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Abstract

Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance
could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control
a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered,
complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic
design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their
associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on
therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold

atmospheric plasma as an emerging redox controller with translational potential in clinics.
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Introduction

Cancer is a complex disease, the initiation and development
of which requires intensive cross talks with its microen-
vironment and is highly regulated by cellular redox level.
Reactive oxygen species (ROS) have been shown to play
diverse roles in many critical transition stages of cancer
cells such as the life/death transition, tumor angiogenetic
switch, and epithelial mesenchymal transition (EMT) [1].
Cancer cells typically have a relatively higher redox level
than normal cells due to their chaoticities in organizing cel-
lular functionalities, rendering malignant cells more fragile
under redox stress than healthy cells. On the other hand,
cancer cells are naturally faced with oxidative stress as a
result of imbalanced ROS production and disordered anti-
oxidant defense ability [2]. That is, ROS are excessively
generated in malignant cells due to increased metabolic
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rate, accumulated mitochondria dysfunction, elevated cell
signaling, enhanced expression of oncogenes, and acceler-
ated peroxisome activities [3], which is a required feature of
malignant cells. Therapeutic strategies taking advantages of
redox stress may kill cancer cells by triggering programmed
cell death (PCD) events. PCD such as apoptosis, parapto-
sis, mitotic catastrophy, autophagic cell death, ferroptosis,
necroptosis, and pyroptosis represents a set of highly ordered
and programmed cellular death events that enable the elim-
ination of cells running chaotic or being destined to die.
Failed PCD may lead to uncontrolled cell proliferation that
is one important cancer hallmark [4]. Thus, it is important
to explore differences and commonalities of these varied
PCD programs as well as their differential associations with
cellular redox imbalance to enable our improved understand-
ings and design on onco-therapeutic strategies relying on
redox level control.

Among the various PCD programs identified so far,
we selected apoptosis, paraptosis, mitotic catastrophy,
autophagic cell death, ferroptosis, necroptosis, and pyrop-
tosis in this review given their representativeness on the
stimulating source and their prevalence in literatures. We
focus on differences of these diverse PCD events and their
associations with redox imbalance in this review, with the
aim of differentiating these PCD events by the source of
redox imbalance, identifying the link of these programs,
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and pushing forward possible onco-therapeutic solutions
that rely on redox control.

Programmed cell death associated
with redox imbalance imposed by DNA
damage

Apoptosis
Basics of apoptosis

Apoptosis is the most well-known PCD event that is care-
fully regulated by many cellular processes to balance cell
turnover in proliferating tissues and selectively remove cells
that hamper proper organ development and functioning [5].
Apoptosis is accompanied by membrane microvilli loss,
cytoplasm condensation, nucleus segmentation, and chromo-
somal DNA degradation into 180 bp oligomers. During early
apoptosis, cells shrink and undergo pyknosis [6] as a result
of chromatin condensation [7].Then, budding (i.e., forming
a wide range of plasma membrane bubbles) occurs followed
by nucleus break and separation of cellular debris corpus-
cles into the apoptosis body. These small apoptosis bodies
are phagocytosed by macrophages, parenchymal cells, or
neoplastic cells and degraded within phagolysosomes. Yet,
the organelle integrity remains, which is enclosed within the
intact plasma membrane.

One important feature of apoptosis is the flipping of phos-
phatidyl serine groups to the outer membrane surface that
enables the common strategy of apoptosis detection through
combined use of annexin V and cell-impermeable DNA
staining dye such as propidium (PI) or 7-amino-actinomy-
cin (7-AAD) followed by fluorescent microscopy or flow
cytometry [8]. Double-stranded breaks could be identified
through terminal de-oxynucleotidyl transferase (TdT)-medi-
ated dUTP-biotin nick end labeling (TUNEL) technique and
comet assay [9]. Alternatively, caspase assay and poly-ADP
ribose polymerase (PARP) cleavage assay [10] could be used
to evaluate the intermediate modulators of apoptosis.

Caspase-dependent apoptosis can be endogenous or
€xogenous.

Endogenous apoptosis pathway The endogenous pathway
is originated from mitochondria that can be triggered by a
variety of environmental and chemical stimuli capable of
imposing oxidative stress. When cell redox homeostasis is
disrupted, the mitochondrial outer membrane permeability
alters that leads to the release of cytochrome C from mito-
chondria to the cytoplasm; cytochrome C forms complexes
with Apaf-1 that further recruits caspase-9 to form the apop-
tosome in the cytoplasm through the CARD domain; cas-
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pase-9 is self-cut followed by caspase-3 activation to initi-
ate apoptosis (Fig. 1).

Exogenous apoptosis pathway The exogenous pathway is
mediated by death receptors. Taking Fas as an example, it
trimerizes and recruits FADD and procaspase-8 through
the cytoplasmic domain to form the death inducing sign-
aling complex (DISC). Through self-cutting, procaspase-8
becomes caspase-8 that cuts procaspase-3 into caspase-3,
the executioner of apoptosis (Fig. 1).

Apoptosis in response to DNA damage induced redox
imbalance

A variety of factors or chemicals capable of initiating DNA
damage signals such as ionizing radiation, ultraviolet radia-
tion and H,0,, etc., can cause redox imbalance and trigger
apoptosis [11].

DNA damage is an inciting cause of endoplasmic reticu-
lum (ER) stress that typically occurs when proteins are not
or not properly folded. On ER stress, Bax and Bak in the
ER membrane allow Ca** release from ER to the cytosol
where it activates m-Calpain and subsequently caspase-12.
This, on one hand, leads to a sequential activation of cas-
pase family members including procaspase-9 and caspase-3;
and, on the other hand, causes mitochondrial inner mem-
brane depolarization and the release of cytochrome C to the
cytoplasm. Consequently, apoptosome forms, a prerequisite
for endogenous caspase-dependent apoptosis [12]. In addi-
tion, ER stress can suppress the anti-apoptotic functions of
Bcl2 and activate pro-apoptotic proteins such as Bim, Bax
and Bak through activating c-Jun N-terminal kinase (JNK)
and ¢/EBP homologous protein (CHOP) [13-16], linking
caspase-independent apoptosis with the ROS/INK pathway
as reported in breast cancer cells [17]. Mammals express at
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least three different MAPKSs, including extracellular signal-
regulated kinase (ERK), JNK and p38. These kinases share
60-70% similarity but differ in the signal they sense and the
size of the avalanche they trigger. While ERK is stimulated
by proliferative signals, JNK and p38 respond to environ-
mental stimuli including ER stress [18].

Reactive oxygen intermediates (ROI) can react with all
kinds of unsaturated fatty acids and cholesterols on the cell
membrane to generate oxidative damage that can directly
initiate cell apoptosis [19]. On the other hand, ROI could
cause DNA damage that leads to poly ADP-ribose polymer-
ase (PARP) activation and p53 accumulation [20]. P53 accu-
mulation could activate p21 transcription that arrests cells
at the G1 phase until DNA damage is repaired. Otherwise,
p53 will continue accumulating to trigger apoptosis through
increasing the expression of the pro-apoptotic factor Bax
and reducing that of the anti-apoptotic factor Bcl2 [21]; and/
or induce apoptosis through activating death receptors such
as TNF receptor and Fas [21].

Clinical relevance of apoptosis in cancer treatment

Tumor cells can develop resistance to apoptotic agents and
suppress apoptosis by, e.g., up-regulating anti-apoptotic
proteins such as Bcl-2 or down-regulating/mutating pro-
apoptotic proteins such as Bax [22]. Members of the steroid/
retinoid superfamily of ligand-activated transcription fac-
tors (SRTFs) could modulate the transcription level of Bcl-2
and Bcl-xL. For example, as Bcl-2 expression is estrogen-
dependent in the mammary gland, anti-estrogens such as
tamoxifen could inhibit Bcl-2 expression in breast cancer
cells and thus promote the sensitivity of tumor cells to anti-
cancer drugs [22]. TNF family cytokines, TRAIL and ago-
nistic antibodies against TRAIL receptors have been dem-
onstrated to possess potent antitumor activity [23]. Synthetic
triterpenoids such as CDDO and CDDO Im can sensitize
solid tumor cells to TRAIL induced apoptosis that functions
in both chemo-sensitive and chemo-refractory tumor cells
[24-26].

Commercialized onco-therapeutic products triggering
apoptosis in cancer cells include CDDO for solid tumor
treatment [24-26], and Venetoclax for treating acute
myeloid leukemia and small lymphocytic lymphoma [27]
(Table 1). Many drugs have been under clinical trials,
including ABBV-621 (NCT: 03082209) [28], GEN1029
(NCT: 3576131) [29], ALRN-6924 (NCT: 03725436) [30],
BI907828 (NCT: 03449381) [31]for the treatment of malig-
nant solid tumors, ABBV-155 (NCT: 03595059) for treating
refractory solid tumors [32], ABT-737 (NCT: 00902018) for
treating small cell lung cancer and hematological tumors
[33], APG-1252 (NCT: 03080311) for the treatment of solid
tumors as represented by small cell lung cancer [34], Sire-
madlin (NCT: 04097821) for treating uveal melanoma [35],

SMACmimetic (NCT: 02890069) for the treatment of breast
cancer [36], Lexatumumab (NCT: 00428272) for treating
osteosarcoma, neuroblastoma and pancreatic cancer [37],
Mapatumumab (NCT: 00315757) for the treatment of mul-
tiple myeloma, renal carcinoma, bladder cancer, etc. [38],
MIK665 (NCT: 02992483) for the treatment of multiple
myeloma and lymphoma [39], Navitoclax (NCT: 01557777)
[40] and APG-2575 (NCT: 03913949) [41] for the treat-
ment of chronic lymphocytic leukemia, AMG176 (NCT:
02675452) for treating chronic lymphocytic leukemia and
acute myeloid leukemia [42], APR-246 (NCT: 04214860)
for treating myeloid malignancy [43], and AZD5991 (NCT:
03218683) for the treatment of blood tumors [44] (Table 1).

Paraptosis
Basics of paraptosis

Paraptosis is a form of PCD displaying mitochondria swell-
ing and/or ER and cytoplasmic vacuolization [45, 46]. It
differs from apoptosis in that it is not affected by caspase
inhibitors or anti-apoptotic proteins such as Bcl2 [47]. Par-
aptosis is induced by insulin-like growth factor I receptor
(IGF-IR) and suppressed by ALG-2-interacting protein
(AIP1) (Fig. 1). IGF-IR induced paraptosis is primarily
mediated via mitogen-activated protein kinase (MAPK)
family members.

No assay is so far available for paraptosis detection except
for electron microscopy where the appearance of multiple
single-membraned cytoplasmic vacuoles could be consid-
ered as a symbol of paraptosis [48].

Paraptosis in response to DNA damage imposed redox
imbalance

Paraptosis could be induced through ER stress as a result of
DNA damage signaling. Lots of studies have suggested the
association of paraptosis with redox imbalance and accumu-
lation of misfolded proteins in ER [49, 50]. It was reported
that ginger extract triggers cytoplasmic vacuolation, ER dila-
tion, mitochondrial dysfunction, and DNA fragmentation in
response to DNA damage induced ER stress that ultimately
leads to paraptosis as a result of excess ROS generation [51].
As a DNA damage response sensor, pS53 was reported to sup-
press paraptosis through inhibiting IGF-IR and transactivat-
ing IGF-BP3 expression, whereas the binding of IGF-BP3
to IGFs suppresses IGF-IR signaling [52, 53].

Clinical relevance of paraptosis in cancer treatment
Many natural compounds such as taxol, cyclosporine A,

tunicamycin, procyanidins, curcumin, honokiol, ginse-
nosides, tocotrienols, celastrol, ophobiolin A, hesperidin,
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morusin, 6-shogaol, chalcomoracin, gambogic acid, plum-
bagin, 8-p-hdroxybenzoyl tovarol, cis-nerolidol, manumy-
cin A, DL-selenocystine, 15-deoxy-A12,14-prostaglandin
J2, yessotoxin and 1-desulfoyessotoxin have shown great
promise and translational potential in triggering paraptosis
in a variety of human cancer cell lines [54]. Among them,
taxol [55, 56] (for treating ovarian, breast, and lung cancers)
and curcumin (for treating colorectal cancer) [54] have been
commercialized for clinical use (Table 1).

Mitotic catastrophe
Basics of mitotic catastrophe

Mitotic catastrophe is a form of PCD due to failed or incom-
plete mitosis, which is featured by chromosome breaks and
poor karyokinesis [57]. During mitosis, the CDK1/cyclin B1
complex promotes the G2/M cell cycle transition and plays
essential roles in microtubule reorganization, chromatin con-
densation, and nuclear membrane breakdown [58] (Fig. 1).
Over-activated CDK1 can lead to mitotic catastrophe [59].
Prolonged suppression of anaphase-promoting complex
(APC) can result in mitotic catastrophe [59] as APC could
degrade cyclin B to promote cells transit from the metaphase
to anaphase [58].

Dis-functionalities of cell cycle checkpoint regula-
tors are vital to initiate mitotic catastrophe. Inhibition of
G2/M checkpoint regulators such as checkpoint kinase 1/2
(Chk1/2), ataxia telangiectasia mutated (ATM), ataxia tel-
angiectasia mutated and Rad3 related (ATR) are known to
induce mitotic catastrophe [60, 61]. Chemotherapies such
as 5-fluorouracil and doxorubicin were reported to trig-
ger mitotic catastrophe through increasing cyclin B1 [62].
CDK1 promotes mitotic catastrophe through inhibiting the
phosphorylation of survivin, a protein that promotes mitotic
progression and inhibits apoptosis [63].

Mitotic catastrophe has been conventionally detected via
continuous observation under microscopy. An automated
fluorescence videomicroscopy assay was developed for the
real-time detection of mitotic catastrophe in a high-through-
put fashion[64].

Mitotic catastrophe in response to DNA damage imposed
redox imbalance

Mitotic catastrophe is triggered by DNA damage signals
that can be sensed by p53. P53 is a gatekeeper of genome
integrity and inhibits mitotic catastrophe through various
pathways including, e.g., transcriptionally inhibiting CDK1
and cyclin B1 [65, 66], and upregulating the expression of
CDKI1 inhibitors such as p21 [67]. Thus, mitotic catastrophe
occurs predominantly in p53-deficient cells as a result of
genomic instability [68]. On the other hand, p53 may also

play a promotive role in mitotic catastrophe as it could tran-
scriptionally repress surviving [69].

Clinical relevance of mitotic catastrophe in cancer
treatment

Induction of mitotic catastrophe such as anti-mitotic agents
has been implicated as an efficient strategy for cancer man-
agement. Microtubule destabilizers such as vinblastine
[70] and vincristine [71] have been used in the treatment
of hematological malignancies; microtubule stabilizers
such as taxanes drugs paclitaxel [72] and docetaxel [73]
have been applied in clinics for treating ovarian, breast can-
cer, peritoneal malignancy, and for treating breast cancer,
ovarian cancer, and non-small cell lung cancer, respectively
(Table 1). Drugs taking advantages of mitotic catastrophe
and are being under clinical trials include BI2536) for treat-
ing non-small cell lung cancer [74], ON01910) for treating
chronic lymphocytic leukemia [75], and MK-1775) for the
treatment of acute lymphoblastic leukemia and nasopharynx
cancer [76] (Table 1).

Programmed cell death associated
with redox imbalance imposed by metabolic
stress

Autophagic cell death
Basics of autophagic cell death

Autophagic cell death is a type of PCD as a result of
autophagy [45]. Autophagy is a regulated catabolic lyso-
somal-dependent process that facilitates cells to eliminate
misfolded proteins, damaged or non-functional cellular com-
ponents, etc. to maintain cellular homeostasis [77]. When
autophagy occurs, cytoplasmic contents are sequestered
by phagophores to form autophagosomes that merge with
lysosomes and form autophagolysomes to degrade engulfed
materials, where ATG proteins and beclin-1 are well-known
regulators of autophagy [78] (Fig. 2). Mammalian target of
rapamycin (mTOR) can inhibit autophagy through suppress-
ing ATG13 and ULK1 [79], where the complex formed by
ATG13, ULK1 and FIP200 plays essential roles in phago-
phore formation and autophagy [79]. Beclin-1 was shown to
induce autophagic cell death by promoting autophagosome
formation [80].

Autophagy is a self-protective phenomenon in response to
cellular stress such as metabolic stress, whereas cells are com-
mitted to death if the cellular stress is irreversible. Autophagic
cell death is featured by the presence of large intracellular

@ Springer
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vesicles, membrane blebbing, enlarged organelles, and deple-
tion of cytoplasmic organelles without chromatin condensation
[81].

Autophagic cell death could be detected through direct
autophagic activity measurement or indirect antibody
(autophagy specific) based analyses such as western blot, fluo-
rescence microscopy and flow cytometry [82].

Autophagic cell death in response to metabolic stress
associated redox imbalance

Metabolic stress is characterized by nutrient, oxygen and
growth factor deprivation [83]. Autophagic cell death is regu-
lated by the endocrine system on nutrient starvation that con-
stitutes a primary source of metabolic stress in cancer cells.
Specifically, glucose concentration in malignant cells is esti-
mated to be 3-to-10 folds lower than that in normal tissues [84,
85]. This nutrient deficiency directly reduces ATP production
and results in excess ROS generation [86].

In response to metabolic stress imposed redox imbalance,
p53 plays dual roles in autophagic cell death depending on its
cellular localization. While nuclear p53 promotes autophagy,
cytoplasmic p53 suppresses it [87]. Nuclear p53 triggers
autophagy by transactivating its target genes [87, 88]. For
example, nuclear p53 promotes autophagy through transacti-
vating TSC2 and AMPK, both of which are upstream regula-
tors of mTOR [88, 89]. P53 can also upregulate the AMPK
activators sestrins ¥2 [90] and the autophagy activator DRAM
[91]. Besides, apoptosis-associated genes under p53 regulation
such as PUMA, BAX, Bnip3, and BAD are also involved in
autophagy [92-94]. On the other hand, cytoplasmic p53 sup-
presses autophagy through binding Beclin-1 that promotes its
ubiquitination and degradation [95].

Clinical relevance of autophagic cell death in cancer
treatment

Impaired autophagy has been associated with many diseases
including human cancers [96]. Inhibitors of autophagy such
as chloroquine and hydroxychloroquine have been proposed
for the treatment of multiple malignancies in clinics despite
the questionable unresolved safety issues [97].

Clinical therapeutic strategies using autophagic cell death
include everolimus [98] and CCI-779 [99] for the treatment
of renal cell carcinoma, as well as vorinostat for treating
cutaneous T-cell lymphoma [100] (Table 1).

@ Springer

Ferroptosis
Basics of ferroptosis

Ferroptosis, an iron-dependent oxidative PCD, was firstly
discovered in 2012 by Brent R. Stockwell et al. [101]. Dif-
ferent from apoptosis, cells undergoing ferroptosis do not
show cell shrinkage and chromatin agglutination, but exhibit
increased lipid peroxidation, elevated ROS, shrinked mito-
chondria, increased mitochondria membrane density and
decreased ridge amount. While inhibitors of cell apoptosis,
autophagy, pyroptosis do not inhibit ferroptosis, this process
can be suppressed by iron chelators, lipophilic antioxidants,
lipid peroxidation inhibitors, and polyunsaturated fatty
acid depletion [102]. Ferroptosis inducers such as erastin
decreases cellular antioxidant capacity through acting on
the glutathione peroxidase (GPXs) [103].

Essential ferroptosis suppressor genes have been identi-
fied that can be used in ferroptosis detection. Glutathione
peroxidase 4 (GPX4), an antioxidant defense enzyme, func-
tions to repair lipid oxidative damage and plays a primary
suppressive role in ferroptosis [104, 105]. Ferroptosis sup-
pressor protein 1 (FSP1) is a GSH-independent ferropto-
sis suppressor [106] that co-operates with coenzyme Q10
[107] and acts in parallel with GPX4 to inhibit ferroptosis
[108]. Several ferroptosis-promotive markers have also been
reported. For example, acyl-CoA synthetase long-chain fam-
ily member 4 (ACSL4) expression was remarkably lower
in ferroptosis-resistant than -sensitive cells which, once
knocked down, inhibited erastin-induced ferroptosis [109].
Other pro-ferroptosis factors include, e.g., cox-2, PTGS2,
NOX1 [110], and transferrin receptor 1 (TfR1) [111]. The
lethal accumulation of lipid peroxides in plasma membranes
as characterized by ferroptosis makes it possible to detect
ferroptosis through determining the amount of lipid perox-
ides in cellular membranes using BODIPY-C11 probe and
flow cytometry [112].

Ferroptosis has two primary pathways, i.e., the canoni-
cal GPX4-meidated GSH-dependent pathway and the newly
identified FSP1-meidated GSH-independent pathway.

GPX4-mediated GSH-dependent pathway When intracel-
lular cystine transport proteins such as erastin are inhibited,
intracellular GSH will be exhausted as a result of substrate
shortage. This will eventually lead to the inactivation of
GPX4, a GSH peroxidase and perhaps the only enzyme that
catalyzes liposome peroxide reduction. When cellular redox
level exceeds a certain threshold, this will result in lipid per-
oxidation accumulation that, ultimately, triggers cell ferrop-
tosis [113, 114] (Fig. 2).

GPX4-mediated GSH-dependent ferroptosis can be initi-
ated by directly eliminating GPX4 using inhibitors such as
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Metabolic disorder associated PCD

Glutamate '\ Cystine
SLC7AN
[ - — @& — . W S — )

1= 7 !

! GSH-dependent ‘

2

5. x

eLIPUOYIOH
oo

2 D
FIP200 1 /4 '-ilﬁ‘ _L 1
\‘ i 4 \‘ Lipid =
N\ \4 ¥ ~ Metaboli - e B > Ferroptosis ‘
Autophagic cell death —_stress T _ROS )

GSH-independent e
e Ubiquinol

(il

Fig.2 Graphic illustration on the crosstalk and differences of 2 exam-
ple metabolic disorder associated PCD events regarding the mecha-
nism and phenotype

squalene synthase, HMG-CoA reductase, and RSL3 [101];
inputting iron in the form of ferrous iron ions, or consuming
GSH. Ferroptosis can also be triggered by inhibiting cystine/
glutamate antiporter, namely system x,~, which is a heter-
odimeric cell surface amino acid antiporter composed of the
twelve-pass transmembrane transporter protein SLC7A11
(xCT) and the single-pass transmembrane regulatory protein
SLC3A2 [115]. System x.~ imports extracellular cysteine
proteinase inhibitor 2 (Cys2) in exchange for intracellular
GSH [101, 116]. Through inhibiting system x,~, cysteine
absorption is inhibited that leads to reduced GSH and GPX4
activity [117].

FSP1-mediated GSH-independent pathway FSP1 was
recently identified as a key component of a non-mitochon-
drial CoQ antioxidant system that acts in parallel to canoni-
cal GPX4-mediated GSH-dependent ferroptosis [108]. In
particular, FSP1 myristoylation allocates itself to the plasma
membrane and lipid droplets where it reduces coenzyme
Q10 (CoQ10) via functioning as an oxidoreductase, and this
results in the generation of a lipophilic radical-trapping anti-
oxidant (RTA) that ultimately halts lipid peroxide propaga-
tion (Fig. 2).

Ferroptosis in response to metabolic stress associated
redox imbalance

Lipid peroxidation is initiated as a result of chain oxidation
of unsaturated lipids due to excess ROS accumulation and
represents a lipid metabolic disorder [118, 119]. Metabolic
stress, in turn, hampers the homoeostasis between fatty acids
synthesis and uptake [120, 121].

The tumor suppressor p53 senses metabolic disor-
der associated redox stress [122] and triggers ferropto-
sis through p53-mediated suppression on system x, . By
exposing p53-deficient H1299 cells to ROS, cell viability
did not alter; yet cells carrying the wildtype p53 underwent

a mortality rate as high as 90% under ROS stress; by treating
cells with ferrostatin 1 (a ferroptosis inhibitor), the mortality
rate of cells dropped about 40% [123], suggesting the role of
p53 played in ferroptosis and ROS stress response. The same
study also reported a negative correlation between p53 and
SLC7A11 [123], implicating that SLC7A11, a core compo-
nent of system x.~, is a p53 target.

Clinical relevance of ferroptosis in cancer treatment

Erastin, the earliest discovered inhibitor, can effectively
inhibit the growth of ovarian tumors cells in mice [124].
Glutathione synthetase inhibitors such as L-Buthionine-
sulfoximine (L-BSO) can inhibit breast tumor growth in
mice via suppressing GSH formation and thus triggering
ferroptosis [125]. Ferroptosis has also been applied in cancer
diagnosis. For instance, a paper published in 2020 identi-
fied a ferroptosis gene panel composed of 8 genes (ALOXS,
CISD1, FTL, CD44, FANCD2, NFE2L2, SLC1AS, GOT1)
that is diagnostic of low-grade glioma [126].

Cisplatin has been applied in clinics for treating solid
tumors through triggering ferroptosis [127] (Table 1).
Sorafenib [128], sulfasalazine [129] and ferumoxytol [130]
have been approved by FDA for the treatment of renal cell
carcinoma and hepatocellular carcinoma, for the treatment of
pancreatic cancer, and for the treatment of leukemia, respec-
tively (Table 1).

Programmed cell death associated
with redox imbalance imposed
by inflammation

Necroptosis
Basics of necroptosis

Necroptosis is a programmed form of necrosis that is charac-
terized by permeable and rupture of cell membranes, numer-
ous cytoplasmic vacuoles containing cellular remnants, and
inflammation [131-133]. It is also accompanied with moder-
ate chromatin condensation and clumping, as well as random
DNA degradation [131-133].

Necroptosis is initiated by the binding of tumor necrosis
factor (TNF) or FAS to their receptors that promotes inter-
actions between RIPK1 and RIPK3 [134, 135], followed by
activation of these kinases that recruits MLKL to form the
necrosome [136] (Fig. 3). RIPK3 phosphorylates MLKL at
threonine 357 and serine 358 to enhance its oligomerization;
and then MLKL oligomers are translocated from the cytosol
to cell membranes to disrupt membrane integrity, triggering
necroptosis [137].
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Necroptosis can be detected by examining the loss of
membrane integrity through the use of cell-impermeable
DNA binding dyes, measuring the release of cellular con-
tents such as LDH, HMGBI1 and cyclophilin A via west-
ern blot, evaluating mitochondrial potential by fluorescent
probes, and observing necroptosis morphology features
through electron microscopy [138]. Alternatively, necrop-
tosis can be detected with the aid of necroptosis specific
inhibitors such as necrostatin-1 [139].

Necroptosis in response to inflammation associated redox
imbalance

Inflammation and oxidative stress are interconnected. It was
shown that inflammatory macrophages release proteins in
the glutathionylated form such as PRDX2 [140]. Extracel-
lular PRDX2 mediates inflammation in a redox-dependent
manner through the release of TNFa, a primary tumor
necrosis factor involved in inflammation, from macrophages
[140].

In response to inflammation associated oxidative stress,
p53 is accumulated in the mitochondrial matrix that
enhances the opening of mitochondrial permeability transi-
tion pore (PTP) via direct binding of p53 with a PTP regu-
lator cyclophilin D (cypD), and this leads to mitochondrial
swelling and necroptosis induction [141]. Besides, p53 tran-
scriptionally upregulates the IncRNA NRF (necrosis-related
factor) that enhances PIRK1/PIRK3 translation via repress-
ing miR-873, and elevated RIPK1/RIPK3 is a direct trigger
of necroptosis [142].

Clinical relevance of necroptosis in cancer treatment

Triggering necroptosis has been recently proposed as a
novel onco-therapeutic strategy, with the feasibility still
being controversial. Conventional necroptosis inducers or
chemotherapeutic agents can trigger necrosis in many cancer
cells especially colorectal cancers and hematopoietic tumors
such as leukemia and multiple myeloma [143]. Traditional
chemotherapy and molecular targeted drugs such as VEGFR
inhibitors and m-TOR inhibitors have recently been identi-
fied as cancer necroptosis triggers and approved for clinical
trials [144, 145].

Natural products such as shikonin have been shown capa-
ble of triggering necroptosis and used in clinics for bladder
cancer treatment [146]. Pazopanib [147] and ponatinib [148]
have received FDA approval for treating advanced renal cell
carcinoma and soft-tissue sarcoma, and for treating chronic
myeloid leukemia. respectively (Table 1).
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Pyroptosis
Basics of pyroptosis

Pyroptosis is another proinflammatory form of PCD that
relies on the enzymatic activity of inflammatory proteases
belonging to the cysteine-dependent aspartate-specific pro-
tease (caspase) family [149]. Destructed cell membrane
structure integrity and release of intracellular substances
into the extracellular space are the most notable features
of pyroptosis. With the activation of caspases-1, ostioles
are formed on cell membrane that leads to the outflow of
intracellular contents including pro-inflammatory cytokines,
intracellular ions, endogenous ligands, alarmins etc., and
finally contributes to cell dissolvement. This feature is simi-
lar with caspase-independent PCD such as necroptosis, yet
differs significantly from apoptosis that maintains intact cell
membrane structure.

Both pyroptosis and necroptosis form pores on the cell
membrane surface whereas apoptosis does not. Necroptosis
is more like a burst of cells, and cells undergoing pyroptosis
become tabular as a result of cytoplasm leak to the extra-
cellular space. Both necroptosis and pyroptosis require the
oligomerization and transfer of their execution proteins to
the plasma membrane. However, during necroptosis, mixed
lineage kinase domain like pseudokinase (MLKL) triggers
specific ion influx through inducing the ion selective chan-
nel, which leads to cell osmotic swelling and burst; during
pyroptosis, gasdermin D (GSDMD) forms holes that lack ion
specificity and selectivity, and this does not lead to increased
intracellular osmotic pressure nor consequent cell inflate or
burst [150].

Pyroptosis can be detected via western blot using antibod-
ies against GSDMD (53 Kd) that is cut into 30 Kd pieces
during pyroptosis [151]. It can also be assayed through
ELISA by detecting IL-1p and IL-18 that are released into
cells when pyroptosis occurs [149]. Pyroptosis can also be
detected through detecting the activity of caspase-1 and
caspase-4 using the corresponding kits based on spectro-
photometry [151].

Pyroptosis can occur via canonical caspase-1 depend-
ent pyroptosis or non-canonical caspase-1 independent
pyroptosis.

Caspase-1 dependent pyroptosis In response to pathogen
associated molecular patterns (PAMPs) such as viral patho-
gens toxins, bacteria, parasites, etc. and danger associated
molecular patterns (DAMPs) such as uric acid sodium and
silicon dioxide, pattern recognition receptors (PRRs) are
triggered to activate caspase-1 (Fig. 3). PRRs can be cat-
egorized into two classes based on cellular localization.
While C-type lectin receptors (CLRs) and Toll-like recep-
tors (TLRs) are present on cell membranes to sense exter-
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nal stimuli, the nucleotide-binding domain and leucine-rich
repeat-containing (NLR) proteins, the AIM2-like receptor
(ALR), RIG-I-like receptor (RLR) are localized inside the
cell to detect signals issued by PAMPs or DAMPs [152].
The canonical inflammasome or namely pyroptosome
that participates in the caspase-1-dependent pathway is com-
posed of apoptosis-associated speck-like protein (ASCs),
PRRs such as NLRs and ALRs, and procaspase-1 [153].
ASCs contain a caspase-activation and recruitment domain
(CARD) and are recruited by NLRs/ALRs to form a complex
called ‘SPECK’ that takes on the most important function of
pyroptosome, i.e., activating caspase-1 [153, 154]. The NLR
family is further divided into NLR family PYD-containing
protein (NLRP) and NLR family CARD-containing protein
(NLRC) receptors based on differences in the N-terminal
domain composition [153]. Among all NLR family mem-
bers, NLRP1, NLRP3, NLRC4 are the most intensively stud-
ied in pyroptosis, where NLRP3 relies on ASC to recruit
procaspase-1, and NLRP1 and NLRC4 do not [155].

Caspase-1 independent pyroptosis The non-canonical cas-
pase-1 independent pathway is primarily induced by cas-
pase-4/5/11 other than caspase-1. Similar with caspase-1,
caspase-4/5/11 also harbor the CARD domain at the N ter-
minal. Caspase-4/5/11 directly interact with lipopolysaccha-
ride (LPS) to form non-canonical pyroptosome that directly
lyses the substrate and triggers pyroptosis [156] (Fig. 3).
Activated caspase-11 can induce the formation of cell mem-
brane pores through GSDMD cleavage, and the produced N
terminus can also activate caspase-1 [157], rendering cas-
pase-11 another trigger of caspase-1 activation and bridging
the gap between canonical caspase-1 dependent and non-
canonical caspase-1 independent pathways. Caspase-4 and 5
are crucial in caspase-1-independent pyroptosis in humans.
While caspase-4 self-activates through direct interactions
with LPS, caspase-5 is specifically regulated by IFN—y and
LPS [158, 159].

Caspase-3 has also been reported capable of mediat-
ing pyroptosis (Fig. 3B). As caspase-3 is both an execu-
tioner of apoptosis and an upstream regulator of pyroptosis
[150, 160], pyroptosis and apoptosis are interconnected. In
response to TNF-a or chemotherapeutic agents, GSDME is
directly cleaved by caspase-3, and the produced GSDME-
N fragment takes on a similar function as the activated
GSDMD to penetrate cell membrane and trigger pyroptosis
[161].

Much more details of non-canonical caspase-1 independ-
ent pyroptosis still await to be deciphered.

Pyroptosis in response to inflammation associated redox
imbalance

Pyroptosis is typically triggered on pathogen invasion such
as viruses, bacteria and parasites [162]. ROS play essential
roles in host immune defenses against pathogen invasion
[163, 164]. Apart from toxic molecules expressed by patho-
gens, excessive ROS production by activated immune cells
on pathogen invasion creates cytotoxic signals that can be
sensed by p53 [163-165]. The p53 protein plays essential
roles in pyroptosis through up-regulating caspase-1 [166,
167].

Clinical relevance of pyroptosis in cancer treatment

It has been proved that ZnO nanoparticles (ZnO-NPs), iver-
mectin, etc., and some chemotherapy drugs can all induce
pyroptosis in tumor cells. Specifically, high concentrations
of ZnO-NPs can activate pyroptosis in lung cancer cells
[168].

Drugs capable of triggering pyroptosis and applied in
clinics include ivermectin for the treatment of breast cancer
[169], a-NETA for the treatment of ovarian [170], and cis-
platin for treating solid tumors [171], respectively (Table 1).

Cold atmospheric plasma being redox level
controller

Cold atmospheric plasma (CAP), being the fourth state
of matter, is composed of ions, electrons, neutral parti-
cles and photons [172, 173]. It is featured by its multi-
modality nature, with the anti-cancer efficacy being firstly
reported in 2007 [174]. Though the underlying mechanism
is not fully understood, it has been widely accepted that
the selectivity of CAP against cancer cells relies on its
roles in modulating cellular redox level [1]. By tuning cell
oxidative level, CAP could make malignant cells more
easily exceed the cell death threshold without breaking
the redox homeostasis of normal cells [175]. Cancer cells
have higher baseline ROS levels than healthy cells and are
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thus more sensitive to elevated ROS production and turno-
ver on CAP treatment. The exceeding of the anti-oxidant
capacity in cancer cells forced them undergoing various
PCD programs with apoptosis being the most intensively
studied [172, 173]. Specifically, interactions between H,0,
and NO, (components that stably exist in CAP-activated
medium) generate peroxynitrite (ONOO™) that can be pro-
tonated to peroxynitrous acid (ONOOH) when approach-
ing membrane-associated proton pumps, and decomposed
into -NO, and -OH radicals; -OH reacts with H,0, to
generate peroxynitric acid (O,NOOH) and peroxynitrate
(O,NOOQO7) that lead to the generation of primary singlet
oxygen (102); primary 1O2 triggers the production of high
concentrations of secondary '0,, with H,0, and ONOO
being the source for sustained secondary 'O, generation,
inactivates the protective membrane-associated catalase
in tumor cells, and promotes aquaporin-mediated influx of
extracellular H,0,, all of which ultimately initiate redox
imbalance triggered apoptosis [1, 176, 177].

P53 is a pivotal switch controlling cells’ fate towards
different PCD programs [178] in response to redox imbal-
ance as a result of various stimuli including DNA damage
signal, metabolic stress, and inflammation (Fig. 4). Thus,
these diverse types of PCD events are interconnected via
this shared controller. Through gene expression profiling
and downstream functional studies, CAP was found to
be able to activate the expression of p53 pathway-related
genes [179], rendering CAP a potential modulator of cells’
life/death fate [1] that is of critical clinical relevance if
applied in cancer treatment.

On the other hand, one stimulus may potentially trig-
ger multiple PCD events. For instance, ivermectin could
simultaneously trigger pyroptosis, apoptosis and necrop-
tosis in MDA-MB-231 cells through generating ROS, acti-
vating cytoplasmic calcium/calmodulin kinase II (CaMK
IT), opening mitochondrial permeability transition pore
(MPTP) and forming caspase-1 mediated NLRP3 inflam-
matory corpuscle [180]. Therefore, CAP-induced selectiv-
ity against cancer cells may be resulted from multiple PCD
programs far beyond just apoptosis that deserves intensive
investigations.

Conclusion

PCD events are fundamental to the maintenance of cell redox
homeostasis, normal tissue development and human health.
Signals triggering redox imbalance and consequently PCD
might be originated from DNA damage signaling such as in
apoptosis, paraptosis and mitotic catastrophe, might be from
metabolic disorder such as in autophagic cell death and fer-
roptosis, and might be from inflammation such as in necrop-
tosis and pyroptosis. As uncontrolled cell proliferation,
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Fig.4 Conceptual illustration on CAP being a redox controller in
resembling various stress signals in the trigger of varied PCD events
via p53

metabolic reprogramming and tumor-associated inflamma-
tion are essential cancer hallmarks, disordered PCD events
as a result of disrupted redox homeostasis are essential for
cells to become malignant that, once being under control,
might push chaotic cells towards the death state or rewire
them towards the healthy state.

CAP could generate and deliver controlled doses of reac-
tive species to cells that selectively triggers redox imbal-
ance in malignant cells. Thus, CAP represents a promising
onco-therapeutic approach, alone or being combined with
other therapeutic strategies, through selectively inducing
PCD events in cancer cells that is not limited to apopto-
sis. With our incremental understandings on varied types of
PCD, underlying mechanism and associated disorders, it is
the time to explore other CAP-triggered PCD events beyond
apoptosis. Importantly, these PCD events orchestrate the
selectivity of CAP against cancer cells through cross-talking
due to, e.g., the shared regulator p53. Thus, the efficacy of
CAP as aredox controller and an emerging onco-therapeutic
strategy is a synergistic result from multiple PCD events
that relies on appropriate dosing. Deciphering the precise
mechanism underlying the efficacy of CAP against a par-
ticular type of cancer type and ultimately translating it into
clinics require intensive efforts from both bench and bed
sides and involve experts from multiple research domains
such as biology, chemistry, physics, bioinformatics, materi-
als and medicine.
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