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Abstract Similar to apoptosis of nucleated cells, eryth-

rocytes may undergo eryptosis, a suicidal death charac-

terized by cell shrinkage and phospholipid scrambling of

the cell membrane leading to phosphatidylserine exposure

at the cell surface. As eryptotic erythrocytes are rapidly

cleared from circulating blood, excessive eryptosis may

lead to anemia. Moreover, eryptotic erythrocytes may

adhere to the vascular wall and thus impede microcircu-

lation. Stimulators of eryptosis include osmotic shock,

oxidative stress and energy depletion. Mechanisms

involved in the stimulation eryptosis include ceramide

formation which may result from phospholipase A2

dependent formation of platelet activating factor (PAF)

with PAF dependent stimulation of sphingomyelinases.

Enhanced erythrocytic ceramide formation is observed in

fever, sepsis, HUS, uremia, hepatic failure, and Wilson’s

disease. Enhanced eryptosis is further observed in iron

deficiency, phosphate depletion, dehydration, malignancy,

malaria, sickle-cell anemia, beta-thalassemia and glucose-

6-phosphate dehydrogenase-deficiency. Moreover, erypto-

sis is triggered by osmotic shock and a wide variety of

xenobiotics, which are again partially effective by

enhancing ceramide abundance. Ceramide formation is

inhibited by high concentrations of urea. As shown in

Wilson’s disease, pharmacological interference with cera-

mide formation may be a therapeutic option in the treat-

ment of eryptosis inducing clinical disorders.
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Abbreviation

AE1 Anion exchanger 1

AMP Adenosinmonophosphate

AMPK AMP activated kinase

GMP Cyclic guanosinmonophosphate

CXCL16 CXC-Motiv-Chemokin 16

HUS Hemolytic uremic syndrome

G6PD Glucose-6-phosphate dehydrogenase

GLUT1 Glucose transporter 1

PAF Platelet activating factor

PAK2 p21-activated kinase 2

PDK1 Phosphoinositide dependent kinase 1

TRPC6 Transient receptor potential channel C6

Introduction

Mature erythrocytes eventually undergo senescence lead-

ing to their removal from circulation within 100–120 days

[1–3]. Erythrocyte senescence involves binding of hemi-

chromes to band 3 with subsequent band 3 clustering,

deposition of complement C3 fragments and binding of

anti-band 3 immunoglobulins [4].

Erythrocytes may face injury prior to senescence.

Defective erythrocytes may eventually undergo hemolysis

and release hemoglobin, which may be filtered in renal

glomeruli and subsequently precipitate in the acidic lumen

of renal tubules [5]. To avoid hemolysis, erythrocytes may

enter suicidal death or eryptosis, which is characterized

by cell shrinkage and cell membrane scrambling [6–9].
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The cell shrinkage serves to counteract cell swelling, the

phosphatidylserine exposure fosters phagocytosis [10, 11]

and thus clearance of affected erythrocytes from circulating

blood [12].

Excessive stimulation of eryptosis, however, causes

anemia as soon as the clearance of eryptotic erythrocytes

from circulating blood surpasses the formation of new

erythrocytes [6–9]. Phosphatidylserine exposing erythro-

cytes further adhere to the vascular wall [9] and blood

platelets [13], trigger blood clotting and thrombosis and

interfere with microcirculation [9]. Thus, enhanced eryp-

tosis may become pathophysiologically relevant. Eryptosis

is distinct from programmed erythrocyte necrosis [14].

Mechanisms involved in the triggering of eryptosis

include ceramide formation. The present review briefly

discusses the cellular mechanisms involved in the trigger-

ing of eryptosis with particular emphasis on ceramide. It

further discusses the contribution of ceramide to the trig-

gering of eryptosis in disease and by xenobiotics. The

reader is encouraged to consult earlier, more extensive

reviews providing the description of further aspects of

eryptosis [6–8, 15–18].

Triggers and clinical conditions associated

with enhanced eryptosis

A wide variety of chemicals triggers eryptosis [18–31].

Moreover, enhanced eryptosis is observed in several dis-

orders including iron deficiency [12], phosphate depletion

[32], dehydration [33], Parkinson’s disease [34], fever [35],

sepsis [36], hemolytic anemia [37], hemolytic uremic

syndrome (HUS) [38], end stage renal disease [39–41],

metabolic syndrome [42], diabetes [43–45], hepatic failure

[46], malignancy [47], malaria [7, 48–52], sickle-cell dis-

ease [15, 50, 51, 53–56], thalassemia [51, 53, 55, 57–59],

glucose-6-phosphate dehydrogenase (G6PD)-deficiency

[55, 60], Wilson’s disease [17], mutation or lack of the

anion exchanger [61] and an extremely rare mutation of

GLUT1 turning the carrier into a Ca2? permeable cation

channel [62]. Enhanced suicidal erythrocyte death is fur-

ther observed following return from high altitude, a phe-

nomenon affecting mainly newly formed erythrocytes

(neocytolysis) [63].

Role of calcium in eryptosis

Eryptosis is stimulated by increase in cytosolic Ca2?

activity [64–66], which is known to trigger vesiculation of

the cell membrane [67] and cell membrane scrambling [45,

68, 69]. Increased cytosolic Ca2? activity further activates

the cysteine endopeptidase calpain, an enzyme degrading

the cytoskeleton and thus leading to cell membrane bleb-

bing [70]. Beyond that, an increase of cytosolic Ca2?

activity is followed by stimulation of Ca2?-sensitive K?

channels [71–73] with subsequent K? efflux, hyperpolar-

ization of the cell membrane, Cl- exit [74] and thus cell

shrinkage due to loss of cellular KCl with osmotically

obliged water [74]. Mechanisms increasing cytosolic Ca2?

activity include Ca2? entry through non-selective cation

channels [75–79]. The molecular identity of the cation

channels is still ill defined but apparently involves TRPC6

[80]. The Ca2? permeable cation channels are stimulated

by osmotic shock [81, 82], oxidative stress [82, 83] and

Cl- removal [79, 81, 83].

Oxidative stress and further signaling triggering

eryptosis

Oxidative stress [55, 84, 85] or impaired antioxidative

defence [86–88] triggers eryptosis. Oxidative stress is not

only effective by activating the Ca2?-permeable cation

channels [83] but, in addition activates erythrocyte Cl-

channels [89, 90], which contribute to eryptotic cell

shrinkage [91]. Oxidative stress further stimulates eryptosis

by activation of caspases [65, 92, 93].

The signalling governing eryptosis involves several

kinases [18]. Eryptosis is fostered by activation of casein

kinase 1a, Janus-activated kinase JAK3, protein kinase C,

and p38 kinase [18]. Eryptosis is inhibited by AMP acti-

vated kinase AMPK, cGMP-dependent protein kinase,

PAK2 kinase, sorafenib sensitive kinases and sunifinib

sensitive kinases [18].

Gene targeted mice with enhanced eryptosis include

mice lacking AMP-activated protein kinase [94], cGMP-

dependent protein kinase [95], Klotho [96], or AE1 [97].

Moreover, enhanced eryptosis is observed in mice

expressing excessive erythropoietin levels [98]. Decreased

eryptosis is observed in mice deficient in PAF receptor

[99], PDK1 [100] or TRPC6 [80]. The susceptibility to

eryptosis increases with erythrocyte age [101, 102].

Sphingomyelin breakdown and ceramide formation

A major stimulator of eryptosis is ceramide [103, 104],

which has previously been shown to participate in the

triggering of apoptosis of a wide variety of cell types [105–

111]. Sphingolipids consist of an sphingoid base, i.e. a 1,3-

dihydroxy-2-aminoalken backbone with Sphingosine, i.e.

(2S, 3R, 4E)-2-amino-4-octadecene-1,3-diol, being the

most prevalent backbone of mammalian sphingolipids. The

attachment of sphingosine to a fatty acid via an amide ester

bond results in the formation of ceramide [112, 113].
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Ceramides contain fatty acids with very different chain

lengths from 2 to 36 carbon atoms in the acyl chain and

also differ in their saturation. Modification of ceramide by

attachments of various headgroups results—for instance—

in sphingomyelin, gangliosides, sulfatides, globosides or

cerebrosides [112, 113]. Sphingomyelin, an ester of a

ceramide moiety and a hydrophilic phosphorylcholine

headgroup, is the most prevalent sphingolipid in the cell

membrane [112, 113]. Ceramide is mainly generated via a

de novo synthesis pathway or by hydrolysis of sphingo-

myelin, a step catalyzed by sphingomyelinases [for review

see [114]]. Under certain circumstances ceramide is also

generated by a retrograde activity of ceramidases con-

verting sphingosine into ceramide or by hydrolysis of

complex glycosylated lipids or ceramide 1-phosphate [for

review see [114]]. Sphingomyelinases cleave phospho-

diester bonds and belong to the family of hydrolases. The

pH value, but also the composition of the membrane,

determines the activity of sphingomyelinases [115, 116]

and, therefore, sphingomyelinases are classified into an

acid and several neutral and alkaline sphingomyelinases.

The acid sphingomyelinase functions best at a pH of

4.5–5.0, but the lipid composition of the membrane alters

the Km of the enzyme and thereby acid sphingomyelinase

also functions at higher pH for instance at plasma mem-

branes [116]. Acid and neutral sphingomyelinases are the

enzymes, which are mainly involved in eryptosis as evi-

denced by genetic and pharmacological studies using

functional inhibitors of the acid sphingomyelinase such as

amitriptyline or imipramine [104, 117–119].

Besides the hydrolysis of sphingomyelin, ceramide is

generated de novo by the activity of several enzymes

including serine palmitoyl-transferase and ceramide syn-

thases. The serine palmitoyl-transferase catalyzes the

condensation of L-serine and palmitoyl CoA to 3-ketosp-

hinganine, which is the rate-limiting enzyme in sphingo-

lipid biosynthesis. 3-ketosphinganine is reduced to

sphinganine by a reductase. The N-acylation of sphinga-

nine to dihydro-ceramide is catalyzed by ceramide syn-

thases. Finally, dihydro-ceramide is desaturated by

desaturase to ceramide [120]. At present six ceramide

synthases, i.e. ceramide synthase 1–6, are cloned. The

ceramide synthases employ acyl-CoA of distinct length to

generate (dihydro) ceramide in the de novo biosynthesis

pathway and the specificity of each ceramide synthase is

limited to a certain chain length, for instance CerS1 uses

mostly C18-fatty acyl CoA [121], CerS2 can utilize a wider

range of very long chain (VLC) fatty acyl CoAs (C20 to

C26) [122]. CerS3 incorporates ultra-long chain fatty acyl

CoAs (C26 to C32) [123, 124], CerS4 uses C18- and C20-

fatty acyl CoAs [125]. CerS5 has specificity only for C16-

fatty acyl CoA [123], and CerS6 can use both C14- and

C16-fatty acyl CoAs [126].

Role of ceramide in eryptosis and adhesion

to the vascular wall

In erythrocytes ceramide is generated following osmotic

shock by sphingomyelin breakdown [103]. Ceramide sen-

sitizes erythrocytes to the eryptotic effect of enhanced

Ca2? concentration [103]. Along those lines erythrocyte

cell membrane scrambling following osmotic shock is

mimicked by addition of C6-ceramide, C16-ceramide or

addition of bacterial sphingomyelinase [103].

The mechanisms involved in ceramide induced eryptosis

remained incompletely understood. In nucleated cells cer-

amide fosters receptor clustering in lipid rafts and forma-

tion of a death-inducing signalling complex (DISC) [127–

130], modifies the membrane curvature and thus compro-

mises cell membrane integrity [131, 132]. In erythrocytes

ceramide is similarly localized in clusters [133]. Ceramide

modifies the interaction of the membrane with the cyto-

skeleton and increases membrane fragility [133]. Eventu-

ally, ceramide-induced changes in the membrane lead to

vesiculation, rigidity and enhanced membrane permeability

[133].

Enhanced ceramide abundance is involved in the trig-

gering of eryptosis by fever [35], sepsis [36], hemolytic

anemia [37], HUS [38], end stage renal disease [40],

hepatic failure [46], and Wilson’s disease [17]. Table 1

lists various xenobiotics triggering eryptosis at least in part

by increasing the ceramide abundance. Ceramide formation

is inhibited by amitriptyline [117, 134] and urea [135]. The

enzyme accomplishing the formation of ceramide has,

however, remained ill defined. In sepsis [36], HUS [38] and

end stage renal disease [40], the eryptosis could be trig-

gered by exposure of erythrocytes from healthy individuals

to patient plasma. In theory, the plasma could harbour a

ceramide-producing enzyme such as sphingomyelinase in

those diseases. Sphingomyelinase activity has indeed been

detected in the serum of patients suffering from Wilson’s

disease [17]. In erythrocytes, ceramide formation could be

triggered by platelet-activating factor PAF [99]. Osmotic

erythrocyte shrinkage triggers PAF formation by a phos-

pholipase A2 [99]. Erythrocytes express PAF receptors at

the erythrocyte surface and exposure of erythrocytes to

PAF stimulates sphingomyelin breakdown and ceramide

formation, effects disrupted by genetic knockout of the

PAF receptor [99]. Exposure of erythrocytes to bacterial

sphingomyelinase triggers eryptosis and subsequent adhe-

sion of the erythrocytes to endothelial cells [136]. Adhe-

sion is blunted by phosphatidylserine-coating annexin-V,

by addition of neutralizing antibodies against endothelial

CXCL16 and by silencing of the CXCL16 gene with small

interfering RNA. Pretreatment of the endothelial cells with

bacterial sphingomyelinase upregulates CXCL16 protein

abundance thus fostering adhesion not only by triggering of
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eryptosis but as well by enhancing docking molecules at

the endothelial surface [136]. Transmembrane CXCL16

serves as an endothelial adhesion molecule not only for

eryptotic cells but as well for lymphocytes [137]. CXCL16

expression is enhanced in atherosclerotic lesions [137,

138]. It is tempting to speculate that the preferred CXCL16

expression in atherosclerotic plaques could foster recruit-

ment of eryptotic erythrocytes to those sites, which could

contribute to the development of thrombosis.

Conclusions

Ceramide formation participates in the stimulation of

eryptosis, the suicidal erythrocyte death. Several diseases

and a wide variety of xenobiotics stimulate eryptosis at

least in part by increasing ceramide abundance. Ceramide

formation is stimulated by PAF, which is generated by a

phospholipase A2. Additional experiments are required to

define the ceramide-generating enzyme(s) and the molec-

ular mechanisms involved in ceramide-dependent cell

membrane scrambling.
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