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Abstract
Acetaminophen (APAP)-induced acute liver failure (ALF) is a life-threatening disease with only a few treatment options 
available. Though extensive research has been conducted for more than 40 years, the underlying pathomechanisms are not 
completely understood. Here, we studied as to whether APAP-induced ALF can be prevented in mice by silencing the BH3-
interacting domain death agonist (Bid) as a potential key player in APAP pathology. For silencing Bid expression in mice, 
siRNABid was formulated with the liver-specific siRNA delivery system DBTC and administered 48 h prior to APAP expo-
sure. Mice which were pre-treated with HEPES (vehicleHEPES) and siRNALuci served as siRNA controls. Hepatic pathology 
was assessed by in vivo fluorescence microscopy, molecular biology, histology and laboratory analysis 6 h after APAP or PBS 
exposure. Application of siRNABid caused a significant decrease of mRNA and protein expression of Bid in APAP-exposed 
mice. Off-targets, such as cytochrome P450 2E1 and glutathione, which are known to be consumed under APAP intoxica-
tion, were comparably reduced in all APAP-exposed mice, underlining the specificity of Bid silencing. In APAP-exposed 
mice non-sterile inflammation with leukocyte infiltration and perfusion failure remained almost unaffected by Bid silencing. 
However, the Bid silencing reduced hepatocellular damage, evident by a remarkable decrease of DNA fragmented cells in 
APAP-exposed mice. In these mice, the expression of the pro-apoptotic protein Bax, which recently gained importance in 
the cell death pathway of regulated necrosis, was also significantly reduced, in line with a decrease in both, necrotic liver 
tissue and plasma transaminase activities. In addition, plasma levels of HMGB1, a marker of sterile inflammation, were 
significantly diminished. In conclusion, the liver-specific silencing of Bid expression did not protect APAP-exposed mice 
from microcirculatory dysfunction, but markedly protected the liver from necrotic cell death and in consequence from sterile 
inflammation. The study contributes to the understanding of the molecular mechanism of the APAP-induced pathogenic 
pathway by strengthening the importance of Bid and Bid silencing associated effects.
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Introduction

Acute liver failure (ALF) is a clinical syndrome character-
ized by peripheral vasodilation, encephalopathy and coagu-
lopathy culminating in multi-organ dysfunction and death 
[1]. There are two main causes for ALF in Europe: hepatitis 

and medical intoxication [2, 3]. In the USA and other west-
ern countries the most frequent cause for ALF with about 
40% is the acetaminophen (acetyl-para-aminophenol, 
APAP)—intoxication [2, 4–7]. Especially, the combination 
of drugs with APAP leads to an unintentional and chronic 
APAP overdose [8].

The pathomechanisms of APAP are still not completely 
understood [9–15]. It is widely accepted that APAP is metab-
olized in the liver by cytochrome P450 family to N-acetyl-p-
benzoquinone (NAPQI), which consumes glutathione [12]. 
When this pathway is saturated, NAPQI generates covalent 
protein adducts especially on mitochondrial proteins and 
leads to mitochondrial dysfunction [12, 16–18]. These pro-
tein adducts seem to be the most relevant cause for APAP 
toxicity [19–21]. Further, a sterile inflammation and also a 
perfusion deficit are described [22, 23], which may lead to 
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APAP-induced liver damage. Until now, it is not clear which 
form of cell death prevails in APAP toxicity. Accordingly, 
there are studies, which show that APAP-induced liver cell 
death is commonly brought upon by necrosis [15, 24–26], 
however some studies postulate that apoptosis may occur as 
well [27, 28].

Accordingly, APAP-induced apoptosis is separated in two 
major pathways, the death receptor-dependent or extrinsic 
pathway and the mitochondrial-dependent or intrinsic path-
way [29–31]. It is characterized by ATP-dependent bio-
chemical mechanisms and apparent morphological changes 
such as cell shrinking, DNA fragmentation and membrane 
budding [31]. The apoptotic pathway is linked to the BH3-
interacting domain death agonist (Bid), a BH3 only protein, 
which belongs to the Bcl-2 family and has a pro-apoptotic 
effect. Bid is commonly activated through death receptor 
dependent caspase activation, especially caspase-8 [32] or, 
as a recent study suggested [33], also by other pathomecha-
nisms including mitochondria-related oxidative stress. Trun-
cated Bid, tBid, translocates to the mitochondria. However, 
at present the molecular events leading to APAP-induced 
liver injury and failure are not fully understood [15, 26, 34]. 
It is known that Bid transfers the peripheral apoptotic signals 
through direct or indirect mechanisms [35–38]. The most 
noted way to pass on apoptotic signals is the activation of the 
pro-apoptotic Bcl-2 family members Bak and Bax [39–41], 
followed by cytochrome c release, which is located in the 
inner mitochondria membrane. This then deteriorates the 
respiratory chain and consequently induces oxidative stress. 
Therefore, mitochondria seem to play an important role in 
APAP-induced liver damage.

Several studies already showed strategies to inhibit 
APAP-induced ALF, which however mainly focused on the 
prevention of APAP-induced liver apoptotic cell death by 
gene manipulating approaches [28, 42, 43]. For instance, 
Badmann et al. [43] demonstrated that gene ablation of the 
pro-apoptotic Bim protein (another Bcl2 family member) 
substantially protected mice from APAP-induced liver injury 
[43].

Furthermore, it was shown that liver sinusoidal endothe-
lial cells of Bid knockout mice are significantly protected 
against APAP toxicity [42]. Also silencing of Bid expression 
in vitro with short interfering RNA (siRNA) protected liver 
sinusoidal endothelial cells from cytotoxicity and support 
the therapeutic hypothesis, that targeting Bid could prevent 
apoptosis-dependent liver injury [42]. SiRNA therapeu-
tics hold great therapeutic potential, as it is now possible 
to design and chemically synthesize siRNAs for the safe 
and efficient targeting of specific genes by RNA interfer-
ence [44–46]. In addition, targeting gene expression by 
RNA interference is transient, and can be applied ad hoc 

in adult mice, thereby reducing the effects of compensatory 
gene regulation or variable genetic background associated 
with studies using gene-modified organisms. Therefore, 
we investigated whether silencing Bid in the liver by short 
term siRNA application would have hepatoprotective effects 
in vivo. To inhibit Bid expression in the liver, Bid targeting 
siRNAs were formulated with a liver-specific siRNA deliv-
ery vehicle, DBTC [47] and tested in a murine model for 
APAP-induced liver injury.

Materials and methods

Animals and in vivo experiments

Male C57BL/6 J mice (Charles River Laboratories, Sulzfeld, 
Germany) were used at 6–8 weeks of age with a body weight 
of approximately 20–30 g. Animals were provided water 
and standard laboratory chow ad libitum. During the night 
before APAP application, mice were fasted to reduce hepatic 
glutathione levels. The experimental protocol was approved 
by the local committee (LALLF 7221.3-1.1-016/14) and all 
animals received human care according to the German leg-
islation on protection of animals and the Guide for the Care 
and Use of Laboratory Animals (NIH publication 86–23 
revised 1985).

Mice (n = 60) were injected either with in phosphate-buff-
ered saline (PBS) dissolved APAP purchased from SIGMA 
(99% pure; 300 mg/kg body weight intraperitoneally (bw 
i.p.) for induction of ALF (n = 30) or with PBS (n = 30) 
as control and were studied 6 h thereafter (+ 6 h) as eluci-
dated in Fig. 1a. The animals received 48 h prior to injec-
tion of either APAP or PBS a liver-specific small interfering 
RNA delivery system (DBTC lipoplex), prepared either with 
Bid siRNA (DBTC/siRNABid, n = 20), with non-targeting 
control siRNA (DBTC/siRNALuci, n = 20) or with vehicle 
(vehicleHEPES, n = 20), which served as controls regarding 
the silencing regimen. For induction of ALF, concentra-
tions of APAP and PBS were used in accordance with work 
published previously by other groups [34, 48]. The choice 
to pre-treatment 48 h prior APAP induction is based on the 
previous study of our group [49]. Since APAP-induced liver 
cell death was maximally pronounced at + 6–12 h [34], we 
used this time point for the readout of liver damage.

Oligonucleotides

The siRNA molecules used in this study are blunt-ended, 
double-stranded RNA oligonucleotides (Table 1), stabilized 
by alternating 2′-O-methyl or 2′-F-fluoro modifications, 
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respectively, on both strands as previously described [50, 
51] and were synthesized by Biospring (Frankfurt a.M., Ger-
many). For in vivo application, siRNAs were formulated 
with DBTC, a liver specific siRNA delivery system devel-
oped by Silence Therapeutics GmbH for targeting specifi-
cally the liver [47].

Intravital fluorescence microscopy

For in vivo analysis of hepatocellular apoptosis, intrahepatic 
leukocyte accumulation and sinusoidal perfusion failure, flu-
orescence microscopy was performed 6 h after APAP expo-
sure in ketamine/xylazine-anesthetized animals (75/25 mg/
kg [bw, ip]) in accordance with work previously published 
by our group [52, 53]. Further details are provided in sup-
plemental materials and methods.

Sampling and assays

After in vivo microscopy, animals were exsanguinated by 
puncture of the vena cava inferior for immediate separation 
of EDTA plasma. The degree of hepatic disintegration was 
assessed by spectrophotometric determination of plasma ala-
nine aminotransferase (ALT) and aspartate aminotransferase 
(AST) activities using commercially available reaction kits 
(Roche Diagnostics, Mannheim, Germany). Cyclophilin 
A (indicator for necrotic cell death) and HMGB1 (indica-
tor for necrotic cell death and sterile inflammation) were 
measured using ELISA Kits according to the manufacturer´s 
instructions (HMGB1: IBL International GmbH, Hamburg, 

Germany and cyclophilin A: LSBio, LifeSpab BioScience, 
Inc., Seattle, WA). Liver tissue was sampled for Western 
blot, real time-PCR as well as hepatic GSH analysis and 
histology.

Real time‑PCR (RT‑PCR) analysis

Approximately 20 mg of tissue was homogenized in a 
Mixer Mill MM 301 (Retsch GmbH, Haan, Germany) 
using tungsten carbide beads (Qiagen). Total RNA was 
isolated via the Invisorb Spin Tissue RNA Mini Kit 
(Invitek, Berlin, Germany). Depending on the tissue, 
25–100 ng total RNA was used for quantitative TaqMan 
Real Time (RT)-PCR with the amplicon set]s (for Bid, 
cytochrome P450 2E1 (cyp2E1), ApoB, see Table  2) 
obtained from BioTez GmbH, Berlin, Germany: The 
TaqMan RT-PCR reactions were carried out with an ABI 
PRISM 7700 Sequence Detector (Software: Sequence 
Detection System v1.6.3 (ABI)) or StepOnePlus™ RT-
PCR Sytem (ABI) using a standard protocol for RT-PCR 
as described previously [50] and probes at a concentration 
of 300 and 100 nM respectively. TaqMan data were calcu-
lated by using the comparative CT method.

Western blot analysis

Target protein expression was assessed by Western blotting 
of whole tissue lysates. Snap frozen tissues were homog-
enized in lysis buffer (10 mM Tris pH 7.5, 10 mM NaCl, 

Table 1   List of siRNA 
molecules: mA, mU, mC, mG: 
2´O-Methyl RNA and fA, fU, 
fC, fG: 2′deoxy-2′-fluoro RNA

siRNA target Guide strand Passenger strand

Bid 5′mUfUmUfGmAfG-
mAfUmCfAmGfCmC-
mAmUfUmCfGmG 3′

5′fCmCfGmAfAmUfGmGfCmUfGmAfUmCfUmCfAmAfA 3′

Luciferase 5′mUfCmGfAmAfGmU-
fAmUfUmCfCmGfC-
mGfUmAfCmGfUmG-
fAmU 3′

5′fAmUfCmAfCmGfUmAfCmGfCmGfGmAfAmUfAmCfU-
mUfCmGfA 3′

Table 2   List of amplicon sets Target Amplicon sets

Bid mBID:462U20 ACA​GCT​AGC​CGC​ACA​GTT​CA
mBID:552L22 GGC​TGT​CTT​CAC​CTC​ATC​AAGG​
mBID:493U28FL CTG​TCG​GAG​GAA​GAC​AAA​AGG​AAC​TGCC​

Cyp2E1 mCYP2E1:563U22 ATA​TGC​CCT​ACA​TGG​ACG​CTGT​
mCYP2E1:652L19 TGT​CTC​GGG​TTG​CTT​CGT​G
mCYP2E1:603U28L ATT​CAT​CAA​CCT​CGT​CCC​TTC​CAA​CCTG​

ApoB mApoB:2889U22 AAA​GAG​GCC​AGT​CAA​GCT​GTTC​
mApoB:2966L22 GGT​GGG​ATC​ACT​TCT​GTT​TTGG​
mApoB:2916U29FL CAG​CAA​CAC​ACT​GCA​TCT​GGT​CTC​TACCA​
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0.1 mM EDTA, 0.5% Triton-X 100, 0.02% NaN3), and 
0.2 mM PMSF (a protease inhibitor cocktail), incubated 
for 30 min on ice and centrifuged for 10 min at 4 °C and 
10,000×g. Protein contents were assayed by the bicin-
choninic acid method (Pierce Biotechnology) with 2.5% 
BSA (Pierce Biotechnology) as standard. On 14% SDS gels, 
40 µg protein from liver tissue was separated and transferred 
to a polyvinyldifluoride membrane (Immobilon-P; Milli-
pore). After blockade with 2.5% BSA (Pierce Biotechnol-
ogy), membranes were incubated overnight at 4 °C with 
following antibodies: a mouse monoclonal anti-Bax (1:250, 
BD Pharmingen, Heidelberg, Germany), a mouse monoclo-
nal anti-bcl2 (1:500, BD Pharmingen), a mouse monoclonal 
anti-Bid (1:1000, Santa Cruz Biotechnology, Texas, USA) 
and a mouse monoclonal anti-ß-actin (1:20,000; Sigma-
Aldrich, Taufkirchen, Germany) or rabbit alpha-actinin anti-
body (1:500, Cell Signaling, Frankfurt) for loading control. 
Afterwards, secondary peroxidase-linked anti-mouse anti-
bodies (Bax and Bcl2; 1:20,000; ß-actin; 1:60,000) or anti-
rabbit antibodies (1:40,000) were applied. Protein expression 
was visualized by means of luminol-enhanced chemilumi-
nescence (ECL plus; Amersham Pharmacia Biotech) and 
digitalized with ChemiDoc™ XRS System (Bio-Rad Labo-
ratories). Signals were densitometrically assessed (Quantity 
One; Bio-Rad Laboratories) and normalized to ß-actin. Bid 
and alpha-actinin blots were analysed using Stella camera 
system and AIDA image analyser software 4.25 from Ray-
test (Mannheim, Germany).

Hepatic glutathione (GSH) analysis

For measurement of hepatic GSH content, livers were 
homogenized with 50 mM phosphate puffer containing 
1 mM EDTA (pH 6-7) and deproteinized with metaphos-
phoric acid and triethanolamine. The GSH content was 
analysed by using the glutathione assay kit method accord-
ing to the manufacturer’s instructions (Cayman Chemical 
Company, MI, USA) and is given as µmol/g liver tissue.

Histology

Liver tissue was fixed in 4% phosphate-buffered formalin 
for 2–3 days and then embedded in paraffin. 4 µm sections 
were fixed on glass slides and stained with haematoxy-
lin and eosin (H & E). For histomorphometric analysis of 
necrotic tissue images of twenty random low-power fields 
(× 10 magnification, Olympus BX 51, Hamburg, Germany) 
were acquired with a Colour View II FW camera (Col-
our View, Munich, Germany). The quotient of the focal 

necrosis surface to the total liver section area was assessed 
and given in percent.

Statistical analysis

All data are expressed as means + SEM. For statistics, 
one-way analysis of variance, including all groups, was 
used to assess significant differences between groups. 
Subsequently, post hoc pairwise comparison test includ-
ing Bonferroni correction for multiple comparisons was 
applied to identify which group differs to each other. Data 
were considered significant if p < 0.05. Statistical analy-
sis was performed using the SigmaStat software package 
(Jandel Corporation, San Rafael, CA, USA). The results 
were presented with the program SigmaPlot 11.0 (Jandel 
Corporation, San Rafael, CA, USA).

Results

Effects of Bid silencing in mice treated with APAP

In order to evaluate whether hepatic silencing of Bid was 
effective, Bid mRNA and protein levels were assessed 
in liver samples collected 54 h after mice were treated 
with DBTC/siRNABid formulation by i.v. administration 
(Fig. 1b, c). At this time point, Bid mRNA levels were 
significantly decreased compared to the control groups 
treated with the vehicleHEPES or with non-targeting con-
trol lipoplex, DBTC/siRNALuci (Fig.  1b). Similarly, 
hepatic Bid protein levels were markedly decreased in 
siRNABid-versus vehicleHEPES-treated mice as shown by 
a representative Western blot (Fig. 1c). The quantitative 
densitometric analysis revealed an about 70% reduction 
of Bid protein levels (siRNABid vs. vehicleHepes n = 8 each, 
p = 0.013, data not shown). Furthermore, siRNABid treat-
ment attenuated the APAP-induced upregulation of Bax 
protein expression, as shown by an only twofold rise of 
Bax protein expression versus a three to fourfold rise in 
siRNALuci and vehicleHEPES pre-treated mice (Fig.  2a, 
p < 0.05 vs. siRNALuci). Bcl2 protein expression was only 
slightly increased in livers of siRNABid pre-treated mice 
while APAP caused a 1.5-to twofold rise in siRNALuci 
and vehicleHEPES pre-treated mice (Fig. 2b). To evalu-
ate whether Bid silencing before APAP exposure has the 
potential for off-target effects, we investigated hepatic 
cyp2E1 mRNA expression and hepatic GSH content. APAP 
exposure led to a reduction of relative cyp2E1 mRNA 
expression in all three groups with comparable values 
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in vehicleHEPES/APAP-(0.80 ± 0.07), siRNALuci/APAP-
(0.85 ± 0.07; p = 0.007) and siRNABid/APAP-(0.78 ± 0.07) 
exposed mice when compared to PBS-exposed mice 
(relative cyp2E1 mRNA expression  1.15 ± 0.09 at 
average). Similarly, the content of hepatic GSH with 
6.6 ± 0.1 µmol/g liver tissue in the siRNABid/APAP group 
was almost unchanged when compared to values of the 
vehicleHEPES/APAP (6.3 ± 0.05  µmol/g) or siRNALuci/
APAP (6.5 ± 0.06 µmol/g) groups.

Fig. 1   a Schematic illustration of the experimental design and b 
quantitative RT-PCR analysis of Bid mRNA expression in liv-
ers of treated C57BL/6  J mice (n = 60). All animals received 42  h 
prior to injection of either APAP (n = 30) or PBS (n = 30, 300  mg/
kg body weight per mice intraperitoneally (bw i.p.)) a liver-specific 
small interfering RNA delivery system (DBTC/siRNABid (n = 20) 
or DBTC/siRNALuci (n = 20) or DBTC/vehicleHEPES (n = 20)). For 
the control group we did the same pre-treatment but with equivalent 
volumes of phosphate-buffered saline (PBS) instead of APAP. Mice 
were studied 6 h thereafter (+6 h). c Representative western blot of 
the hepatic Bid protein expression with loading control of actinin 
in livers of DBTC/vehicleHEPES + APAP-(n = 4) and DBTC/siR-
NALuci + APAP-(n = 4) treated mice. Signals were corrected to that of 
ApoB. Values are given as mean + SEM; ANOVA, post hoc pairwise 
comparison tests, Bonferroni correction: *p < 0.05 versus DBTC/siR-
NALuci; §p < 0.05 versus DBTC/vehicleHEPES

Fig. 2   Representative western blot images (upper panels) and quan-
titative analysis of hepatic protein expression of a Bax and b Bcl2 
in livers of treated C57BL/6 J mice (n = 60). Signals were corrected 
to that of ß-actin. All animals received 42  h prior to injection of 
either APAP (n = 30) or PBS (n = 30, 300  mg/kg body weight per 
mice intraperitoneally (bw i.p.)) a liver-specific  small interfering 
RNA delivery system (DBTC/siRNABid (n = 20) or DBTC/siRNALuci 
(n = 20) or DBTC/vehicleHEPES (n = 20)). For the control group we 
did the same pre-treatment but with equivalent volumes of phosphate-
buffered saline (PBS) instead of APAP. Mice were studied 6 h there-
after (+ 6  h). Values are given as mean + SEM; ANOVA, post hoc 
pairwise comparison tests, Bonferroni correction: *p < 0.05 versus 
DBTC/siRNALuci
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Bid silencing decreased APAP‑induced necrotic cell 
death and sterile inflammation

Hepatocellular DNA fragmentation was almost absent in livers 
of PBS-treated mice, while APAP caused a dramatic rise in 
cell death, evident by the high number (200–300 hepatocytes/
mm2) with DNA fragmentation in siRNALuci and vehicleHEPES 
pre-treated control mice (Fig. 3a, right panel, p < 0.05 vs. 

PBS). Administration of siRNABid significantly reduced the 
APAP-associated cell death to only approx. 70 cells/mm2 
(Fig. 3a, p < 0.05 vs. PBS, siRNALuci and vehicleHEPES). The 
reduction of cell death by Bid silencing let to a general reduc-
tion of typical signs of liver damage. This is illustrated by a sig-
nificant reduction of necrotic tissue in liver sections (Fig. 3b, 
p < 0.05 vs. PBS, siRNALuci and vehicleHEPES) and a decrease 
in the plasma levels of the transaminases ALT and AST when 

Fig. 3   Quantitative analysis of a DNA fragmented hepatocytes as 
well as representative images of intravital fluorescence microscopy 
(right panel; original magnification × 200) and of b necrotic tissue 
area (in %) as well as representative H&E stained liver specimen 
(right panel; original magnification × 100). C57BL/6 J mice (n = 60) 
received 42  h prior to injection of either APAP (n = 30) or PBS 
(n = 30, 300 mg/kg body weight per mice intraperitoneally (bw i.p.)) 
a liver-specific small interfering RNA delivery system (DBTC/siRN-

ABid (n = 20) or DBTC/siRNALuci (n = 20) or DBTC/vehicleHEPES 
(n = 20)). For the control group we did the same pre-treatment but 
with equivalent volumes of phosphate-buffered saline (PBS) instead 
of APAP. Mice were studied 6 h thereafter (+ 6 h). Values are given 
as mean + SEM; ANOVA, post hoc pairwise comparison tests, Bon-
ferroni correction: #p < 0.05 vs. PBS; *p < 0.05 versus DBTC/siR-
NALuci; §p < 0.05 versus DBTC/vehicleHEPES
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compared to mice treated with control siRNAs (Fig. 4a, b). 
The plasma concentration of HMGB1, a strong indicator of 
necrotic cell death and sterile inflammation, was also sig-
nificantly reduced in siRNABid-treated APAP-exposed mice 
(Fig. 4c, p < 0.05 vs. siRNALuci). Furthermore, the concentra-
tion of cyclophilin A tended to be lowest in siRNABid-treated 
mice (Fig. 4d).

Bid silencing did not affect APAP‑induced 
non‑sterile inflammation and sinusoidal perfusion 
failure

In vivo microscopy of livers of APAP-exposed mice revealed 
characteristic features of acute non-sterile inflammation 
(Fig. 5a–c) with markedly increased numbers of both roll-
ing and adherent leukocytes in postsinusoidal venules 
(Fig. 5a, b, p < 0.05 vs. PBS) as well as of tissue-infiltrating 

Fig. 4   Plasma activities of a alanine aminotransferase (ALT) and 
b aspartate aminotransferase (AST) as well as plasma concentra-
tions of c HMGB1 and of d cyclophilin A. C57BL/6 J mice (n = 60) 
received 42  h prior to injection of either APAP (n = 30) or PBS 
(n = 30, 300 mg/kg body weight per mice intraperitoneally (bw i.p.)) 
a liver-specific small interfering RNA delivery system (DBTC/siRN-
ABid (n = 20) or DBTC/siRNALuci (n = 20) or DBTC/vehicleHEPES 

(n = 20)). For the control group we did the same pre-treatment but 
with equivalent volumes of phosphate-buffered saline (PBS) instead 
of APAP. Mice were studied 6 h thereafter (+ 6 h). Values are given 
as mean + SEM; ANOVA, post hoc pairwise comparison tests, Bon-
ferroni correction: #p < 0.05 versus PBS; *p < 0.05 versus DBTC/siR-
NALuci
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leukocytes (Fig. 5c, p < 0.05 vs. PBS) when compared to 
PBS-treated mice. APAP-induced non-sterile inflammation 
as assessed by intrahepatic leukocyte flow behaviour did 
not significantly differ between the different siRNA treated 
groups (Fig. 5a–c).

Next to non-sterile inflammation, livers of APAP-exposed 
mice revealed a marked sinusoidal perfusion failure. Of 
interest, perfusion deficit was highest in vehicleHEPES and 
siRNALuci pre-treated mice with approx. 32% non-perfused 
(Fig. 5d, right panel, p < 0.05 vs. PBS) sinusoids, while 
siRNABid pre-treated mice showed ~ 20% less perfusion 
failure (Fig. 5d, right panel).

Discussion

The worldwide leading cause of acute liver failure (ALF) is 
intoxication by APAP. However, the pathogenesis of hepatic 
injury under APAP treatment is still not completely clari-
fied [15, 22]. On the one hand side, recent studies [34, 54, 
55] discovered that non-sterile inflammation represented by 
infiltration of inflammatory cells occurs in APAP-induced 
liver damage, but is not the main contributor of ALF [22, 
34, 54, 55]. On the other hand, many studies described that 
APAP-induced liver pathology is characterized by sterile 
inflammation wherein the innate immune response is acti-
vated by pathogenic-derived molecules such as HMGB1 [56, 
57]. The present study confirms now that both non-sterile 
and sterile inflammation upon APAP exposure occurs as 
indicated by intrahepatic leukocyte accumulation as well as 
raised HMGB1 plasma concentrations.

Beside inflammation, the microcirculation is deteriorated 
in APAP-induced liver failure [58]. Likewise, hepatic sinu-
soids of APAP-exposed livers showed failure of perfusion. 
This may directly trigger cytotoxic effector mechanisms 
[42, 58] contributing to apoptotic and necrotic cell death. 
Until today, there is ongoing discussion on the predomi-
nant form of cell death in APAP-induced ALF with reports 

on apoptosis, necrosis, necroptosis and regulated necrosis 
[22, 59–61]. Latest research discovered DNA-fragmented 
cells during cell death in regulated necrosis [25, 31, 62], 
a feature that was originally assigned to apoptosis [27, 
28, 33, 63]. In the present study we used bisbenzimide for 
in vivo staining of hepatic tissue, which showed DNA frag-
mentation and condensation, most probably depicting cells 
undergoing apoptosis [27, 28]. At the same time, signifi-
cant increases of plasma AST and ALT activities and the 
presence of large and confluent areas of necrotic tissue in 
APAP-treated mice indicate that also necrosis occurs as an 
additional pathway upon APAP intoxication. In this context, 
it has to be mentioned that male mice -as used in the present 
study- are particular susceptible to APAP-induced ALF and 
showing significantly higher increases of plasma AST and 
ALT activities than female mice [64]. Besides transaminase, 
plasma concentrations of HMGB1 and cyclophilin A were 
significantly increased upon APAP exposure. Necrosis as 
the predominant part of APAP-induced ALF was further 
affirmed by failure of caspase-3 activation (data not shown) 
which was already shown by many other studies [28, 60, 62, 
65]. In case of ATP deficiency cells shift from apoptosis to 
necrosis [33, 66]. Upon APAP-treatment mitochondrial pro-
teins are especially affected [12, 16–18], leading to impaired 
respiratory chain, oxidative stress and in consequence to lack 
of ATP. Thus, cell showing DNA fragmentation will further 
undergo necrotic cell death.

In regulated necrosis newest studies described pathway 
upon APAP treatment, such as translocation of the BH3-
interacting domain death agonist (Bid) and Bcl-2-associated 
X protein (Bax), which were first attributed to apoptosis but 
are now becoming even more important in necrosis [33, 
67–69]. Thus, the marked increase of Bax protein suggests 
that APAP-induced ALF is mainly characterized by necrotic 
signals.

In previous in vivo studies using Bid knockout mice [42] 
and in vitro studies employing Bid silencing [42] it was 
proposed that inhibition of the Bid pathway has therapeutic 
potential to reduce ALF. Although the present study does not 
represent a therapeutic approach, we confirmed and extent the 
current literature by showing that transient liver-specific tar-
geting of Bid expression using liposomal siRNA delivery has 
hepatoprotective effects. This formulation was already used in 
a previous study silencing Fas expression 48 h prior to induc-
tion of ALF [49] and showing a protection against apoptotic 
and necrotic cell death as well as microcirculatory dysfunc-
tion. Several lipid nanoparticles for oligonucleotide delivery 
are currently in preclinical and clinical development [70, 71] 
and the first siRNA lipid nanoparticle has been approved by 
the US Food and Drug administration in August 2018 [72]. 
In addition, N-acetylgalactosamine (GalNAc) siRNA conju-
gates for liver targeting hold great promise for safe and effica-
cious therapeutic compounds with the ease of subcutaneous 

Fig. 5   Quantitative analysis of a rolling vs. floating leukocytes, b 
adherent leukocytes in postsinusoidal venules as well as c of tissue 
infiltrating leukocytes with representative images of intravital fluo-
rescence microscopy (+ 6  h) (right middle panel, original magnifi-
cation × 200). Quantitative analysis of d sinusoidal perfusion with 
representative images of intravital fluorescence microscopy (right 
lower panel, original magnification × 200). C57BL/6 J mice (n = 60) 
received 42  h prior to injection of either APAP (n = 30) or PBS 
(n = 30, 300 mg/kg body weight per mice intraperitoneally (bw i.p.)) 
a liver-specific small interfering RNA delivery system (DBTC/siRN-
ABid (n = 20) or DBTC/siRNALuci (n = 20) or DBTC/vehicleHEPES 
(n = 20)). For the control group we did the same pre-treatment but 
with equivalent volumes of phosphate-buffered saline (PBS) instead 
of APAP. Mice were studied 6 h thereafter (+ 6 h). Values are given 
as mean + SEM; ANOVA, post hoc pairwise comparison tests, Bon-
ferroni correction: #p < 0.05 versus PBS

◂
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administration and with many GalNAc siRNA conjugates in 
clinical development [72–74]. In the present study, an about 
70% reduction of Bid protein expression was sufficient to 
ameliorate liver injury, indicating that Bid could be a sen-
sible target for siRNA-based therapeutics or other targeting 
approaches. The failure of siRNABid to influence hepatic 
cyp2E1 expression and GSH content implies that this strategy 
lacks off-target effects and seems to be specific.

We could demonstrate that the number of bisbenzimide-
stained DNA-fragmented hepatocytes were markedly reduced 
upon Bid silencing, supporting Bid as a major player in APAP-
induced necrotic liver tissue damage. Since Bax-silenced mice 
were protected from APAP-induced ALF [48], reduced Bax 
protein expression upon Bid silencing might also contribute to 
the attenuated liver damage. The fact that mitochondrial trans-
locations of tBid and Bax are closely related and have similar 
effects on the molecular pathomechanism of necrosis [33, 67, 
68], it is reasonable to assume that necrosis rather than apop-
tosis triggered APAP-induced liver tissue damage. This view 
is further supported by the reduction of necrotic tissue area, 
HMGB1 concentrations, as well as plasma activities of AST 
and ALT. Thus, necrosis might be the predominant cell death 
pathway as reported by many other studies observing a form 
of regulated necrosis upon APAP intoxication [22, 59–61, 75].

In summary, Bid silencing mediated tissue protection 
against APAP most probably via reduced (i) expression of Bid 
and Bax, (ii) execution of necrotic cell death and (iii) release 
of HMGB1 as a marker of sterile inflammation.
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