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Abstract Alzheimer’s disease (AD) is characterized by

the deposition of aggregated amyloid-beta (Ab), which

triggers a cellular stress response called the unfolded pro-

tein response (UPR). The UPR signaling pathway is a

cellular defense system for dealing with the accumulation

of misfolded proteins but switches to apoptosis when

endoplasmic reticulum (ER) stress is prolonged. ER stress

is involved in neurodegenerative diseases including AD,

but the molecular mechanisms of neuronal apoptosis and

inflammation by Ab-induced ER stress to exercise training

are not fully understood. Here, we demonstrated that

treadmill exercise (TE) prevented PS2 mutation-induced

memory impairment and reduced Ab-42 deposition

through the inhibition of b-secretase (BACE-1) and its

product, C-99 in cortex and/or hippocampus of aged PS2

mutant mice. We also found that TE down-regulated the

expression of GRP78/Bip and PDI proteins and inhibited

activation of PERK, eIF2a, ATF6a, sXBP1 and JNK-p38

MAPK as well as activation of CHOP, caspase-12 and

caspase-3. Moreover, TE up-regulated the expression of

Bcl-2 and down-regulated the expressions of Bax in the

hippocampus of aged PS2 mutant mice. Finally, the gen-

eration of TNFa and IL-1a and the number of TUNEL-

positive cells in the hippocampus of aged PS2 mutant mice

was also prevented or decreased by TE. These results

showed that TE suppressed the activation of UPR signaling

pathways as well as inhibited the apoptotic pathways of

the UPR and inflammatory response following Ab-induced

ER stress. Thus, therapeutic strategies that modulate Ab-

induced ER stress through TE could represent a promising

approach for the prevention or treatment of AD.

Keywords Alzheimer’s disease � Endoplasmic

reticulum stress � Unfolded protein response �
Neuroinflammation � Neuronal cell death � Treadmill

exercise

Introduction

Alzheimer disease (AD) is a serious form of dementia, and

has become a growing health concern. One of the hall-

marks of AD is the aggregation of amyloid-beta (Ab) or

plaques in the brain. This process is highly toxic to neu-

rons, and causes inflammation that contributes to the death

of brain cells. The endoplasmic reticulum (ER) is the pri-

mary intracellular organelle where misfolded or abnormal

proteins accumulate, and these are recognized by several

ER chaperone proteins for maintenance of cellular

homeostasis. The accumulation of unfolded or misfolded
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proteins in the ER activates a cellular stress response

known as the unfolded protein response (UPR) and initiates

the removal of toxic misfolded proteins as a way to protect

the cell. However, an excessive buildup of misfolded

protein prolongs ER stress and induces oxidative stress,

aberrant ER Ca2? regulation, impaired proteasomal and

lysosomal activity, and inflammation. This phenomenon

extends the UPR and eventually triggers neuronal cell

death [1, 2]. Not surprisingly, therefore, ER stress-induced

neuronal cell death plays a crucial role in the pathogenesis

of neurodegenerative diseases like AD [3–5].

The ER contains three stress sensors: inositol-requiring

kinase 1 (IRE1), protein kinase-like ER kinase (PERK),

and activating transcription factor 6 alpha (ATF6a) trans-

ducers; these are normally maintained in an inactive state

via binding with an ER chaperone, glucose regulated pro-

tein 78 (GRP78) [also called binding immunoglobulin

protein (BiP), thus written as GRP78/Bip]. However, ER

stress triggers the release of GRP78/BiP from the com-

plexes, and the stress sensors recognize the misfolded

proteins in the ER and activate a complex signaling net-

work of UPR [6, 7]. Another ER chaperone, protein

disulfide isomerase (PDI), is also induced during ER stress,

and plays a critical role in either cell survival or death,

depending upon the degree of ER stress [8].

UPR signaling is a multifaceted cascade designed to

maintain ER homeostasis—either by reducing overall

protein synthesis to mitigate the ER overload caused by

accumulation of misfolded proteins or by selectively

increasing the production of ER chaperones to promote

refolding of misfolded/unfolded proteins to attenuate ER

stress [7, 9]. In contrast, under severe and prolonged ER

stress, UPR continuously activates ER stress sensors. For

example, extended phosphorylation of PERK subsequently

results in phosphorylation and inactivation of its effector

eukaryotic initiation factor 2a (eIF2a), causing a repression

of overall gene translation and leading to cell death [10,

11]. Interaction also occurs between two other ER stress

sensors: ATF6a expresses the messenger RNA (mRNA) of

transcription factor X-box binding protein 1 (XBP1), and

IRE1 splices its gene product to generate spliced XBP1

(sXBP1), which modulates apoptotic signaling [12]. In

addition, IRE1 alone activates c-Jun NH(2)-terminal pro-

tein Kinases (JNK) that reduce activities of anti-apoptotic

proteins [13]. Prolonged ER stress then promotes the

upregulation of a transcription factor C/EBP homologous

protein (CHOP), which down-regulates the expression of

anti-apoptotic protein Bcl-2, further contributing to apop-

tosis [14]. Accordingly, several studies have demonstrated

that neuronal tissues from AD patients or animals showed

increased phosphorylation of PERK and eIF2a [11], dis-

rupted ER Ca2? regulation [15], and upregulation of CHOP

[16], thereby providing evidence for UPR activation in AD.

Ab is generated through a proteolytic process of amy-

loid precursor protein (APP). b-secretase, also known as

beta-site APP cleaving enzyme 1 (BACE-1), and c-secre-

tase are involved in cleaving APP and releasing Ab into

extracellular compartments. Depending upon the cleavage

site of APP acted upon by c-secretase, either the short

length Ab-40 form (which is non-toxic) or the full length

Ab-42 form (which is toxic and aggregated) can be gen-

erated [17]. Genetic studies with mouse models showed

that gene mutations encoding APP or presenilin (one of

three subcomponents comprising c-secretase) cause over-

production of Ab-42 and early onset of AD [18].

The accumulation of extracellular aggregates of Ab-42

in the senile plaques and the presence of intracellular

aggregates of hyperphosphorylated tau in the neurofibril-

lary tangles (NTFs) are typical observations in the brains of

AD patients. However, several studies show that Ab-42 is

localized not only in the extracellular compartment, but

also in intracellular compartments such as the ER at the

onset of AD, which suggests that Ab-42 can directly induce

ER stress and play a crucial role in the pathogenesis of AD

[3, 19–24]. Importantly, recent studies have reported that

aggregations of Ab and tau protein cause neuronal cell

death in AD [25–28]. Aggregations of Ab-42 are also

linked to the activation of inflammation through several

intertwined cellular pathways; particularly reactive oxygen

species (ROS) and proinflammatory cytokines [29]. How-

ever, clear-cut roles of inflammation in pathogenesis of AD

are still elusive [22]. Nevertheless, the use of anti-inflam-

matory approaches is suggested for consideration as a

treatment option for AD patients.

Physical activity has been recommended as a both pre-

ventive and a therapeutic regimen in the management of

patients with AD. Evidence is accumulating that physical

activity may be sufficient to delay cognitive impairment

and repress neuronal apoptosis in both animal models and

patients of AD, indicating that physical activity has pro-

found benefits for maintaining normal function of the brain

[30–34]. Despite this common perception, the molecular

mechanisms by which physical activity protects the brain

against the onset of AD remain to be fully elucidated.

Therefore, we investigated the potential mechanistic con-

nections between the exercise training and Ab-induced ER

stress using a well-controlled mouse model of AD.

Mutations in PSEN2, a gene encoding presenilin 2

(PS2), which is one of three components of c-secretase,

lead to the incomplete function of c-secretase and results in

a loss of cleavage of APP; this generates Ab-42, and causes

AD [35]. We used transgenic (Tg) mice under the control

of the neuron-specific enolase promoter, which overex-

presses human mutant PS2 (N141I), to investigate the

effect of 12 weeks of treadmill exercise (TE) on ER stress-

induced neuronal apoptosis and inflammation in the brain
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of 24-month-old mice. This PS2 mutant transgenic (Tg)

mouse model of AD has been used in several studies [36,

37], and has provided highly convincing results that are

comparable to those derived using other mouse models of

AD, including APP mutant and PS1 mutant Tg mice. We

found that TE suppresses the production of Ab-42 as well

as expression of the ER stress chaperones, GRP78/BiP and

PDI. In addition, TE inhibits UPR-mediated apoptotic

signaling pathways involving CHOP, caspase-12, and

caspase-3, thereby preventing apoptotic neuronal cell

death. TE also significantly reduces the levels of proin-

flammatory cytokines, tumor necrosis factor-a (TNFa), and

interleukin-1a (IL-1a) in aged PS2 mutant mice. Collec-

tively, these findings suggest that TE-mediated blockade of

ER stress and inflammation via suppression of Ab-42 is a

potential mechanism responsible for the observation of

exercise-induced neuronal protection against AD. Conse-

quently, this study provides crucial insight for the devel-

opment of practical and effective non-pharmaceutical

therapeutic strategies for retardation and prevention of the

progression of AD.

Materials and methods

Transgenic mice

All animal experimental procedures used in this study were

approved by the Institutional Animal Care and Use Com-

mittee at Korea National Sport University and by the Korea

FDA. Transgenic mice, PS2 mutant mice expressing the

human PS2 mutant under the control of neuron-specific

enolase (NSE) were maintained in the genetic background of

C57BL/6 9 DBA/2 mice, as previously described [38]. The

mice were maintained at a 12:12 h dark–light cycle, housed

at 22 ± 2 �C with 50 % relative humidity, and had free

access to standard chow diet (Purina Mills, Seoul, Korea)

ad libitum. Mice were handled in an accredited Korea FDA

animal facility in accordance with the AAALAC Interna-

tional Animal Care Policies (Accredited Unit-Korea Food

and Drug Administration: Unit Number-000996).

Experimental design and treadmill exercise

PS2 mutant transgenic (Tg) mice and their control non-

transgenic (non-Tg) mice at 24 months of age, were divided

into one of the following groups: sedentary non-Tg mice

(SED/non-Tg, n = 8), sedentary PS2 mutant mice (SED/Tg,

n = 8) or treadmill-exercised PS2 mutant mice (TE/Tg,

n = 8). Pre-exercise was performed at 5 m/min, 10 min/day

for 5 days for the familiarization of the treadmill-exercise

environment, as previously conducted [34]. After this

period, TE was performed at 12 m/min, 60 min/day, for

5 days/week on a 0 % gradient for a total of 12 weeks.

However, a sedentary group remained in their home cage

throughout the course of the experiment.

Water maze test

The water maze test is a widely accepted method for testing

memory. Thus, we performed this test to assess memory

impairment as described elsewhere [33]. The maze test was

performed using the SMART-CS (Panlab, Barcelona, Spain)

program and equipment. A circular plastic pool (height

35 cm, diameter 100 cm) was filled with water (containing

dark ink) kept at 22–25 �C. An escape platform (height

14.5 cm, diameter 4.5 cm) was positioned and submerged

0.5–1 cm below the surface of the water. The test was per-

formed three times per day for 5 days. Each trial lasted for

60 s or ended as soon as the mouse reached the submerged

platform and was allowed to remain on the platform for 10 s.

Escape latency, escape distance and swimming pattern of

each mouse were monitored by a camera above the center of

the pool connected to a SMART-LD program (Panlab,

Barcelona, Spain). A quiet environment, consistent lighting,

constant water temperature, and a fixed spatial frame were

maintained throughout the period of the experiment.

Brain tissue collection and preservation

After the behavioral test, the five mice of each group were

sacrificed, after which the brains were rapidly removed and

the hemispheres were separated on ice. The cortex and hip-

pocampus from hemispheres, selected at random were snap-

frozen on dry ice and then stored at -80 �C for Western blot

analysis. The other three mice of each group were perfused

transcardially with 50 mM phosphate buffered saline (PBS)

followed by 4 % paraformaldehyde in 0.1 M sodium phos-

phate buffer at pH 7.4 for immunohistochemistry, immu-

nofluorescence staining and TUNEL assay.

Western blotting

Western blot analyses were conducted as previously described

[33]. Briefly, proteins (30 lg) were separated by electropho-

resis on a 12 % polyacrylamide gel for 90 min, after which

they were transferred to a polyvinylidene fluoride membrane

(Immuno-Blot, PVDF membrane, Bio-Rad, CA, USA) for 1 h

at a constant voltage of 60 V. Each membrane was then sep-

arately incubated overnight at 4 �C with specific antibodies:

Ab-42 (SIG-39320) and C-99 (SIG-39152) antibodies (Co-

vance, dilution: 1:1,000); Caspase-3 (#9662), CHOP (#2895),

eIF2a (#9722), phospho-eIF2a (#9721), JNK (#9252), phos-

pho-JNK, (#9251), p38MAPK (#9212), phospho-p38MAPK

(#9211) and PDI (#3501) antibodies (Cell signaling, dilution:

1:1,000); PERK (sc-13073), phospho-PERK (sc-32577),
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ATF6a (sc-22799), TNFa (sc-8301), sXBP1 (sc7160) and

GAPDH (sc-20357) antibodies (Santa Cruz, dilution: 1:1,000);

IL-1a (Sigma, I3392, dilution: 1:1,000); GRP78/BiP (ab21685)

and caspase-12 (ab18766) antibodies (Abcam, dilution:

1:1,000); Bcl-2 (B9804) and Bax (B8429) antibodies (Sigma,

dilution: 1:1,000); BACE-1 (Millipore, MAB5308, dilution:

1:1,000) antibody. The membranes were then washed with a

washing buffer, after which they were incubated with sec-

ondary antibodies. Horseradish peroxidase (HRP)-conjugated

goat anti-rabbit (invitrogen, 656120) for GRP78/BiP, PDI,

PERK, phospho-PERK, eIF2a, phospho-eIF2a, ATF6a,

Caspase-12, Caspase-3, sXBP1, JNK, phospho-JNK,

p38MAPK, phospho-p38MAPK and TNFa (dilution:

1:5,000). Horseradish peroxidase (HRP)-conjugated rabbit

anti-goat (invitrogen, 611620) for IL-1a and GAPDH (dilu-

tion: 1:5,000). Horseradish peroxidase-conjugated goat anti-

mouse (Santa Cruz, sc-2005) was used for Ab-42, C-99,

BACE-1, CHOP, Bcl-2, and Bax (dilution: 1:5,000). Immu-

noreactive proteins were detected with the ECL Western

blotting detection system (Santa Cruz Biotechnology, CA,

USA). The density of the developed bands was determined

using a ChemiDoc XRS system (Bio-Rad, Hercules, CA,

USA).

Immunohistochemistry

Samples for immunohistochemical analyses were embed-

ded in paraffin and sections at 6 lm thickness and per-

formed as previously described [30, 39]. The b-amyloid

plaques in the sections were pre-treated with DAB (Invit-

rogen, CA, USA) for 40 min at room temperature with a

blocking buffer containing 10 % goat serum in phosphate

buffer solution for 1 h, followed by incubation with a

primary unconjugated mouse monoclonal anti-b-amyloid

42 (Covance, SIG-39320, USA) at 1:300 in a blocking

buffer at room temperature overnight. The b-amyloid pla-

ques in the sections were washed in a washing buffer and

then incubated with a secondary antibody, HRP-conjugated

goat anti-mouse IgG Santa Cruz, sc-2005) at 1:200 for 2 h

at room temperature. The peroxidase activity was visual-

ized with diaminobenzidine (DAB) substrate kit (Vector

Laboratories, Burlingame, CA, USA). The slides were

observed under the light microscope (Olympus U-LH

100HG, Tokyo, Japan).

Immunofluorescence staining

Immunofluorescence staining was performed as previously

described [39]. Tissue sections were deparaffinized,

cleared, and hydrated to PBS using a descending series of

ethanol. The sections were blocked for 40 min at 37 �C

with 3 % goat serum in PBS followed by quenching

endogenous peroxidase activity by exposing slides to 0.3 %

H2O2 and 10 % methanol for 5 min. Primary antibodies for

GRP78/BiP (1:100; ab21685) were added and incubated

overnight at 4 �C. The following day, the slides were

washed in PBS three times for 5 min and pre-incubated in

2 % normal donkey serum (NDS) for 15 min, and then

transferred to a mixture of the secondary antibodies

(GRP78/BiP, Alexa 488 conjugated donkey anti-rabbit;

1:200 dilution, Jackson Immunochemicals, West Grove,

PA, USA) for 3 h at room temperature. After several rinses,

the sections were mounted on cover slides slipped with

Vectashield (Vector Laboratories, Burlingame, CA, USA),

and examined under an immunofluorescence microscope

(Leica Microsystems, Wetzlar, Germany). For negative

controls, the primary antibodies were omitted.

Detection of apoptosis by TUNEL

In situ detection of apoptotic cells was performed with

commercially available ApoTag Peroxidase In Situ Apop-

tosis Detection Kit (Chemicon, Temecula, CA, USA)

by TUNEL assay in paraffin sections according to the

company’s manual. Briefly, the slides were incubated with

20 lg/ml proteinase K (Chemicon, Temecula, CA, USA) in

PBS for 15 min followed by washing in distilled water.

After quenching in 3 % H2O2 and applying the equilibrium

buffer for 10 min, the sections were incubated in TdT

enzyme for 1 hr at 37 �C and put in stop/wash buffer for

10 min. The slides were rinsed in PBS three times and then

anti-digoxigenin peroxidase conjugate was applied on the

tissues for 30 min at room temperature. After washing in

PBS, the peroxidase activity was visualized with DAB

substrate kit (Vector Laboratories, Burlingame, CA, USA).

The nuclei were counter-stained with 0.5 % methyl green.

The slides were observed under the light microscope

(Olympus U-LH 100HG, Tokyo, Japan).

Histological scoring of the apoptosis

TUNEL positive cells in the hippocampus had nuclei with

dark brown and pointed apoptosis. The number of apop-

totic cells per 0.025 mm2 was calculated by dividing the

number of positive apoptotic cells within a 0.025 mm2 at

2009 magnifications using an image analyzer (Analysis

Pro 3.2, Sis Co., Munster, Germany). The results were

counted as the number per mm2 in the hippocampus.

Results were counted as mean ± SEM.

Statistical analysis

Data were analyzed using SPSS version 18.0 (SPSS, Inc.,

Chicago, IL, USA). All values are expressed as mean ±

SEM. Statistical significance was determined using a one-

way ANOVA when comparing the groups. A Bonferroni
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post hoc test was followed for all pairwise multiple com-

parisons if a statistically significant group main effect was

found. Differences were considered statistically significant

at a = 0.05.

Results

The effects of treadmill exercise on cognitive

impairment in aged PS2 mutant mice

Previous studies demonstrated that over-expressing the PS2

mutant under control of the NSE promoter in transgenic

mice is associated with several AD-like pathogenic phe-

notypes such as impairment of cognitive performance and

Ab-42 deposition in the brain at 12 months of age [38].

Our previous studies showed that TE improved cognitive

performance in APPsw transgenic mice or the PS2 mutant

mouse model [33, 34]. Thus, in these studies, TE was

performed for 3 months to 12-month-old or 24-month-old

APPsw and PS2 mutant mice. The cognitive functions of

the transgenic mice were then tested for 5 consecutive days

(3 times/day) in the location of and escape onto a platform,

and their learning scores were recorded. Statistical analysis

(ANOVA) of the data on day 5 showed the significance of

the cognitive performance improving effect of TE (escape

distance, F(2, 23) = 24.40, p \ 0.001; escape latency

F(2, 23) = 28.47, p \ 0.001, Fig. 1a, b). The non-transgenic

control mice and treadmill exercised PS2 mutant mice

exhibited shorter escape distance and shorter escape

latency time than the sedentary PS2 mutant mice during the

water maze test. Taken together, these results demonstrate

that 3 months of TE significantly ameliorated cognitive

impairment in aged PS2 mutant mice.

The effects of treadmill exercise on Ab-42 levels

in the cortex and hippocampus of aged PS2 mutant

mice

We determined the effect of TE on Ab-42 expression in the

cortex and hippocampus of aged PS2 mutant mice because

deposition of Ab-42 is implicated in cognitive dysfunction,

and our results were similar to previous data [30, 33]. One-

way ANOVA of Ab-42 data indicated significant effects for

the group [cortex, F(2, 14) = 15.09, p\0.001; hippocampus

F(2, 14) = 22.88, p\0.001]. As shown in Fig. 2a–d, treadmill

exercised PS2 mutant mice had a lower level of Ab-42 than

PS2 mutant mice in the sedentary condition. In addition, we

analyzed Ab immunoreactivity in the cortex and hippocam-

pus with higher magnification. As shown in Fig. 2e, immu-

nostaining with an Ab-42 specific antibody revealed that the

Ab-42 plaques in the cortex and hippocampus region of PS2

mutant mice were notably increased whereas the enhanced

Ab-42 plaques were reduced after TE. These results suggest

that TE leads to a reduction in the levels of Ab-42 in the

cortex and hippocampus, possibly by rectifying the functional

processes of the amyloid precursor protein (APP) through the

reduction of b-secretase (BACE-1).

The effects of treadmill exercise on BACE-1 and C-99

expression in the hippocampus of aged PS2 mutant

mice

We determined the effect of TE on the levels of b-secretase

(BACE-1) and its product C-99 in the hippocampus of

24 month-old PS2 mutant mice. The one-way ANOVA on

BACE-1 and C-99 data indicated significant effects for

the group [BACE-1, F(2, 14) = 158.90, p \ 0.001; C-99,

F(2, 14) = 19.74, p \ 0.001]. Western blot analysis showed

that TE leads to a reduction in the levels of BACE-1 and its

product C-99 in the hippocampus, suggesting that TE

reduced Ab-42 level, thereby reducing b-secretase and its

product C-99 (Fig. 3a–c).

Treadmill exercise down-regulates GRP78/BiP and PDI

in the hippocampus of aged PS2 mutant mice

We have examined whether TE reduced expression or

intensity of GRP78/BiP and PDI in the hippocampus of

24 month-old PS2 mutant mice. The one-way ANOVA on

GRP78/Bip data indicated significant effects for the group

[F(2, 14) = 72.93, p \ 0.001]. The one-way ANOVA

on PDI data indicated significant effects for the group

[F(2, 14) = 91.23, p \ 0.001]. The level of GRP78/Bip, an

ER chaperone, and PDI, a family of enzymes that catalyze

disulfide bond formation, reduction, or isomerization of

newly synthesized proteins in the lumen of the ER, were

markedly increased in the hippocampus of aged PS2

mutant mice. However, those proteins were down-regu-

lated after TE (Fig. 4a–c). Fluorescence photomicrograph

revealed that intensity of GRP78/Bip in the hippocampus

(CA-2 and CA-3) of PS2 mutant mice was notably

enhanced, whereas the enhanced expression was sup-

pressed after TE (Fig. 4d). These results indicate that TE

leads to the down-regulation of Ab-induced UPR activation

in the hippocampus of aged PS2 mutant mice.

Treadmill exercise down-regulates PERK-eIF2a
pathway in the hippocampus of aged PS2 mutant mice

We have examined whether TE reduced the expression of

PERK-eIF2a and ATF6a in the hippocampus of aged PS2

mutant mice. The one-way ANOVA on phospho-ERK/t-

PERK ratio and phospho-eIF2a/t-eIF2a ratio data indicated

significant effects for the group [phospho-PERK/t-PERK
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ratio, F(2, 14) = 56.07, p \ 0.001; phospho-eIF2a/t-eIF2a
ratio, F(2, 14) = 14.96, p \ 0.001]. As shown in Fig. 5a–c,

PS2 mutant mice that were maintained under sedentary

conditions had a higher phospho-PERK/t-PERK ratio and

phospho-eIF2a/t-eIF2a ratio than those of non-transgenic

mice. However, phospho-PERK and phospho-eIF2a were

down-regulated after TE. Thus, these results suggest that

down-regulation of the GRP78/BiP-dependent PERK-

eIF2a pathway by TE seem to play a neuroprotective role

against Ab-induce neurotoxicity, suggesting that TE pos-

sibly reduces susceptibility to Ab-induced ER stress by

altering the UPR signaling pathway.

Treadmill exercise represses ATF6a, sXBP1

and JNK-p38 MAPK in the hippocampus

in aged PS2 mutant mice

ER stress can induce apoptotic proteases such as CHOP,

caspase-12 and caspase-3, and activate JNK-p38 MAPK

via the IRE1-XBP1 pathway, which induces neuronal

apoptosis. In addition, ATF6a also collaborates with IRE1

to induce sXBP1 expression. Therefore, it was of interest to

characterize the potential signaling events following TE in

the hippocampus of aged PS2 mutant mice. The one-way

ANOVA on ATF6a data indicated significant effects for

the group [F(2, 14) = 33.85, p \ 0.001]. The one-way

ANOVA on sXBP1 data indicated significant effects for

the group [sXBP1, F(2, 14) = 116.27, p \ 0.001]. In addi-

tion, the one-way ANOVA on JNK and p38 MAPK data

indicated significant effects for the group [JNK 54,

F(2, 14) = 612.22, p \ 0.001; JNK 46, F(2, 14) = 103.76,

p \ 0.001; p38, F(2, 14) = 213.05, p \ 0.001]. As shown in

Fig. 6a–f, treadmill-exercised PS2 mutant mice had lower

levels of ATF6a and sXBP1 than those of sedentary PS2

mutant mice. In addition, PS2 mutant mice that were

subjected to TE had lower phosphorylation levels of JNK

54, JNK 46 and p38MAPK than those of PS2 mutant mice

in sedentary conditions. These results suggest that TE leads

to the down-regulation of Ab-induced ATF6a and sXBP1,

which in turn reduces JNK and p38 activation in the hip-

pocampus of aged PS2 mutant mice.

Reduction of CHOP, caspase-12 and caspase-3

and TNFa and IL-1a expression in response

to treadmill exercise in the hippocampus of aged PS2

mutant mice

We have examined whether TE reduced the expression of

CHOP, caspase-12 and caspase-3 in the hippocampus of

aged PS2 mutant mice. The one-way ANOVA on CHOP

and caspase-12 data indicated significant effects for

the group [CHOP, F(2, 14) = 25.96, p \ 0.001; caspase-12,

F(2, 14) = 63.16, p \ 0.001]. The one-way ANOVA on

caspase-3 data indicated significant effects for the group

[hippocampus, F(2, 14) = 261.15, p \ 0.001]. In addition,

the one-way ANOVA on TNFa and IL-1a data indicated

significant effects for group [TNFa, F(2, 14) = 80.17,

p \ 0.001; IL-1a, F(2, 14) = 201.73, p \ 0.001]. As shown
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Fig. 1 Effect of treadmill exercise on memory dysfunction in aged

PS2 mutant mice. All mice were tested for 5 consecutive days to

locate and escape onto the platform, and their escape latency and

escape distance were recorded. After 3 months of exercise on the

treadmill in PS2 mutant mice, escape distance (a), escape latency

(b) and patterns of swimming (c) until arriving at the platform were

recorded. Treadmill-exercised PS2 mutant mice were ameliorated in

their cognitive abilities to learn the task and showed consistently

shorter escape distances and lower escape latencies throughout testing

relative to sedentary PS2 mutant mice. Fisher’s LSD post hoc test

after ANOVA. Values are presented as mean ± SEM from eight

mice/groups
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in Fig. 7a–e, these results indicate that TE significantly

reduced the expression of CHOP and cleaved forms of

caspase-12 and caspase-3, suggesting that the protective

effect of TE against Ab-induced ER stress can be signifi-

cantly attributed to the inactivation of ER stress-specific

neuronal cell death proteases. In addition, TE represses

local inflammatory responses through the reduction of

chronic overexpression of TNFa and IL-1a.

Down-regulation of hippocampal Bax protein

and up-regulation of the Bcl-2 protein in response

to treadmill exercise in aged PS2 mutant mice

We have examined whether TE up-regulated the level of

the anti-apoptotic factor, Bcl-2 and down-regulated the

level of the pro-apoptotic factor, Bax in the hippocampus

of aged PS2 mutant mice, with special attention to the

A B

C D

E

Fig. 2 Expression and immunostaining analysis of Ab-42 level in the

cortex and hippocampus of aged PS2 mutant mice after 3 months of

treadmill exercise. Western blot (n = 5) and immuno staining

analysis (n = 3) of Ab-42 deposition. a–d Nitrocellulose filters

transferring 30 lg of protein from the cortex and hippocampus of

each group, incubated with anti-human Ab-42 antibody. The bands

were quantified by densitometry to obtain relative levels of Ab-42.

GAPDH was probed as an internal control. e Immunostaining of Ab-

42. 6 lm-thick sections of brains from each group were incubated

with anti-human Ab-42 primary antibody and HRP-conjugated goat

anti-rabbit IgG. The resulting tissues were viewed with a microscope.

The narrow distribution and low intensity of Ab-42 deposition were

shown in the cortex and hippocampus tissue of treadmill-exercised

PS2 mutant mice. Five mice per non-transgenic mice and PS2 mutant

mice subgroups were assayed in triplicate on Western blot analysis

and three mice per non-transgenic mice and PS2 mutant mice

subgroups were assayed in triplicate by immunohistochemistry assay.

Fisher’s LSD post hoc test after ANOVA. Values are presented as

mean ± SEM
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possible relationship among Bax and Bcl-2 proteins and

TE. The one-way ANOVA on Bax and Bcl-2 data indicated

significant effects for the group [Bax, F(2, 14) = 317.284,

p \ 0.001; Bcl-2, F(2, 14) = 61.99, p \ 0.001]. As shown

in Fig. 8a–c, the hippocampus of treadmill-exercised PS2

mutant mice had lower levels of Bax than that of sedentary

PS2 mutant mice whereas the hippocampus of treadmill-

exercised PS2 mutant mice had higher levels of Bcl-2 than

that of sedentary PS2 mutant mice. Taken together, these

results demonstrate that up-regulation of Bcl-2 and

down-regulation of Bax in hippocampus regions containing

Ab deposits following TE was associated with

neuroprotection.

The effects of treadmill exercise on the number

of TUNEL-positive cells in the hippocampus of aged

PS2 mutant mice

To examine the effect of TE on neuronal apoptotic cell

death in PS2 mutant mice hippocampus, apoptotic cells of

the hippocampus were stained using TUNEL methods. The

TUNEL-positive cells were stained brown color in hippo-

campus (dentate gyrus) and immune-labeling scores were

shown in Fig. 9a, b. One-way ANOVA for immune-

labeling scores of the hippocampus indicated significant

effects for the group (hippocampus, F(2, 8) = 272.39,

p \ 0.001). The treadmill-exercised PS2 mutant mice

showed a significant decrease in apoptotic neuronal cell

death compared to the sedentary PS2 mutant mice (hip-

pocampus gyrus region), suggesting that TE repressed

neuronal apoptosis by down-regulation of UPR signaling

pathways and ER stress-specific apoptotic protease, CHOP,

caspase-12 and caspase-3 in the hippocampus.

Discussion

Accumulation of Ab or aggregation of Ab are hallmarks of

AD and are associated with the progression of AD symp-

toms. Recent studies have reported the striking finding that

exercise training prevents the progression of AD in both

human and animal models of AD. This has prompted the

use of exercise training as a non-pharmacological and

practical therapeutic countermeasure against AD. Cur-

rently, however, the molecular mechanisms responsible for

exercise-induced prevention of AD are poorly understood.

In this report, we have used a mouse model to investigate

the effects of TE on the repression of neuronal cell death

caused by AD-induced ER stress. This mouse model has a

mutation in the PS2 gene and therefore shows early onset

AD.

Accumulation of Ab, memory impairment, inflamma-

tion, and neuronal cell death are commonly observed in

AD mice and humans [30, 33, 38, 40]. The pathological

activation of UPR due to Ab-induced ER stress also

becomes prominent cause of neuronal cell death in the

brain of AD mice and humans [22, 41–48]. We also found

that aged PS2 mutant mice showed abundant Ab protein

and inflammation, impaired cognitive function, and a

greater extent of neuronal apoptosis. In particular, we

found that accumulation of Ab caused chronic ER stress,

thereby contributing to AD-mediated neuronal apoptosis by

activation of the UPR signaling pathways.

Moderate ER stress promotes the protein expression of

the ER resident chaperones such as GRP78/BiP and PDI by

UPR signaling. This enhances protein refolding as a cellular

defense response. In contrast, chronic ER stress induced by

accumulation of Ab switches UPR signaling from a pro-

survival to a pro-apoptotic pathway. In this regard,
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Fig. 3 Effect of treadmill exercise on expression of BACE-1 and

C-99 in the hippocampus of aged PS2 mutant mice. Inhibitory effect

of TE on expression of BACE-1 and C-99 in the hippocampus of PS2

mutant mice brains. a–c Hippocampal BACE-1 and C-99 proteins

were up-regulated in PS2 mutant mice compared with non-transgenic

mice, and the levels of those proteins in PS2 mutant mice were down-

regulated after TE. The data shown in the Western blot were means

from five mice brains. GAPDH was probed as an internal control.

Fisher’s LSD post hoc test after ANOVA. Values are presented as

mean ± SEM
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mitigation of ER stress, possibly via the reduction of Ab
deposition, appears to be a promising strategy to help pre-

vent the progression of AD. We found that 12 weeks of TE

reduced Ab-42 deposition in both cortex and hippocampus

and prevented cognitive impairment. Since Ab and C-99

(a cell membrane-bound protein fragment) are produced as

cleavage products of amyloid precursor protein (APP) via

b-secretase (BACE-1) activity, we examined the level of

BACE-1 and C-99. A finding of suppression of these protein

levels in response to TE increases the probability that

reduction in Ab-42 deposition is due to the suppression of

BACE-1. Surprisingly, TE repressed the expression of

neuronal BACE-1 in conjunction with concomitant reduc-

tion in C-99 production. These results suggest that the

reduction in Ab-42 deposition in the brain tissue following

TE is due to the down-regulation of BACE-1 expression.

Similar findings have been reported for voluntary wheel

running exercise, which also prevents accumulation of Ab
and improves cognitive function [49, 50].

The basic mechanisms by which Ab is regulated appear

distinctive. For example, our PS2 mutant Tg mouse model

showed that the reduction in Ab following TE is induced

by repression of b-secretase, whereas Adlard et al. [49]

(APP double mutant Tg mouse model; voluntary

wheel running) did not observe any decrease in the level of

b-secretase, nor changes in Ab-degrading enzymes such as

neprilysin and insulin dependent enzyme (IDE). These

findings suggested that some other mechanism, such as

increased proteosomal activity via increased neuronal

activity, may enhance the removal of Ab. Similarly,

Maesako et al. [50] (APP mutant Tg mouse model; vol-

untary wheel running) observed an exercise-mediated

A

D

B

C

Fig. 4 Treadmill exercise inhibited GRP78/BiP and PDI expression

in the hippocampus of aged PS2 mutant mice. Representative Western

blot showing hippocampal GRP78/Bip and PDI levels for all groups

of mice were presented. a–c Hippocampal GRP78/Bip and PDI

proteins were up-regulated in PS2 mutant mice compared with non-

transgenic mice, and the levels of those proteins in PS2 mutant mice

were down-regulated after TE. GAPDH was probed as an internal

control. Fluorescence photomicrographs of cortical and hippocampal

sections from all groups of mice immunolabeled with anti-GRP78/

BiP antibody (left panel, green). d Note that GRP78/Bip expression

was decreased in CA-2 and CA-3 regions of hippocampus after TE in

PS2 mutant mice, 6 lm. Five mice per non-transgenic mice and PS2

mutant mice subgroups were assayed in triplicate on Western blot

analysis and three mice per non-transgenic mice and PS2 mutant mice

subgroups were assayed in triplicate by immunofluorescence assay.

Fisher’s LSD post hoc test after ANOVA. Values are mean ± SEM
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improvement in cognitive function, but found no exercise-

mediated repression of b-secretase. However, in contrast to

the results of Adlard et al., they found that a voluntary

wheel running exercise increased the activity of a metal-

loprotease enzyme, neprilysin, and the increase was cor-

related with elimination of aggregated Ab [49]. A recent

study using the triple mutation (APP, PS1, and Tau)

transgenic mouse model of AD showed that, aside from

inducing changes in Ab, voluntary wheel running exercise

was neuroprotective against the progression of AD, by

improvements in antioxidative capacity [51]. Collectively,

although the mechanism of exercise-induced neuronal

protection seems to differ depending on the strains of

animals and modality of exercise (i.e., treadmill vs. wheel

running), all studies agree that endurance exercise ame-

liorates the progression of AD, regardless of the stage of

AD. To the best of our knowledge, our study is the first to

demonstrate that treadmill running prevents the progres-

sion of AD by reducing Ab accumulation through repres-

sion of BACE-1.

Accumulation of Ab can trigger ER stress and result in

prolonged activation of UPR in AD; this leads to neuronal

apoptosis by activation of three classes of ER sensors

including UPR kinases (PERK, IRE1, ATF6) [10, 11, 52–

55]. Dissociation of the ER stress chaperone protein

GRP78/BiP from the ER membrane initiates UPR kinase

activity under ER stress. This activation in turn increases

expression of GRP78/BiP and PDI as a means of counter-

acting ER stress [56]. For example, activation of IRE1

induces splicing of transcription factor XBP1 to generate

sXBP1, which increases expression of GRP78/BiP [57].

Elevation of GRP78/BiP and PDI, and phosphorylation of

UPR kinases, are therefore considered to be ER stress

hallmarks. Our examination of the effects of TE on acti-

vation (phosphorylation) of UPR kinases and their down-

stream targets showed that, in the hippocampus of aged PS2

mutant mice, TE reduced the phosphorylation of PERK-

eIF2a, which are two critical components of UPR, and it

suppressed the expression of ATF6a and sXBP1. Conse-

quently, TE prevented and attenuated the upregulation of

GRP78/BiP and PDI, respectively, in aged PS2 mutant

mice, suggesting that reduction of Ab-42 levels following

TE is involved in ameliorating Ab-induced ER stress.

Chronic ER stress caused by accumulation of Ab pro-

motes prolonged UPR, which activates a pro-apoptotic

transcriptional factor, CHOP (also called GADD153) and

GADD34 (a cofactor of eIF2a phosphatase) mainly via the

PERK-eIF2a pathway [58]. In particular, strong activation

of PERK-eIF2a, IRE1-XBP1 and JNK-p38MAPK

is apparently necessary to induce CHOP and neuronal

apoptosis [53, 59, 60]. CHOP acts as a pro-apoptotic pro-

tein by suppressing transcription of the anti-apoptotic

protein Bcl-2 [60, 61]. Pro-apoptotic kinases such as

apoptosis signal-regulating kinase 1 (ASK-1) and c-Jun

NH2 terminal kinase (JNK)-p38MAPK are also activated

through the IRE1-XBP1 pathway [62–66]. In this regard,

inhibition of the activation of PERK-eIF2a, ATF6a,

sXBP1, JNK-p38MAPK, and CHOP would prevent the

A B

C

Fig. 5 Treadmill exercise inhibited GRP78/BiP-dependent PERK-

eIF2a activation in the hippocampus of aged PS2 mutant mice.

Representative Western blot showing hippocampal PERK-eIF2a
levels of all groups of mice were presented. a–c PERK-eIF2a
phosphorylation was expressed as p-PERK/t-PERK and p-eIF2a/t-

eIF2a, respectively. Hippocampal PERK-eIF2a phosphorylation

showed a significant difference between non-transgenic mice and

PS2 mutant mice. In addition, treadmill-exercised PS2 mutant mice

revealed significantly lower hippocampal PERK-eIF2a phosphoryla-

tion relative to sedentary PS2 mutant mice. GAPDH was probed as an

internal control. Five mice per non-transgenic mice and PS2 mutant

mice subgroups were assayed in triplicate on Western blot analysis.

Fisher’s LSD post hoc test after ANOVA. Values are mean ± SEM
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Ab-induced neuronal apoptosis seen in AD. Surprisingly,

when compared to sedentary PS2 mutant mice, treadmill

exercised PS2 mutant mice showed suppression of a series

of pro-apoptotic signaling pathways, reduction in phos-

phorylation levels of JNK-p38MAPK, and reduced

expression of sXBP1 and CHOP. TE caused attenuation of

the AD-induced suppression of Bcl-2 in parallel with the

repression of CHOP. These results complement the find-

ings of McCullough et al. [61], who showed that CHOP

reduces the expression of Bcl-2, and that a deficiency in

CHOP prevents ER stress-induced apoptosis [67]. These

findings indicated that exercise-mediated inhibition of

PERK-eIF2a pathways that activate CHOP is a potential

mechanism for the prevention of AD-induced apoptosis.

A potent pro-apoptotic protein, Bax, in addition to Bcl-2,

further contributes to neuronal apoptosis via opening of the

mitochondrial permeability transition pore [68]. A recent

study has demonstrated that Bax localizes to the ER and this

causes ER stress-mediated apoptosis [69]. We did not

examine the localization of Bax (i.e. ER or mitochondria),

but Bax was markedly overexpressed in the hippocampus

(whole lysate) of sedentary aged PS2 mutant mice, while TE

significantly prevented this overexpression. Collectively,

our data indicate that TE inhibits AD-induced apoptosis by

improving antiapoptotic reprogramming; i.e., exercise

induces an alteration from a proapoptotic to an antiapoptotic

response.

Cysteine-aspartic protease (caspase)-12, a homologous

protein to human caspase-4, is localized in the ER and

activated (cleaved) by ER stress, which subsequently ini-

tiates ER-mediated apoptosis including Ab-induced neu-

ronal apoptosis [52–54, 70, 71]. Once activated, caspase-12
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Fig. 6 Treadmill exercise reduced activation of ATF6a, sXBP1 and

JNK-p38MAPK in the hippocampus of aged PS2 mutant mice.

Representative Western blot showing hippocampal ATF6a, sXBP1

and JNK-p38MAPK of all groups of mice were presented. a,

b ATF6a levels were evaluated in protein lysates derived from the

hippocampus of non-transgenic mice and PS2 mutant mice. In

addition, treadmill-exercised PS2 mutant mice revealed significantly

lower hippocampal ATF6a proteins relative to sedentary PS2 mutant

mice. a, c Hippocampal sXBP1 protein shows the significant

difference between non-transgenic mice and PS2 mutant mice. In

addition, TE reduced the activation level of sXBP1 in the hippocam-

pus of PS2 mutant mice. a, d, e JNK activation. The top demonstrates

30 lg of protein per sample, with an antibody against phospho-JNK.

The bottom demonstrates the total JNK protein, which was assessed

using antibodies recognizing these proteins regardless of their

phosphorylated state. a, f p38MAPK activation. The top demonstrates

30 lg of protein incubated with an antibody for phospho-p38. The

bottom demonstrates the total p38 protein at relatively constant levels.

TE reduced the activation level of phospho-JNK (p54/p46) and

phospho-p38MAPK in the hippocampus of PS2 mutant mice.

GAPDH was probed as an internal control. Five mice per non-

transgenic mice and PS2 mutant mice subgroups were assayed in

triplicate on Western blot analysis. Fisher’s LSD post hoc test after

ANOVA. Values are mean ± SEM
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transmits its apoptotic signal by activating (cleaving) a

downstream effector, caspase-9, which then activates

(cleaves) a cell death executioner caspase-3 [64, 72, 73].

We found that both caspase-12 (p36) and caspase-3 (p17)

were activated in the hippocampus of aged PS2 mutant

mice, in agreement with the findings of other studies that

showed marked activation of caspase-12 and caspase-3 in

the neurons of AD transgenic mice and in the brain sections

of AD patients [33, 59, 64, 72–75]. We determined whether

TE inhibits ER stress-mediated neuronal apoptosis against
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Fig. 7 Treadmill exercise

inhibited Ab-induced apoptotic

pathway and inflammatory

response of the UPR in the

hippocampus of aged PS2 mutant

mice. Levels of CHOP, caspase-

12, caspase-3, TNFa and IL-1a
proteins in the hippocampus were

analyzed by Western blot

analysis. a–f CHOP, caspase-12,

caspase-3, TNFa and IL-1a
proteins showed a significant

difference between non-

transgenic mice and PS2 mutant

mice. In addition, CHOP,

caspase-12, caspase-3, TNFa and

IL-1a proteins in the

hippocampus were significantly

reduced in PS2 mutant mice after

TE. GAPDH was probed as an

internal control. Five mice per

non-transgenic mice and PS2

mutant mice subgroups were

assayed in triplicate on Western

blot analysis. Fisher’s LSD post

hoc test after ANOVA. Values

are mean ± SEM

A B

C

Fig. 8 The effects of treadmill exercise on Bax and Bcl-2 proteins in

the hippocampus of aged PS2 mutant mice. Levels of Bax and Bcl-2

proteins in the hippocampus were analyzed by Western blot analysis.

a–c Bax and Bcl-2 show a significant difference between non-

transgenic mice and PS2 mutant mice. In addition, Bax protein in the

hippocampus was significantly reduced in PS2 mutant mice after TE,

whereas Bcl-2 protein in the hippocampus was significantly increased

in PS2 mutant mice after TE. GAPDH was probed as an internal

control. Five mice per non-transgenic mice and PS2 mutant mice

subgroups were assayed in triplicate on Western blot analysis.

Fisher’s LSD post hoc test after ANOVA. Values are mean ± SEM
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AD by measuring the expression of cleaved forms of cas-

pase-12 and caspase-3 and examining apoptotic cell death.

TE clearly resulted in a reduction in the cleaved forms of

caspase-12 and caspase-3, which consequently prevented

neuronal apoptosis (as evidenced by TUNEL assays) in the

hippocampus of aged PS2 mutant mice. This result is

consistent with our previous study [33]. We believe that

anti-apoptotic reprogramming induced by TE is initially

associated with a reduced production of Ab through sup-

pression of BACE-1 expression and repression of Bax

expression, with the overall effect of reducing ER stress

and neuronal cell death.

Inflammation contributes to this ER-mediated activation

of a caspase cascade, and it also contributes to neuronal

cell death [25, 28]. For example, activation of ATF6 by ER

stress leads to activation of nuclear factor kappa B (NF-

kB), a key transcription factor involved in triggering the

inflammatory response [76] and TNFa receptor-mediated

apoptotic cell death [29]. Li and coauthors [77] have

reported that induction of UPR causes an elevation of

proinflammatory cytokines such as TNFa and IL-6. A

recent study demonstrated that a pharmacological TNF-

inhibitor, 3,6-dithiothalidomide, prevented memory deficit

and Ab plaque formation in a 39 Tg mutant mouse model

of AD [78]. In the present study, we showed that TNFa,

and IL-1a were greatly elevated in the hippocampus of

aged PS2 mutant mice, while TE significantly attenuated

the production of these proinflammatory cytokines. We

suggest that the mitigation of Ab-induced ER stress via TE

prevents neuroinflammation, thereby possibly exerting a

protective effect against inflammation-directed apoptotic

cell death in the late stages of AD.

Taken together, the present study shows that dual acti-

vation of cell death pathway (by UPR and inflammation)

through pathological ER stress triggers a vicious cell death

cycle in the brain of AD mice. For example, the activation

of UPR pathways (i.e., PERK-eIF2, ATF6a, sXBP1 and

JNK-p38MAPK) in PS2 mutant mice due to accumulation

of Ab is associated with induction of CHOP, caspase-12,

and caspase-3 activation, and also with activation of

inflammation (TNFa and IL-1a); both of these responses

are clearly engaged in activation of caspase-3. TE inter-

feres with this dual activation by pathological UPR and

inflammation.

We suggest that neuroprotection against AD due to TE

is caused by down-regulation of BACE-1 expression,

which results in reduction of Ab-42, ER stress,

and inflammation as well as down-regulation of Bax and
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Fig. 9 Treadmill exercise

repressed neuronal apoptosis in

the hippocampus of aged PS2

mutant mice.

a Photomicrograph of neuronal

apoptotic cells in the

hippocampus (see arrows).

b The mean number of TUNEL

positive cells. Bar size 200 lm,

magnification 9400. Three

mice per non-Tg and PS2

mutant mice subgroups were

assayed in triplicate by TUNEL

assay. The mean number of

TUNEL-positive cells in the

hippocampus, respectively was

significantly reduced in PS2

mutant mice after TE. Three

mice per non-transgenic mice

and PS2 mutant mice subgroups

were assayed in triplicate on

TUNEL assay. Fisher’s LSD

post hoc test after ANOVA.

Values are mean ± SEM
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up-regulation of Bcl-2. This finding is of special impor-

tance because treadmill running not only inhibits new

production of Ab but it also promotes the removal of Ab
previously accumulated during the progression of AD in

the brains of aged PS2 mutant mice. We did not investigate

how previously accumulated Ab during the progression of

AD is removed by exercise training; however, this inter-

esting and critical question warrants future investigation.

Currently, several possible mechanisms have been pro-

posed to explain Ab degradation in response to treadmill

running, including, but not limited to, neprilysin degrada-

tion, ubiquitin–proteasome effects, and autophagy. A

recent well-designed study has demonstrated that 30 min

of TE is sufficient to promote autophagy in the cerebral

cortex [79]. Nevertheless, the importance of TE-induced

autophagy in mediating Ab degradation has not been elu-

cidated. Therefore, further studies in this area will provide

crucial insight into the development of a practical and

powerful non-pharmacological therapeutic strategy that

can be applied at various stages of AD, to supplement

current pharmaceutical clinical trials that prove

unsuccessful.
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