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Abstract Inhibitor of apoptosis (IAP) family comprises a
group of endogenous proteins that function as main regula-
tors of caspase activity and cell death. They are considered
the main culprits in evasion of apoptosis, which is a funda-
mental hallmark of carcinogenesis. Overexpression of IAP
proteins has been documented in various solid and hemato-
logical malignancies, rendering them resistant to standard
chemotherapeutics and radiation therapy and conferring
poor prognosis. This observation has urged their exploitation
as therapeutic targets in cancer with promising pre-clinical
outcomes. This review describes the structural and func-
tional features of IAP proteins to elucidate the mechanism
of their anti-apoptotic activity. We also provide an update on
patterns of IAP expression in different tumors, their impact
on treatment response and prognosis, as well as the emerging
investigational drugs targeting them. This aims at shedding
the light on the advances in IAP targeting achieved to date,
and encourage further development of clinically applicable
therapeutic approaches.
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Introduction

Apoptosis, or programmed cell death, is an essential cell
process in homeostasis of multicellular organisms. Strict
regulation of apoptosis has been involved in many human
diseases, including cancer [1]. The inhibitor of apoptosis
(IAP) proteins are a class of apoptosis regulators, that per-
form a critical role in the control of survival and cell death
by regulating crucial factors in signaling events such as cas-
pase activation and NF-«xB signaling [1]. Targeting critical
apoptosis regulators, like IAPs, is an attractive therapeutic
way undertaken for the development of new classes of thera-
pies for cancer. Overexpression of IAPs has been repeatedly
encountered in various cancer cells, and is hypothesized to
be associated with tumorigenesis, treatment resistance, and
poor prognosis. These features render IAPs promising thera-
peutic targets in a wide range of human tumors by either
direct induction of cell death or reduction of the threshold
for cell death caused by anticancer drugs [2].

IAP family members

The TAP gene was first recognized in insect SF-21 cells
infected by baculovirus, and was identified as a potent
inhibitor of apoptosis in insect cells [3]. IAP homologs,
sharing similar structure, were subsequently discovered in
various species including nematode, yeasts, and mammals
[4]. The first cellular IAP to be identified was the mam-
malian gene neuronal apoptosis inhibitory protein (NAIP)
[5]. Since the discovery of NAIP, the human IAP gene fam-
ily has expanded to include seven more members: cellular
IAP1; cellular IAP2; X-linked inhibitor of apoptosis (XIAP)
[6-8]; IAP-like protein 2 [9, 10]; BIR-containing ubiquitin
conjugating enzyme (BRUCE/Apollon) [11]; Survivin [12];
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and Livin (ML-IAP) [13, 14]. Among IAP family members,
XIAP is the only one that can inhibit caspases through direct
physical interaction. Cellular IAPs (cIAP1 and cIAP2) have
similar roles as XIAP in regulating caspases activity, but
are also involved in regulating NF-kB pathways [15]. The
mechanism by which other IAP family members inhibit
apoptosis is less understood. Several IAPs are capable of
binding to caspases, yet lack the ability to directly inhibit
the proteolytic activity of those enzymes [16].

Structural features of IAPs

The TAP family is characterized by the presence of Baculo-
virus IAP Repeat (BIR) at the N-terminal end of the protein,
which constitutes of one to three tandem specific motifs of
approximately 70 amino acids. The BIRs have a core com-
ponent of cysteine-histidine (Cys-His) motif that coordi-
nates a zinc ion [17]. The structure is organized in a series
of short alpha-helices with intervening p-sheets, yielding
a specific fold stabilized by Zinc tetrahedrally coordinated
by three cysteine and one histidine residues [17]. BIRs are
protein interacting modules with distinct binding properties,
necessary for the anti-apoptotic activity of most IAPs [18].
Three subtypes of BIR domain, BIR1, BIR2, and BIR3, have
been identified so far [19]. Most BIRs form a hydrophobic
groove which binds conserved IAP binding motifs (IBMs),
located in the extreme N-terminus of some caspases and IAP
antagonists. The N-terminal exposure of IBM is essential for
the recognition and binding by IAPs. Thus, only processed,
activated caspases can bind to the BIR hydrophobic groove
[17]. There are numerous proteins that bind to BIR in an
IBM-dependent fashion, including caspases [16], the second
mitochondrial activator of caspase (SMAC—also known as
DIABLO) [20], HtrA2 (also known as Omi) [21], and the
Drosophila proteins Hid, Grim and Reaper [22]. Different
IAP family members possess specific intrinsic binding selec-
tivity, which explains why subtle changes in the peptide-
binding groove of BIR domains can markedly alter the target
protein selectivity [18]. As opposed to BIR2, type I BIRs
do not possess the binding properties with IBM, but can
interact with a different set of proteins primarily involved in
cell signaling pathways [23, 24].

At the C-terminal, the second conserved motif of IAP
subsists, namely the really interesting new gene (RING)
which displays a characteristic E3-ubiquitin ligase activity.
It also enables homo- or hetero-dimerization of IAP pro-
teins, which is crucial for their stability and possibly their
activity [25]. For example, the RING domain is required
for cIAP1 and 2 homodimerization, autoubiquitylation and
subsequent proteasomal degradation [25, 26]. It is also note-
worthy that cIAP1 exists in an inactive state due to the inter-
action between its BIR3 and RING domains which precludes
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intermolecular RING-RING dimerization [26, 27]. Other
conserved protein domains are also found in some IAPs
including caspase activation recruitment domain (CARD)
which regulates E3-ubiquitin ligase activity [28]. The ubiq-
uitin-associated domain (UBA) recognizes mono- and poly-
ubiquitin chains allowing the recruitment of IAP in protein
complexes [29, 30]. All IAPs are homologs sharing remark-
ably conserved sequences. The distinct association between
baculoviral IAPs and insect IAPs proposes that the former
might have been acquired by gene transfer from infected
host insect cells. Some baculoviral IAPs can even represses
apoptosis in mammals [31].

Regulatory mechanisms of IAP in apoptosis

Apoptosis is considered one of the main mechanisms of pro-
grammed cell death, which can be triggered in response to
variable endogenous and exogenous stimuli. Key morpho-
logical changes occurring during apoptosis include nuclear
condensation and fragmentation, as well as blebbing of
plasma membranes leading to apoptotic body formation
[32]. This process is strictly regulated by a series of signal
cascades, under the influence of three critical factors: IAP,
IAP antagonists, and caspases [33]. The regulation of these
factors is crucial for cellular homeostasis, and their disrup-
tion is noted in many diseases, including cancer [34].

Apoptotic pathways

In mammals, apoptosis is mediated by a sequential acti-
vation cascade of cysteine proteases (caspases) that are
responsible for distinct biochemical and morphological
changes [35]. Caspases are inactive-zymogens constituting
of one pro-domain and two active subunits. According to
the length of the pro-domain and the activation mechanism,
they are further sub-divided into initiator and effector cas-
pases. The initiator caspases are characterized by the pres-
ence of a long pro-domain that allows their recruitment into
caspase-activating complexes. In mammals, there are four
apoptotic initiator caspases (caspase-2, -8, -9 and -10) [36,
37]. The effector caspases-3 and -7 are activated by pro-
teolytic cleavage leading to the assembly of two large and
two small subunits into a single active tetramer. They can
cleave a wide spectrum of cellular proteins leading to loss
of cellular integrity [17]. Caspases can also mediate other
non-apoptotic processes, such as cellular proliferation and
inflammatory response [35].

It has been documented that caspases are activated
through several overlapping pathways for apoptosis initia-
tion: (1) the mitochondrial pathway (intrinsic pathway) in
which cytochrome c is released from the mitochondria and
apoptosomes are generated activating caspase-9 and in turn
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caspase-3; (2) the death receptor pathway (extrinsic path-
way), activated by the ligand binding of extracellular signals
and death receptors on cell membrane [FasL (Fas ligand)/
Fas, tumor necrosis factor (TNF)/TNF receptor] (Fig. 1);
(3) the endoplasmic reticulum (ER) stress-induced apop-
totic pathway that activates caspase-2 and caspase-9; and
(4) the apoptosis-inducing protease, granzyme B, mediated
activation of effector caspases, specifically in cytotoxic T
lymphocytes and natural killer cells [19]. (5) A nuclear path-
way that depends on specific nuclear organelles, named Pml
oncogenic domains (PODs) or nuclear bodies (NBs) was
proposed. The mechanism of caspase activation in this path-
way is not clearly understood. Several apoptosis-promoting
proteins have been localized to PODs, and their defects have
been linked to tumorigenesis [38]. Given the dire conse-
quences of caspase activation, strict regulation of these path-
ways at each step is of paramount importance.

The intrinsic pathway is largely regulated by BCL2 fam-
ily, which comprises several anti- and pro-apoptotic pro-
teins. Anti-apoptotic proteins (eg: BCL2 and BCLXL) share
a structural homology in specific domains, namely BCL2
homology (BH) 1, 2, 3 and 4. On the other hand, some pro-
apoptotic proteins share only BH3 domain homology and
thus named BH3-only proteins, including PUMA, NOXA,

Apoptotic
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Fig.1 Schematic diagram of the extrinsic (death receptor) and
intrinsic (mitochondrial) apoptotic pathways. The first step in initia-
tion of the extrinsic pathway is the binding of death ligands to their
respective receptors on the plasma membrane: tumor necrosis fac-
tor (TNF) with TNF receptor (TNFR) and Fas ligand (FasL) with
Fas receptor (FasR). This is followed by the binding of TNF recep-
tor-associated death domain (TRADD) and/or Fas-associated death
domain protein (FADD) to the intracellular domains of death recep-
tors. These reactions result in the formation of death-inducing signal-
ing complex (DISC) which promote the activation of pro-caspases 8
and 10. Once they become in the active state, they either activate the
executioner caspases-3 and -7 resulting in apoptosis, or converge onto
the intrinsic pathway via BID activation (mitochondrial amplification

.'\'

Apoptosis

BIM, BAD and BIK. The effector pro-apoptotic proteins,
Bcl2- associated X protein (BAX) and Bcl2 homologous
antagonist/killer (BAK) share multi-domain homology
(BH1, 2 and 3). Apoptotic stimuli result in an imbalance
between pro- and anti-apoptotic proteins, which conse-
quently activates the effector BAX and BAK proteins [39].

Upon activation, BAX translocates from the cytosol to be
integrated in the mitochondrial outer membrane. Together
with BAK, a membrane-resident protein, they become fully
inserted in the mitochondrial membrane leading to mito-
chondrial outer membrane permeabilization (MOMP) [40].
This eventually leads to supramolecular channels releasing
several proteins from the mitochondrial inter-membrane
space (IMS), the most important of which is cytochrome ¢
[41, 42]. Other released proteins include the IAP antagonists
Smac/Diablo (second mitochondria-derived activator of cas-
pases/direct IAP-binding protein with low pI) [43] and Omi/
HtrA2 (Omi stress-regulated endoprotease/High temperature
requirement protein A2) [44]. Cytochrome c initiates apop-
tosome formation through binding the apoptotic protease
activating factor 1 (Apaf-1), triggering its oligomerization
into a wheel-like heptamer and exposing its caspase activa-
tion and recruitment domains (CARDs) [45]. The latter bind
to procaspase-9 CARDs inducing autocatalysis, and active
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loop). On the other hand, the intrinsic pathway is initiated in response
to apoptotic stimuli which activate the pro-apoptotic BCL2 fam-
ily members: BH3-only proteins. Bax and/or BAK are consequently
activated and induce mitochondrial outer membrane permeabiliza-
tion (MOMP). Several proteins are released from the mitochondria,
including second mitochondria-derived activator of caspases/direct
IAP-binding protein with low pI (Smac/Diablo), Omi stress-regulated
endoprotease/High temperature requirement protein A2 (Omi/HtrA2)
and cytochrome c. The latter, together with apoptotic protease activat-
ing factor 1 (Apaf-1) and pro-caspase 9, form the apoptosome. The
latter induces the activation of caspase 9 and subsequent activation of
caspase-3 and 7, which eventually lead to apoptosis
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caspase 9 consequently activates caspases 3 and 7, executing
cell death within minutes [46].

Notably, MOMP eventually results in energy depletion
and cell death caused by progressive mitochondrial dys-
function, even in the presence of inactive caspases [40, 41].
Moreover, the mitochondrial pathway seems to be crucial for
amplification of upstream signals of the extrinsic apoptotic
pathway, highlighting the importance of MOMP in apoptosis
execution [40]. Several other pro-apoptotic proteins, includ-
ing p53-upregulated modulator of apoptosis (PUMA) and
NOXA, can also be activated in response to DNA damage.
The latter can alternatively lead to p53-dependent caspase
2 activation, which in turn induces MOMP. The mitochon-
drial proteins released, including endonuclease G (EndoG)
and apoptosis-inducing factor (AIF), are capable of initiat-
ing caspase-independent apoptosis. This process can also be
induced through lysosomal membrane permeabilization that
releases MOMP-triggering cathepsins into the cytosol [32].

In the extrinsic pathway, caspases-8 and -10 are activated
in response to death receptor signals from tumor necrosis
factor (TNF) receptor superfamily. Death ligands are mainly
produced by the immune system (eg: T-cells, macrophages,
natural killer cells, and dendritic cells) and include TNF, Fas
ligand and TNF-related apoptosis-inducing ligand (TRAIL)
[47]. The TNF receptor superfamily is characterized by dis-
tinct protein motifs, namely death domains (DD) and death
effector domains (DED), which are capable of monovalent
interactions and pivotal for apoptotic signal transduction
[46]. Stimulation of Fas (DR2, CD95) or TRAIL Receptor I
or I (DR4 and DR5) induces the recruitment of DD-contain-
ing molecules, FADD (Fas-associated death domain protein)
and/or TNF receptor-associated death domain (TRADD).
FADD triggers pro-apoptotic pathways by activating pro-
caspases-8 and -10 in a receptor-associated platform called
DISC (death-inducing signalling complex) [17, 37]. Once
those caspases are activated, they amplify death signaling,
by either direct activation of effector caspases-3, -6 and -7,
or engaging the intrinsic apoptotic pathway [46]. This con-
vergence is mediated by caspase-8 that triggers cleavage of
the pro-apoptotic BH3 family member BID. This results
in its activation and subsequent involvement of BAX and
BAX which eventually induce MOMP, in a mitochondrial
amplification loop [47]. In contrast, TRADD initiates anti-
apoptotic signals via forming complex I with receptor inter-
acting protein-1 (RIP1), TNF receptor-associated factors 2
and 5 (TRAF2 and TRAFS), and the inhibitor of apoptosis
protein-1 and -2 (cIAP1/2). This complex promotes survival
signaling, such as those regulated by NF-xB [46, 48, 49].

The endoplasmic reticulum (ER) majorly contributes to
both mitochondrial and ER stress-induced apoptotic path-
ways [50-52]. It has been proven that ER stress induces
down-regulation of the anti-apoptotic Bcl2, up-regulation
of the pro-apoptotic BIM and PUMA, as well as BAX
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activation with subsequent apoptosis execution [53]. Some
studies also showed a correlation between ER stress and
regulation of the tumor suppressor p53. The latter is sta-
bilized in response to ER stress, promoting transcriptional
activation of pro-apoptotic PUMA and NOXA [54]. This
pathway is mainly mediated by caspases-2 and -9 which in
turn activate the executioner caspases-3 and -7 leading to
cell death [19, 55].

Mechanism of action of IAP

IAPs are considered to be the only known endogenous pro-
teins that are capable of suppressing both initiator and effec-
tor caspases, the key executioners of apoptosis [56]. They
impose negative regulation on apoptotic pathways by direct
inhibition of caspases through several mechanisms. First,
their conserved BIR domains bind the active site of caspases
inhibiting their proteolytic function, as do XIAP, cAP1/2 and
Survivin to caspases-3 and -7 [57]. This results in stimulat-
ing the breakdown of active caspases, or their isolation away
from their substrates [57]. Also, IAPs repress caspases-2 and
-9 in the ER stress-induced apoptotic pathway through BIR
domain binding [55]. Second, direct inhibition of pro-cas-
pase 9 activation by XIAP. Third, some IAP family members
are capable of targeting effector caspases for ubiquitination
and proteasomal degradation. Additionally, cIAPs may play
some role in the activation of anti-apoptotic signals, such
as NF-kB, which explains their pivotal role in regulating
NF-kB during TNF signaling [58].

While different IAPs can suppress caspases-2, -3, -7 and
-9, other caspases, such as -1, -6, -8 and -10, are thought to
be resistant to IAP inhibition. IAPs do not bind caspase-8
but rather inhibit its substrate, namely caspase-3 [19]. Cas-
pase-8 can also be negatively regulated through the induc-
tion of survival signaling pathways that in turn inhibit its
activation. The BIR domain, CARD and RING E3 ligases
in cIAP1/2 act to recruit TRAF1 and 2 and inhibit TNFa-
apoptotic signaling. Thus, cIAP1/2 have the potential of
inhibiting caspase-8 by inducing pro-survival signals,
mainly NF-kB pathway [46, 59, 60]. Moreover, cIAPs are
capable of interacting with caspases-9 and -7 in an IBM-
dependent fashion, and with the pro-domain of caspase-3
independently of IBM [61]. It has been observed that nei-
ther BIR2 nor BIR3 domains of cellular IAPs can directly
inhibit caspases; so they execute their anti-apoptotic function
through caspase binding, with a lower affinity than XIAP
[19]. Of note, cellular IAP 2 is the only IAP family member
that is capable of binding and inhibiting caspase-2, through
its BIR2 domain [55]. cIAPs can also control the stability
of activated caspases through a UPS (ubiquitin/proteasome
system)-dependent mechanism [61]. Furthermore, cellu-
lar TAPs, as well as Melanoma IAP (ML-IAP/Livin) and
Apollon, have the ability of binding to SMAC, to prevent
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XIAP neutralization [62]. In addition to SMAC binding and
degradation, Livin can also exert its anti-apoptotic activ-
ity by inhibiting caspases-3, -7 and -9 [63]. On the other
hand, neuronal apoptosis inhibitory protein (NAIP) can dis-
tinctly interact with pro-caspase 9 inhibiting its cleavage
when present in the apoptosome complex. This mechanism
is ATP-dependent and IBM-independent, resulting in early
inhibition of the intrinsic pathway [64]. The anti-apoptotic
functions of NAIP have been demonstrated both in vivo
and in vitro, and extend to include inhibitory action on cas-
pases-3 and -7 as well [19].

XIAP, the best identified IAP so far, is regarded as the
most powerful caspase inhibitor. It possesses three BIR
domains (BIR1, BIR2, and BIR3) of high affinity and vary-
ing functions to caspases [16]. BIR2 domain binds the
executioner caspases-3 and -7, while BIR3 binds initia-
tor caspase 9 [16]. The interaction with effector caspases
is believed to be via steric hindrance, where BIR2 domain
blocks the substrate entry site [65]. On the other hand, the
interaction between BIR3 and the Apaf-1/caspase 9 com-
plex occurs via sequestration of the N-terminus of cas-
pase-9 small subunit [19]. The latter distinctly resembles
the N-terminus of mitochondrial SMAC/Diablo, raising the
suspicion that both compete for XIAP-BIR3 binding [19].
XIAP BIR3 domain, together with caspase 9, form a heter-
odimer which results in stabilization of inactive caspase 9
by preventing its homodimerization and subsequent auto-
catalytic activity [66]. It has been shown that the capacity
of XIAP to control capase-9 activity is directly correlated
to the level of APAF-1 and apoptosome activity [67]. Thus,
in cells harbouring low Apaf-1 levels, such as neuronal
cells and cardiac myocytes, XIAP is an effective regulator
of response to apoptotic stimuli [68]. Furthermore, the E3
ligase activity of the XIAP RING domain plays an important
role in caspase inhibition. Surprisingly, neither BIR2, BIR3
nor RING domains alone is capable of caspase inhibition
[19]. Of note, XIAP is cleaved in response to Fas-induced
apoptosis into two separate fragments; one contains both
BIR1 and 2 domains while the other consists of BIR3 and

ATP + EL | App+p

E2 El
m@ m (w)
El E2

Fig. 2 Tllustrative diagram of ubiquitination enzymatic reactions.
The first step in this cascade of events is the ATP-dependent activa-
tion of ubiquitin by E1 via formation of a thioester bond. Ubiquitin
then binds to E2 conjugating enzyme, followed by subsequent isopep-
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RING domains [69]. How these fragments contribute to the
apoptotic process is still unclear [65].

Several studies have documented the ability of Survivin
to inhibit both intrinsic and extrinsic apoptotic pathways
[12, 70]. The exact mechanism of Survivin-mediated cas-
pase inhibition is not yet fully understood, as its capabil-
ity of binding caspases-3 and -9 is still controversial [70].
The inhibitory action of Survivin on apoptosis is mainly
mediated by co-operative interactions with other apoptotic
regulators in vivo. One example is the interaction between
Survivin and XIAP BIR 1 and three domains, expanding its
functional repertoire [71]. Survivin also exerts an indirect
action through hepatitis B X-interacting protein (HBXIP)
that binds pro-caspase 9 [70], and through triggering XIAP
inhibitory effect on caspases-3 and -9 [72]. Another mecha-
nism is Survivin binding with the pro-apoptotic Smac/Dia-
blo, hindering caspase activation [70]. Notably, it also plays
a pivotal role in regulating chromosomal segregation dur-
ing cell division [73]. These two vital cellular functions are
mediated by the characteristic structure of Survivin, where
the C-terminal is involved in cell division and the N-terminal
is responsible for regulating apoptosis [74].

Another mechanism of caspase inhibition by IAP proteins
is through the ubiquitination process. This regulated process
entails post-translational protein modification, where ubiqui-
tin is covalently bonded to lysine on a substrate protein [75].
Through the interplay of ubiquitin activating enzyme (E1),
ubiquitin conjugating enzyme (E2), and ubiquitin protein
ligase (E3), ubiquitins attach to target proteins and undergo
proteasome-mediated degradation [19, 76], as illustrated
in Fig. 2. A fine balance between ubiquitination and auto-
ubiquitination is one way of IAP regulation. The loss of one
IAP protein has been noted to cause an increase in the levels
of other IAP family members [77]. The RING domain of
cIAP1 has been proven to play an important role in the deg-
radation of RING-containing IAPs, as well as being involved
in XIAP binding and degradation [78]. Moreover, the E3
ligase activity of cIAP2 mediates both auto-ubiquitination
and mono-ubiquitination of caspases-3 and -7 [79]. These

ATP  ADP +P +

gProteasomal
iili‘ degradation

tide bond formation between the carboxyl-terminal glycine in ubig-
uitin and lysine residue in a substrate protein, via the action of E3
ligase. This process eventually results in proteasomal-mediated sub-
strate degradation

@ Springer



1492

Apoptosis (2017) 22:1487-1509

different regulatory mechanisms act to control the endog-
enous IAP levels and activities, promoting apoptosis.

All BIR-containing proteins, with the exception of NAIP,
are associated with ubiquitin. In addition, the RING-contain-
ing IAPs, including XIAP, cellular IAPs 1/2, and ML-IAP
act as ubiquitin E3 ligases [80]. Huang et al. demonstrated
that both full-length cellular IAP 2, and its RING domain
alone, possess the capacity of acting as an E3 ligase in vitro
[79]. It has also been demonstrated that in-vivo removal
of the RING domain results in XIAP protein stabilization,
increase in caspase 3 activity and TNF sensitivity [81].
Similar to cIAP1/2, the XIAP-RING domain can conjugate
various ubiquitin chain types to target proteins [82, 83].
XIAP also has the ability to induce caspase 3 ubiquitina-
tion by itself [80]. This demonstrates the role of ubiquitina-
tion of XIAP-bound caspases in the inhibition of apoptosis.
BRUCE/Apollon is a distinct IAP with dual function owing
to the possession of two specific domains [11]. At the N-ter-
minal, the BIR domain mediates anti-apoptotic functions
by antagonizing Smac/Diablo and multiple caspases. On
the other hand, the C-terminal ubiquitin conjugating (UBC)
domain mediates E2 ubiquitination activities. BRUCE has
been discovered to be a hybrid E2/E3 enzyme owing to
the dual function of its UBC domain as both conjugating
enzyme (E2) and protein ligase (E3) [84].

IAP antagonists

IAP activities are strictly regulated through several feedback
mechanisms that involve pro-apoptotic proteins. Numerous
mammalian IAP antagonists have been identified, includ-
ing second mitochondrial activator of caspases/direct IAP
binding protein with low pI (Smac/Diablo) [85], high tem-
perature-regulated A2/Omi (HtrA2/Omi) [86], X-linked IAP
associated factor 1 (XAF1) [87], the endoplasmic reticulum
protein, GSPT1/eRF3 (G1 to S phase transition protein/
eukaryotic Release Factor 3) [88], the septin-like mitochon-
drial protein ARTS [89, 90], glutamate dehydrogenase, Nip-
snap 3 and 4, and 3-hydroxyisobutyrate dehydrogenase [91].
The functional execution of IAP binding proteins entails
their physical interaction with IAPs through a conserved
IAP Binding Motif (IBM). The latter specifically binds IAP
BIR domain promoting apoptosis partly by replacing the
bound caspases [20]. The whole spectrum of actions of IAP
antagonists and their role in IAP regulation are not yet fully
understood. For example, various apoptotic triggers, such as
DNA damaging agents, seem to induce IAP degradation and
possibly RIPoptosome assembly without a clear role for [AP
antagonists [17, 92].

Smac/Diablo and HtrA2 are perhaps the most studied
mammalian IAP antagonists [21, 43, 44, 85, 86]. During
apoptosis, they are released into the cytosol and activated
into arc-shaped dimmers and pyramid-shaped homotrimers,
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respectively [19, 41]. Smac/Diablo has a characteristic abil-
ity of binding both BIR2 and BIR3 domains halting XIAP-
mediated caspase inhibition, namely caspases-9 and -3
[85]. It can also inhibit cellular IAPs 1/2, and induce their
degradation through auto-ubiquitination [30, 93]. Similar
to Smac, its isoform Smac3 can also inhibit XIAP by bind-
ing with BIR2 and BIR3 domains. Smac3, produced as a
result of exon 4 splicing, stimulates XIAP ubiquitination and
destruction [94]. HtrA2/Omi exerts its pro-apoptotic func-
tion via binding XIAP, thus releasing its inhibitory effect
on caspases, as well as irreversible proteolytic cleavage of
XIAP and cellular IAPs [21]. However, it has a weaker affin-
ity than Smac as regards XIAP BIR3 binding [19]. Notably,
the tumor suppressor p53 upregulates and activates HtrA2,
which is one of the mechanisms by which p53 promotes
apoptosis and supresses carcinogenesis [95].
XIAP-associated factor (XAF1) is a tumor suppressor
gene that acts as an IAP antagonist, sequestrating XIAP in
the nucleus and counteracting its anti-caspase activity [87].
Arora et al. demonstrated the ability of XAF1 to directly
bind all IAP members, with the exception of Survivin
which is indirectly inhibited through XIAP-Survivin com-
plex [96]. Also, the destruction of Survivin is regulated by
XAF1 through activating the E3 activity of XIAP RING
domain [96]. Another proposed mechanism of XAF1 action
is through promoting IFN-mediated sensitization to TRAIL
in tumors [97]. Several studies have shown that XAF1 is
expressed in normal tissues, but is nearly undetectable in
cancer cell lines and its suppression in several tumors has
been confirmed [98—-101]. Moreover, the ratio of expres-
sion levels of both XIAP and XAF1 seems to be crucial for
determination of cell fate. Carcinogenesis is favoured when
XIAP is overexpressed with respect to XAF1, evading apop-
totic pathways [102]. Interestingly, a regulatory relationship
has been established between the tumor suppressor genes
XAF1 and p53 [103]. Wild type p53 exerts a negative feed-
back and transcriptional repression of XAF1, which is prob-
ably a mechanism to avoid duplication of function. On the
other hand, XAF1 induces p53 phosphorylation in response
to DNA damage, leading to its nuclear accumulation and
enhanced transcriptional activity. These findings illustrate
the function of XAF1 as a promoter of p53-mediated apop-
tosis in cancer [103]. Hence, induction of XAF1 expression
could be exploited in cancer therapy, especially in cancers
having low expression levels of wild type p53 [99, 103, 104].
Another identified IAP antagonist is the endoplasmic
reticulum protein, GSPT1/eRF3 (GI to S phase transition
protein/eukaryotic Release Factor 3). During apoptosis,
its IBM is exposed and selectively mediates cellular IAP1
auto-ubiquitination and degradation [88]. On the other hand,
the septin-like mitochondrial protein, ARTS, is a peculiar
IAP antagonist that lacks the characteristic IAP binding
motif [89]. In spite of that, it can bind XIAP and induce its
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ubiquitination [105, 106]. An increased incidence of lym-  Table 1 Inhibitors of apoptosis overexpression in cancer
phomas and leukemias has been observed with ARTS inacti- Malignancy AP Reference
vation in mice, which can be reversed by XIAP inactivation.
This phenomenon highlights the key role of ARTS-mediated ~ Solid malignancies
XIAP inhibition in maintaining normal hematopoiesis and Adrenocortical carcinoma Livin [113]
tumor suppression [17, 107]. Edison et al. have concluded Survivin ~ [114]
that ARTS is capable of activating caspases upstream of Bladder cancer cIAP 1 [115]
MOMP. It is localized in the outer mitochondrial membrane cIAP2 [115]
and is rapidly translocated to the cytoplasm upon induc- XIAP [116]
tion of apoptosis, in a caspase-independent manner. This Survivin - [116]
leads to XIAP binding and inhibition prior to the release Livin [116]
of cytochrome ¢ and Smac [90]. Furthermore, it has been NAIP [117]
shown that ARTS knockdown precludes the release of Brain gliomas XIAP [118]
cytochrome ¢ from the mitochondria, suggesting that ARTS clAP 172 [118]
is pivotal for the regulation of mitochondrial proteins release Survivin - [119]
in response to MOMP [90]. In addition to well character- Livin [120]
ized TIAP binding proteins, various other proteins have the Apollon  [11]
capacity of antagonizing IAP actions. For example, inter- Breast cancer XIAP (121, 122]
leukins-3 and -5 as well as granulocyte-macrophage colony Survivin - [121]
stimulating factor (GM-CSF) have been shown to regulate NAIP [123]
cIAP2 and Survivin [108]. Some mitochondrial proteins, Livin [124]
including glutamate dehydrogenase, can also inhibit XIAP Cancer cervix Survivin - [125]
via BIR2 binding [91]. However, their detailed mechanism cIAP 1 [126]
of action and regulatory process in cancer are yet to be fully XIAP [127]
understood. Colorectal cancer Survivin [128]
Livin [129]
XIAP [128]
Clinical applications of IAP cIAP 2 [130]
NAIP [131]
Evasion of apoptosis is one of the fundamental hallmarks of =~ Endometrial cancer Survivin - [132]
carcinogenesis. Cancer cells are known to enhance survival XIAP [133]
and proliferation by overexpressing anti-apoptotic and inac- cIAP 172 [134]
tivating pro-apoptotic proteins [46]. Members of IAP and Esophageal cancer XIAP [135]
tumor necrosis factor families are known to promote cancer Survivin  [136]
cell survival synergistically. For instance, TNFo can increase Apollon  [137]
the expression levels of XIAP and cellular IAPs in cancer Gastric cancer Survivin - [138]
cell lines [109]. On the contrary, IAP antagonists induce XIAP [139]
degradation of various IAPs, and stimulate NF-kB that in Livin [140]
turn activates TNFa-mediated apoptosis [93, 110]. Besides Gastrointestinal stromal tumor (GIST) XIAP (141]
apoptosis, IAPs are capable of regulating various other pro- Survivin - [141]
cesses that are known to be culprits in carcinogenesis. These cIAP1 [141]
include cell cycle regulation, cancer-mediated inflammation, HCC XIAP (142, 143]
tumor invasion and metastasis [59, 111]. Survivin - [143]
IAP overexpression has been documented in various Livin [144]
malignancies (Table 1), possibly rendering them resistant cIAP 172 [143]
to standard chemotherapeutics and radiation therapy. In Head and neck cancers cIAP 1 [145]
prostate cancer, adverse clinic-pathological features seem Survivin - [146, 147]
to be correlated with IAPs, including cellular IAPs 1/2 and XIAP [148]
tumor stage, cIAP2 and positive surgical margins, as well as ~ Malignant peripheral nerve sheath tumor  Survivin  [149]
survivin and perineural invasion [112]. Medulloblastoma XIAP (1501
Survivin, normally limited to embryonic tissues, is cor- cIAP 172 [150]
Survivin [151]

related with treatment resistance and increased incidence
of relapse when overexpressed in tumor tissues [12, 202].
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Table 1 (continued)

Table 1 (continued)

Malignancy IAP Reference Malignancy IAP Reference
Melanoma XIAP [152] CLL Survivin [192]
Survivin [153, 154] clAP 2 [192]
Livin [155] clIAP 1 [192]
Apollon [156] XIAP [192]
Mesothelioma clIAP 172 [157] CML XIAP [193]
XIAP [157] Survivin [194]
Survivin [157] Apollon [195]
Neuroblastoma Livin [158] Hodgkin lymphoma XIAP [196]
XIAP [159, 160] cIAP 1/2 [196]
clIAP 1 [160] Survivin [197]
Survivin [161] Multiple myeloma XIAP [198]
NSCLC XIAP [162] cIAP 1/2 [198]
Survivin [163] Survivin [199]
Livin [164] Non hodgkin lymphoma XIAP [196, 200]
Apollon [165] cIAP 1/2 [196]
Osteosarcoma Survivin [166] Survivin [201]
Livin [167] . . e .
IAP Inhibitor of apoptosis, cIAP cellular inhibitor of apoptosis, XIAP
XIAP [168] X-linked inhibitor of apoptosis, HCC hepatocellular carcinoma,
Ovarian cancer XIAP [169] NSCLC non-small cell lung cancer, RCC renal cell carcinoma, ALL
Survivin [170] acute lymphoblastic leukemia, AML acute myelogenous leukemia,
Livin [171] CLL chronic lymphocytic leukemia, CML chronic myeloid leukemia
clAP2 [172]
Apollon  [173] It is of particular importance in diagnosis and prognosti-
Pancreatic carcinoma cIAP2 (174, 175] cation of gastric and colorectal cancers, a finding that has
Survivin - [175, 176] been consistent in several studies [203, 204]. In addition to
XIAP [175] evasion of apoptosis and induction of tumor proliferation
Livin [175] [202], Survivin also promotes angiogenesis. It is known to
Prostate cancer XIAP U77. 1781 ypregulate vascular endothelial growth factor (VEGF) and
cIAP 172 [178] enhance proliferation of vascular endothelial cells [205].
Survivin - [178] Under normal physiological condition, Survivin plays an
NAIP [178] important role in regulation of stem cell homeostasis, in
RCC XIAP (1791 intestinal, hematopoietic and nervous systems [206—-208].
Survivin - [180] This drives the speculation that Survivin may be involved
Livin [181] in cancer stem cell regulation as well [70].
Rhabdomyosarcoma Survivin - [182] XIAP overexpression has been identified as a well
XIAP [182] characterized prognostic factor in various malignancies.
Thyroid cancer cIAP 1 [183] In pediatric acute myeloid leukemia (AML), XIAP con-
Survivin - [183, 184] fers poor response to induction therapy, short relapse-free
XIAP [185] survival as well as intermediate and poor cytogenetics
Hematological malignancies [209, 210]. In adult AML, as well, XIAP is associated
ALL Livin [186] with poor cytogenetics, monocytic differentiation and
XIAP [187] short overall survival [211]. Moreover, XIAP expression
Survivin - [188] in pediatric acute lymphoid leukemia (ALL) heralds resist-
Apollon [189] ance to glucocorticoid-mediated apoptosis, an established
AML XIAP [190] poor prognostic factor [187]. As for solid malignancies,
Survivin - [191] XIAP is identified as a biomarker of poor survival, chemo-
Livin [186] resistance and metastatic potential in ovarian and hepa-
Apollon [189]
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tocellular carcinomas, respectively [142, 212]. In breast
cancer, nuclear overexpression of XIAP was identified as



Apoptosis (2017) 22:1487-1509

1495

an independent prognostic factor, harbouring threefold
increased risk of disease-specific death [122].

Cellular IAPs 1 and 2 have been characterized in pan-
creatic neoplasms conferring short overall survival [174].
Endo et al. revealed a preferential overexpression of cIAP2
and Survivin in elderly colon cancer patients, compared with
younger ones [213]. This observation suggests dysregula-
tion of apoptosis in the elderly population contributing to
increased incidence of tumors. It is hypothesized that cellu-
lar IAPs adversely impact prognosis of head and neck cancer
patients. Tanimoto et al. stated that nuclear overexpression
of cIAP1 was associated with advanced disease stage, lymph
node involvement and poor prognosis in head and neck can-
cers [145]. In a more recent study in oral squamous cell
carcinomas, cIAP2 overexpression was linked to advanced
disease stage, but had no impact on survival [214]. Blad-
der carcinogenesis is also affected by expression levels of
cIAP1, where its nuclear overexpression correlates with
muscle invasive disease, tumor grade, short recurrence-free
and overall survival [115].

Promising therapeutic targets

In cancer, any defect along the apoptotic pathways may offer
an interesting therapeutic target. The pivotal role of IAPs
in development and progression of cancers compelled their
targeting as a promising strategy of cancer treatment. Drugs
that can restore the apoptotic signaling pathways towards
normality have the potential to eliminate cancer cells which
depend on these defects for survival. Many recent and
important discoveries have opened new doors into poten-
tial new classes of anticancer drugs. To date, several stud-
ies investigated different IAP inhibiting agents, achieving a
breakthrough in cancer treatment:

TAPs

Novel therapy targeting inhibitor of apoptosis proteins
include antisense strategies that are capable of reducing
IAP mRNA, short interfering RNA (siRNA) molecules,
and Smac mimetics [65, 215]. The latter are synthetic small
molecules that mimic the action of endogenous Smac, antag-
onize IAP actions and induce apoptosis [215]. Using the
antisense approach, inhibition of XIAP has been reported
to improve tumor control by radiotherapy and chemotherapy
[216]. Moreover, when used together with anticancer drugs,
XIAP antisense oligonucleotides have been recognized to
exhibit enhanced chemotherapeutic activity [217]. On the
other hand, some researchers reported that siRNA target-
ing of XIAP increased radiation sensitivity of human can-
cer cells, especially in the presence of p53 mutation [218].
Others reported that targeting XIAP or Survivin by siRNAs

sensitize hepatoma cells to death receptor- and chemothera-
peutic agent-induced cell death [219]. However, when AEG
35156 -a second generation antisense oligonucleotide- was
tested in several clinical trials, it yielded contradictory
results as shown in Table 2.

Another approach of targeting IAP is the concomitant
use of Smac mimetics with chemotherapeutics, which has
been proven to induce cancer cell apoptosis in various tumor
types [118, 224-229]. In pancreatic tumors, apoptosis can be
initiated by the combined effect of Smac mimetic with gem-
citabine chemotherapy. This process is mediated by NF-xB
resulting in caspase activation and subsequent cell death
[226]. Reversal of TRAIL resistance is another mechanism
by which Smac mimetics exert their pro-apoptotic function
[225, 230]. This results in cleavage and activation of pro-
caspases -3 and -7 which mediate apoptotic cell death [225].
Servida et al. have proven that Smac mimetics sensitize leu-
kemic cells to cytotoxicity of chemotherapy and biological
agents augmenting TRAIL [227]. In a preclinical animal
model, concomitant administration of Smac mimetic with
combination chemotherapy, resembling ALL induction, was
tested. Significant reduction in tumor load and prolonged
survival were observed with combination treatment [231].
The synergy between Smac mimetics and chemotherapy is
regulated by RIP1, the inhibition of which by Necrostatin-1
results in inhibition of caspases [228]. In addition, Smac
mimetics have been proven to sensitize tumor cells to radio-
therapy as well [118]. This approach is of specific interest
in malignant gliomas that are usually resistant to standard
treatment. The addition of Smac mimetics to radiotherapy
and temozolomide can offer a favourable therapeutic ratio in
brain gliomas [118, 229]. Synergy between Smac mimetics
and oncolytic viruses has also been described [232]. When
the Smac mimetic LCL161 was combined with oncolytic
rhabdovirus vesicular stomatitis virus, they exerted a syner-
gistic bystander cell death in tumor cells. Moreover, when
tested in vivo, they also induced significant tumor regression
and durable response [232]. Notably, combination of Smac
mimetics with standard cancer therapy seems crucial for
tumor cytotoxicity, as the former is ineffective when used as
single agent [230]. Several Smac mimetics have been tested
in clinical trials, with promising outcomes (Table 3).

A natural small molecule XIAP inhibitor, namely Embe-
lin, was discovered to block the binding of caspase 9, but not
caspase 3, to XIAP BIR3 domain [246]. Its anti-cancerous
activity is also partially mediated by PTEN-dependent sup-
pression of the oncogenic STAT3 pathway [247]. Embelin
has been proven to be of therapeutic value in non-small cell
lung cancer (NSCLC), as it reverses XIAP-mediated cis-
platin resistance [162]. It can also potentiate fluorouracil
cytotoxicity in gastric carcinoma, leading to reduced tumor
viability [139]. Moreover, Embelin has been shown to sen-
sitize prostate cancer cells to radiation therapy both in vitro

@ Springer
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Table 2 Clinical trials evaluating AEG 35156

Trial start date ~ Outcome measure/result

Identifier/reference Cancer type Phase/status
NCT00363974 - Refractory/ relapsed AML  Phase I/II: completed
[220]

NCTO00557596 - Advanced pancreatic cancer Phase I: terminated

[221]

NCT00558922 - Stage I1Ib/IV NSCLC Phase I/II: terminated
due to significant
neurotoxicity

NCT00558545 - Advanced breast cancer Phase I/II: terminated

NCTO00768339 - Relapsed/refractory CLL/ ~ Phase I/II: terminated

indolent B-cell lymphomas due to slow recruit-
ment

NCT00882869 -HCC Phase I/II: completed

[222]

NCT01018069 - Primary refractory AML Phase II: terminated

[223]

October 2005 In combination with high-dose cytarabine and
idarubicin, the drug was safe with a high rate of
XIAP target knockdown and improved response

rate

September 2007 In combination with gemcitabine, the drug was
safe but failed to show additional clinical
benefit

September 2007 - Safe tolerable dose in combination with carbo-
platin and paclitaxel
- Progression free survival

November 2007 - Safe tolerated dose in combination with pacli-
taxel
- Progression-free survival
September 2008 - Safe tolerated dose
- Objective tumor response

March 2009 In combination with sorafenib, the drug was well
tolerated and enhanced anti-tumor activity
November 2009 In combination with high-dose cytarabine and

idarubicin, the drug was well tolerated but
failed to improve remission rate

AML Acute myeloid leukemia, XJAP X-linked inhibitor of apoptosis, NSCLC non-small cell lung cancer, CLL chronic lymphocytic leukemia,

HCC hepatocellular carcinoma

and in vivo [248]. In vitro, it induced cell cycle arrest in the
S-phase, inhibiting tumor proliferation and inducing apopto-
sis in a caspase-independent manner. In vivo, it suppressed
angiogenesis, delayed tumor progression and improved sur-
vival in combination with radiotherapy [248].

To date, several other XIAP inhibitors have been iden-
tified to exert anti-tumor activity. For example, XIAP
antagonist compound (XAC) 1396-11, has shown consid-
erable activity in NSCLC in combination with vinerolbine
chemotherapy [224]. An adamantane thiadiazole derivative,
ATD-4, was recently characterized for its binding affinity
to XIAP-BIR3 domain. It has been shown to stimulate
mitochondrial apoptotic pathway in lung carcinoma cell
lines, exerting anti-tumor activity [249]. Two cyclopeptidic
Smac mimetics were found to bind to XIAP and cIAP-1/2,
restoring the activities of caspases-9 and -3/-7 [250]. On
the other hand, SM-164, a non-peptidic IAP inhibitor was
reported to strongly enhance TRAIL activity by concur-
rently targeting XIAP and cIAP1 [251]. Interestingly, Mit-
suuchi et al. have recently proven bivalent IAP antagonists
to be superior to monovalent compounds in inhibiting TNF-
mediated NF-xB [252]. They demonstrated high levels of
residual TRAF2-associated cIAP1 following monovalent
compound treatment. This reflects the lack of formation of
cIAP1 E3-ubiquitin ligase complex which is responsible for
TRAF2-associated cIAP1 degradation [252]. These find-
ings warrant tailoring the choice of specific IAP antago-
nist classes according to their biochemical properties, and

@ Springer

emphasize that bivalent compounds are the drug of choice
for targeting TNF-dependent signaling in cancer.

Survivin is another IAP family member that has been
extensively investigated as a therapeutic target in cancer.
One example of its targeting is the use of antisense oligo-
nucleotides that were described in human melanoma cells
[253]. It was shown that transfection of antisense Survivin
into YUSAC-2 and LOX malignant melanoma cells resulted
in their spontaneous apoptosis. This approach has also been
applied in head and neck squamous cell carcinoma and has
been reported to induce apoptosis and sensitize these cells
to chemotherapy [254]. In colorectal cancer cells, Survivin
antisense oligonucleotides enhanced tumor response to
radiotherapy as well [255]. Moreover, it has been found to
inhibit growth and proliferation of medullary thyroid car-
cinoma cells [256]. However, these findings didn’t trans-
late into clinical benefit when antisense oligonucleotide,
LY2181308, was investigated in combination with docetaxel
in a phase II study involving NSCLC patients [257].

Another approach of Survivin therapeutic targeting
entails its downregulation by the use of siRNAs. This
mechanism can be exploited to overcome radio-resistance
in pancreatic carcinoma and NSCLC [258, 259], as well as
enhancing chemotherapy effects in AML [260], HCC [261,
262], bladder [263], ovarian [264], and breast cancers [265].
In addition, several small molecule antagonists of Survivin
have shown promising anti-tumor activity [266]. For exam-
ple, YM-155, which directly binds to Survivin promoter
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Table 4 (continued)

Outcome measure/result

Trial start date

Phase/status

Cancer type

Identifier/reference

Drug

In combination with idarubicin and

Phase II: completed March 2008

- Relapsed/ refractory AML

NCT00620321 [281]

LY2181308 (antisense oligonucleo-

cytarabine, the drug exhibited

tide)

favourable safety profile, with mod-

est clinical benefit

In combination with docetaxel/

March 2008

- Castration resistant prostate cancer Phase II: completed

NCT00642018 [282]

prednisone, the drug was safe but

did not achieve significant clinical

benefit

In combination with docetaxel, the

May 2010

Phase II: completed

- Stage I1Ib/ IV NSCLC

NCTO01107444 [257]

drug was safe but anti-tumor activ-

ity was not improved

NSCLC Non-small cell lung cancer, DLBCL diffuse large B-cell lymphoma, NHL non-Hodgkin lymphoma, ALL acute lymphoblastic leukemia, AML acute myeloid leukemia

inhibiting its activation, has shown activity in osteosar-
coma [267], thabdomyosarcoma [268], prostate [269], and
pancreatic cancers [270]. Another small molecule inhibi-
tor, namely FL 118, has the potential of inhibiting Survivin,
XIAP and cIAP2. It has been proven to be more effective
than standard chemotherapy in human tumor xenograft mod-
els [271]. Clinical trials evaluating these drugs are demon-
strated in Table 4. More recently, Survivin gene therapy is
being investigated as an alternative method of its targeting.
A substitution mutation in Survivin, for example Thr34 to
Ala, prevents its phosphorylation and the mutant form acts
as a competitive antagonist of the wild form [272].

Caspases

Several drugs have been developed to synthetically activate
caspases. For example, Apoptin is a caspase-inducing agent
which was initially derived from chicken anaemia virus
[283]. It is characterized by selective induction of apoptosis
in malignant, but not normal cells, owing to its differential
cellular localization. The nuclear aggregation of Apoptin,
or its truncated variant, in tumor cells promotes its pro-
apoptotic function and tumor cytotoxicity, whereas its cyto-
plasmic localization in normal cells leads to its degradation
[284]. Small molecule caspase activators are peptides which
contain the arginin-glycine-aspartate motif. They possess
a pro-apoptotic activity by directly inducing auto-activa-
tion of procaspase 3. They have also been demonstrated to
decrease the activation threshold of caspases, contributing to
an increase in drug sensitivity of cancer cells [285]. In addi-
tion, caspase gene therapy has been investigated in several
studies. For instance, human caspase-3 gene therapy was
used with etoposide in an AH130 liver tumor model and was
observed to induce extensive apoptosis and tumor regression
[286]. Gene transfer of constitutively active caspse-3 into
HuH7 human hepatoma cells selectively induced apoptosis
in these cells [286]. Also, a recombinant adenovirus carry-
ing immunocaspase-3 has been indicated to exert anticancer
effects in hepatocellular carcinoma, both in vitro and in vivo
[287].

Conclusion

Inhibitors of apoptosis and their antagonists, along with cas-
pases, are complex key players in apoptosis regulation. Over
expression of various IAP family members has been repeat-
edly documented in solid and hematological malignancies.
They are culprits in mediating hallmarks of carcinogenesis,
as evasion of apoptosis and sustained proliferation. This
heralds their use as therapeutic targets in cancer treatment
through different approaches. The promising preclinical
data existing to date support the notion that IAPs can be
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effectively used in combination with standard anti-cancer
therapy yielding favourable outcome. However, this man-
dates further extensive research to validate these data on
clinical grounds.
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