-NPs), iver-
mectin, etc., and some chemotherapy drugs can all induce 
pyroptosis in tumor cells. Specifically, high concentrations 
of ZnO-NPs can activate pyroptosis in lung cancer cells 
[168].

Drugs capable of triggering pyroptosis and applied in 
clinics include ivermectin for the treatment of breast cancer 
[169], α-NETA for the treatment of ovarian [170], and cis-
platin for treating solid tumors [171], respectively (Table 1).

Cold atmospheric plasma being redox level 
controller

Cold atmospheric plasma (CAP), being the fourth state 
of matter, is composed of ions, electrons, neutral parti-
cles and photons [172, 173]. It is featured by its multi-
modality nature, with the anti-cancer efficacy being firstly 
reported in 2007 [174]. Though the underlying mechanism 
is not fully understood, it has been widely accepted that 
the selectivity of CAP against cancer cells relies on its 
roles in modulating cellular redox level [1]. By tuning cell 
oxidative level, CAP could make malignant cells more 
easily exceed the cell death threshold without breaking 
the redox homeostasis of normal cells [175]. Cancer cells 
have higher baseline ROS levels than healthy cells and are 

Fig. 3  Graphic illustration on the crosstalk and differences of 2 exam-
ple inflammation associated PCD events regarding the mechanism 
and phenotype
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thus more sensitive to elevated ROS production and turno-
ver on CAP treatment. The exceeding of the anti-oxidant 
capacity in cancer cells forced them undergoing various 
PCD programs with apoptosis being the most intensively 
studied [172, 173]. Specifically, interactions between  H2O2 
and  NO2 (components that stably exist in CAP-activated 
medium) generate peroxynitrite  (ONOO−) that can be pro-
tonated to peroxynitrous acid (ONOOH) when approach-
ing membrane-associated proton pumps, and decomposed 
into ·NO2 and ·OH radicals; ·OH reacts with  H2O2 to 
generate peroxynitric acid  (O2NOOH) and peroxynitrate 
 (O2NOO−) that lead to the generation of primary singlet 
oxygen (1O2); primary 1O2 triggers the production of high 
concentrations of secondary 1O2, with  H2O2 and ONOO 
being the source for sustained secondary 1O2 generation, 
inactivates the protective membrane-associated catalase 
in tumor cells, and promotes aquaporin-mediated influx of 
extracellular  H2O2, all of which ultimately initiate redox 
imbalance triggered apoptosis [1, 176, 177].

P53 is a pivotal switch controlling cells’ fate towards 
different PCD programs [178] in response to redox imbal-
ance as a result of various stimuli including DNA damage 
signal, metabolic stress, and inflammation (Fig. 4). Thus, 
these diverse types of PCD events are interconnected via 
this shared controller. Through gene expression profiling 
and downstream functional studies, CAP was found to 
be able to activate the expression of p53 pathway-related 
genes [179], rendering CAP a potential modulator of cells’ 
life/death fate [1] that is of critical clinical relevance if 
applied in cancer treatment.

On the other hand, one stimulus may potentially trig-
ger multiple PCD events. For instance, ivermectin could 
simultaneously trigger pyroptosis, apoptosis and necrop-
tosis in MDA-MB-231 cells through generating ROS, acti-
vating cytoplasmic calcium/calmodulin kinase II (CaMK 
II), opening mitochondrial permeability transition pore 
(MPTP) and forming caspase-1 mediated NLRP3 inflam-
matory corpuscle [180]. Therefore, CAP-induced selectiv-
ity against cancer cells may be resulted from multiple PCD 
programs far beyond just apoptosis that deserves intensive 
investigations.

Conclusion

PCD events are fundamental to the maintenance of cell redox 
homeostasis, normal tissue development and human health. 
Signals triggering redox imbalance and consequently PCD 
might be originated from DNA damage signaling such as in 
apoptosis, paraptosis and mitotic catastrophe, might be from 
metabolic disorder such as in autophagic cell death and fer-
roptosis, and might be from inflammation such as in necrop-
tosis and pyroptosis. As uncontrolled cell proliferation, 

metabolic reprogramming and tumor-associated inflamma-
tion are essential cancer hallmarks, disordered PCD events 
as a result of disrupted redox homeostasis are essential for 
cells to become malignant that, once being under control, 
might push chaotic cells towards the death state or rewire 
them towards the healthy state.

CAP could generate and deliver controlled doses of reac-
tive species to cells that selectively triggers redox imbal-
ance in malignant cells. Thus, CAP represents a promising 
onco-therapeutic approach, alone or being combined with 
other therapeutic strategies, through selectively inducing 
PCD events in cancer cells that is not limited to apopto-
sis. With our incremental understandings on varied types of 
PCD, underlying mechanism and associated disorders, it is 
the time to explore other CAP-triggered PCD events beyond 
apoptosis. Importantly, these PCD events orchestrate the 
selectivity of CAP against cancer cells through cross-talking 
due to, e.g., the shared regulator p53. Thus, the efficacy of 
CAP as a redox controller and an emerging onco-therapeutic 
strategy is a synergistic result from multiple PCD events 
that relies on appropriate dosing. Deciphering the precise 
mechanism underlying the efficacy of CAP against a par-
ticular type of cancer type and ultimately translating it into 
clinics require intensive efforts from both bench and bed 
sides and involve experts from multiple research domains 
such as biology, chemistry, physics, bioinformatics, materi-
als and medicine.

Author contributions X.F. Dai initiated this project and drafted the 
manuscript. D.J. Wang helped in literature searching, figure drafting 
and table preparation. J.Y. Zhang and X.F. Dai financed this project. All 
authors have read and approved the submission of this paper.
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