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Abstract Apoptosis causes elimination of more than

99 % of germ cells from cohort of ovary through follicular

atresia. Less than 1 % of germ cells, which are culminated

in oocytes further undergo apoptosis during last phases of

oogenesis and depletes ovarian reserve in most of the

mammalian species including human. There are several

players that induce apoptosis directly or indirectly in

oocytes at various stages of meiotic cell cycle. Premature

removal of encircling granulosa cells from immature

oocytes, reduced levels of adenosine 30,50-cyclic

monophosphate and guanosine 30,50-cyclic monophosphate,

increased levels of calcium (Ca2?) and oxidants, sustained

reduced level of maturation promoting factor, depletion of

survival factors, nutrients and cell cycle proteins, reduced

meiotic competency, increased levels of proapoptotic as

well as apoptotic factors lead to oocyte apoptosis. The

BH3-only proteins also act as key regulators of apoptosis in

oocyte within the ovary. Both intrinsic (mitochondria-me-

diated) as well as extrinsic (cell surface death receptor-

mediated) pathways are involved in oocyte apoptosis. BID,

a BH3-only protein act as a bridge between both apoptotic

pathways and its cleavage activates cell death machinery of

both the pathways inside the follicular microenvironment.

Oocyte apoptosis leads to the depletion of ovarian reserve

that directly affects reproductive outcome of various

mammals including human. In this review article, we

highlight some of the important players and describe the

pathways involved during oocyte apoptosis in mammals.
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Introduction

Mammalian ovary is responsible for generating competent

oocytes required for the successful fertilization and early

embryonic development. Apoptosis, a programmed cell

death, plays a major role in the elimination of germ cells at

all the stages of oogenesis and even after ovulation [1, 2].

More than 99 % of germ cells are eliminated from ovary

via apoptosis through follicular atresia, while less than 1 %

are culminated into oogonia [1, 3]. These oogonia enter

into meiosis to give rise to primary oocytes [4, 5]. Primary

oocytes are arrested at diplotene stage for several months to

several years depending upon the mammalian species [6,

7]. These diplotene-arrested oocytes are encircled by sev-

eral layers of granulosa cells inside the follicular

microenvironment.

A cross-talk between encircling granulosa cells and

diplotene-arrested oocytes is important for the survival of

both cell types [8, 9]. The granulosa cell apoptosis and/or

premature removal of encircling granulosa cells deprive

oocyte from growth factors, nutrients and survival factors

that may lead to apoptosis in diplotene-arrested oocytes

cultured in vitro [10–14]. Our studies suggest that granu-

losa cell apoptosis inside the follicular microenvironment

leads to oocyte apoptosis in rat [14–16]. The granulosa cell

intactness protects oocytes from oxidative stress damage
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in vitro [17–19]. Generation of reactive oxygen species

(ROS) or depletion of antioxidant system leads to oocyte

apoptosis [12–14, 20]. However, granulosa cell apoptosis

in ovulated cumulus oocyte complexes can be used as

predictors of oocyte quality [21–23].

A small number of follicles containing primary oocytes

are selectively recruited during entire reproductive life of

mammalian female including human. Follicular oocytes

resume meiosis in response to pituitary gonadotropins

surge or if removed from ovary and cultured in vitro [6, 7,

10, 11, 24, 25]. Although these diplotene-arrested oocytes

(Fig. 1a) frequently undergo spontaneous meiotic resump-

tion from diplotene arrest and further get arrested at

metaphase-I (M-I) stage (Fig. 1b) but they are more sus-

ceptible to in vitro culture conditions and frequently die via

apoptosis [15, 16, 18, 19].

At the time of ovulation, graafian follicles rupture and

give rise to competent oocytes arrested at metaphase-II

(M-II) stage. Once ovulated, these oocytes possess first

polar body and waits for fertilization (Fig. 1c). If the fer-

tilization does not occur, postovulatory aging results either

spontaneous activation followed by metaphase-III (M-III)

like arrest (Fig. 1d) [7, 26–29] or apoptosis (Fig. 1e) in

oocytes [15, 16, 20, 30–34]. Studies suggest that good

quality oocytes are ovulated first during early reproductive

life. As the maternal aging occurs, oocyte becomes more

susceptible towards apoptosis and limits reproductive out-

come in human [35–37]. Thus, apoptosis plays a major role

in eliminating majority of germ cells at all the stages of

oogenesis and depletes ovarian reserve in various mam-

malian species including human.

Players of oocyte apoptosis

There are several players responsible for oocyte apoptosis

in mammals (Fig. 2). Encircling granulosa cells decide the

fate of an oocyte inside the follicular microenvironment

[8]. Deprivation of oocytes from various signal molecules,

survival factors and growth factors from encircling gran-

ulosa cells trigger susceptibility of oocytes towards apop-

tosis [15, 16]. This is supported by the observations that

premature removal of granulosa cells from oocyte or

granulosa cell apoptosis reduce meiotic as well as devel-

opmental competence [38–41] and increase susceptibility

of follicular oocyte towards apoptosis [12, 13, 33, 34, 42].

Reduced granulosa cell-oocyte communication inter-

rupts the transfer of adenosine 30,50-cyclic monophosphate

Fig. 1 Representative photograph showing morphological features

characteristics of a diplotene arrest (green arrow showing germinal

vesicle), b M-I arrest (green arrow showing germinal vesicle break-

down), c M-II arrest (black arrow showing first polar body), d M-III like

arrest (black arrow showing first polar body red arrow showing second

polar body extrusion) and e apoptosis in mammalian oocytes. Several

factors could induce apoptosis in oocytes at various stages of meiotic cell

cycle and reduces ovarian reserve (Color figure online)
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(cAMP) [43], guanosine 30,50-cyclic monophosphate

(cGMP) [44, 45] and nitric oxide (NO) [46] levels to the

follicular oocyte. Reduction of these signal molecules may

trigger the generation of reactive oxygen species (ROS) in

diplotene-arrested oocytes [11, 24, 25, 47]. These findings

are further supported by our previous studies that diplo-

tene-arrested oocytes are more susceptible to hydrogen

peroxide (H2O2)-induced apoptosis as compare to M-II

arrested oocytes [12–14, 30]. Increased inducible nitric

oxide synthase expression and thereby NO level induce

oocyte apoptosis [16, 18, 19, 32].

Calcium (Ca2?) is one of the major signal molecules

that regulate oocyte physiology [48–50]. The high sus-

tained level of intracellular calcium ([Ca2?]i) induces

meiotic cell cycle arrest and apoptosis [26, 51, 52]. On the

other hand, abnormally high ([Ca2?]i) results in cell death

[53, 54]. Calcium ionophore (CI) increases cytosolic free

Ca2? possibly by mitochondrial remodelling [55] and mi-

tochondria membrane depolarization [56] leading to

apoptosis in rat [30], pig [57] and bovine oocytes [58, 59]

cultured in vitro. Studies from our laboratory suggest that

CI increases cytosolic free Ca2? level, induces generation

of ROS and thereby apoptosis in rat oocytes cultured

in vitro [30, 32, 60]. Sustained reduced levels of cAMP and

cGMP as well as increased level of Ca2? induce generation

of ROS [24, 25]. This notion is further supported by our

studies that increased levels of ROS with reduced catalase

activity induce morphological apoptotic features in rat

oocytes [15, 16, 18, 19].

Increased generation of ROS may lead to oxidative

stress [6, 24, 25, 61, 62]. The oxidative stress reduces

survival factors and induces destabilization of maturation

promoting factor (MPF) in diplotene as well as M-II ar-

rested oocytes. MPF stabilisation requires a series of

phosphorylation/dephosphorylation of Cdk1, dissociation

and degradation of cyclin B1 in oocytes [7]. Studies from

our laboratory suggest that the inhibition of Cdk1 activity

using roscovitine induces meiotic cell cycle arrest and

apoptosis [33, 34, 63–65] probably by modulating the level

of MPF heterodimer. Although MPF destabilization trig-

gers spontaneous exit from M-II arrest [27–29], sustained

decrease of destabilised MPF level triggers oocyte apop-

tosis [33, 34].

Oocyte after ovulation, either in vivo or under in vitro

culture conditions, has limited number of adenosine

triphosphate (ATP) [66] that results in the generation of

ROS and thereby downregulation of anti-apoptotic factor

such as Bcl2 [16]. The reduced anti-apoptotic factor leads

to increased proapoptotic as well as apoptotic factors re-

sults in oocyte apoptosis [12–16, 33, 34, 60]. Factors that

push oocytes to initiate apoptotic cell death indirectly are

termed as proapoptotic factors. Apoptotic factors are di-

rectly involved in the disruption of histoarchitecture of a

cell leading to appearance of morphological apoptotic

features. BH3-only proteins act as proapoptotic factors and

are essential mediators of apoptosis within ovary in several

mammalian species [2, 5]. Apoptosis in the follicular

oocytes results in the depletion of germ cells from ovarian

reserve [67]. The ratio of apoptotic promoter (such as Bax

expression) to suppressor (such as Bcl2 expression) within

a cell determines whether cell will undergo apoptosis or

survive [12–16, 68]. The involvement of Bax protein and

caspase-3 activation during oocytes apoptosis has been

reported in mouse and rat oocytes [12, 13, 69].

It has been generally accepted that an increased level of

cytochrome c initiates apoptosis in oocytes [34, 60, 70]. The

release of cytochrome c from internal stores activates up-

stream and downstream caspases in a cell leading to oocyte

Fig. 2 Schematic

representation showing various

players of oocyte apoptosis such

as premature disruption of gap

junctions, Signal molecules

(Ca2?, cAMP and cGMP),

Oxidants (NO, H2O2 and OH-),

MPF Destabilization, Meiotic

competency, Oocyte aging,

Survival factors, Proapoptotic

factors (Bax, cytochrome c,

caspases 8 and 9), BH3-only

proteins and apoptotic factors

(caspase 3 and DNA

fragmentation). Casp 3 Caspase

3, DNA Frag DNA

Fragmentation, Cyto c

Cytochrome c, Casps 8, 9

Caspases 8 and 9
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apoptosis [12–16, 32, 34, 60]. Caspases are a family of

cysteine-dependent aspartate-directed proteases that cleave

intracellular polypeptides resulting into disruption of cel-

lular architecture that leads to morphological changes

characteristics of apoptosis [69]. Caspase-3 has substrate

specificity for destruction of structural and specific proteins

that leads to DNA damage in multiples of 180–200 base-

pair, a hallmark feature of oocyte apoptosis [12–16, 18, 19,

30, 33, 34, 57, 60, 69, 71]. Although we have described

major players responsible for depleting ovarian reserve by

inducing oocyte apoptosis, there are several other equally

important players involved in this process, which are not

discussed herewith.

Underlying pathways in oocyte apoptosis

Oocyte apoptosis in mammals involves both mitochondria-

mediated (intrinsic) [72] as well as cell surface death re-

ceptors-mediated (extrinsic) pathways (Fig. 3). Increased

oxidative stress is one of the major factors that induce

oocyte apoptosis [18, 19]. Various players, as described

above, follow either mitochondria-mediated or death re-

ceptors-mediated pathways and some of them links these

two pathways to induce oocyte apoptosis [2]. Players that

induce generation of ROS follow mitochondria-mediated

oocyte apoptosis [18, 19]. The proapoptotic ligands (FASL

and TNFa) bind to their respective receptor and activate

cell surface death receptors. Activation of death-receptors

followed by caspases leads to death-receptor mediated

apoptosis [73].

Increased levels of ROS due to decreased levels of cAMP

as well as cGMP in oocytes [24, 47] and increased level of

cytosolic free Ca2? drive mitochondria-mediated apoptosis in

follicular oocytes in mammals [60]. Studies suggest that in-

creased cytosolic free Ca2? level in response to CI induces

generation of H2O2 [74]. The increased level of ROS can

modulate expressions of Bax/Bcl2 ratio in mitochondria

membrane and thereby membrane potential [69, 74]. Change

in the mitochondria membrane potential triggers cytochrome

c release in the cytoplasm of a cell [34, 60, 70], which activate

upstream and downstream caspases in oocytes [74].

The proapoptotic BH3-only proteins act as key regula-

tors of apoptosis within the ovary [2]. BID, a BH3-only

protein, acts as a bridge between mitochondria-mediated

and death receptor-mediated pathways. A truncated BID

(tBID) induces overexpression of Bax, which then mod-

ulates mitochondria membrane potential that results in the

release of cytochrome c. Cytochrome c binds to apoptotic

protease activating factor 1 in the cytoplasm that activates

caspase-9 as well as caspase-3. The caspase-3 cleaves key

structural and regulatory proteins leading to several bio-

chemical and morphological changes associated with

oocyte apoptosis [60, 69, 75–77].

The extrinsic apoptotic pathway is initiated by activa-

tion of tumour necrosis factor receptor family (FAS and

TNFR1), which bind to their ligands (FASL and TNFa) [2,

33]. Recent studies from our laboratory suggest that re-

duced Thr-161 phosphorylated Cdk1 as well as cyclin B1

levels destabilize MPF and push FasL-mediated oocyte

apoptosis [33]. The increased FasL concentration results in

Fas receptor trimerization and recruitment of the adaptor

Fig. 3 Schematic hypothetical

diagram showing involvement

of mitochondria- and death

receptor-mediated pathways in

apoptosis of mammalian

oocytes
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molecule Fas-associated death domain-containing protein

(FADD) through interaction between its own and clustered

receptor death domains [33, 78]. On recruitment by FADD,

procaspase-8 gets oligomerized and activated via auto-

catalysis. Active caspase-8 stimulates apoptosis by cleav-

ing and activating caspase-3 [73]. This notion is further

strengthened by our observations that roscovitine increases

caspases-8 as well as caspases-3 activities in treated

oocytes that showed cytoplasmic fragmentation (Fig. 1e).

The activated caspase-3 cleaves key structural and

regulatory proteins that result in DNA fragmentation, a

hallmark feature of apoptosis [69]. These fragmented DNA

are detected in a single oocyte using TUNEL assay [12–16,

33, 34, 69, 78–80].

Future prospectus

Several players are involved in inducing oocyte apoptosis

either following mitochondria- or death-receptor mediated

pathway or both. Based on the available literature, we

propose major players and pathways involved in oocyte

apoptosis. However, furthermore studies are required to

delineate the stage specific involvement of these players

and pathways inducing apoptosis in diplotene-, M-I, M-II

and M-III arrested oocytes in mammals. Oocyte apoptosis

is one of the major causes for the depletion of germ cells

from ovary and has direct negative impact on female fer-

tility in various mammalian species including human.

Discovery of very small embryonic-like cells opens excit-

ing new perspectives for neo-oogenesis but the source of

new oocytes is still unclear and under debate [81, 82].

Although a ray of light is coming from ovarian stem cells

to increase the number of oocytes, emphasis must be given

to prevent oocyte loss via apoptosis from the ovary due to

environmental changes, pathological conditions or drugs

treatment so that the early depletion of ovarian reserve can

be protected. The availability of good quality and number

of oocytes could improve reproductive outcome in several

mammalian species including human.
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