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Abstract Glutamate receptor-mediated excitatory neuro-

transmission plays a key role in neural development, dif-

ferentiation and synaptic plasticity. However, excessive

stimulation of glutamate receptors induces neurotoxicity, a

process that has been defined as excitotoxicity. Excitotox-

icity is considered to be a major mechanism of cell death in

a number of central nervous system diseases including

stroke, brain trauma, epilepsy and chronic neurodegenera-

tive disorders. Unfortunately clinical trials with glutamate

receptor antagonists, that would logically prevent the

effects of excessive receptor activation, have been associ-

ated with untoward side effects or little clinical benefit.

Therefore, uncovering molecular pathways involved in

excitotoxic neuronal death is of critical importance to future

development of clinical treatment of many neurodegener-

ative disorders where excitotoxicity has been implicated.

This review discusses the current understanding of the

molecular and cellular mechanisms of excitotoxicity and

their roles in the pathogenesis of diseases of the central

nervous system.
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Introduction

Glutamate is a major excitatory neurotransmitter in the

mammalian central nervous system (CNS), and is an

important neurotransmitter for neural development, synap-

tic plasticity, and learning and memory under physiological

conditions [1]. Regulation of glutamatergic neurotrans-

mission is critical because improper management of gluta-

mate levels and glutamate receptor activity may impair not

only its signaling properties, but can lead to cell death via

excitotoxicity. The concept of excitotoxicity was first pro-

posed by Dr Olney in 1969 as a toxic effect of excessive or

prolonged activation of receptors by excitatory amino acids

(EAAs) [2]. Excitotoxicity might mediate neuronal damage

in various neurological disorders including ischemia

and neurodegenerative diseases [3], and thus has been an

important subject of neuroscience research for decades.

Although the molecular pathways involved in excitotox-

icity are still not fully understood at the present, there is a

wealth of evidence suggesting that over-stimulation of gluta-

mate receptors produces multiple adverse effects including

impairment of intracellular calcium homeostasis, compromise

of organelle functions, increase in nitric oxide (NO) produc-

tion and free radicals, persistent activation of proteases and

kinases, increases in expression of pro-death transcription

factors and immediate early genes (IEGs). Many studies

provide support for each as reviewed in the following sections,

although the role of these biochemical events is still incom-

pletely defined. This review will focus on diverse cellular and

molecular responses to excitotoxic insult, because the identi-

fication of a key post-receptor molecule as a cell death pro-

moter will provide not only insight into the molecular basis of

how neuronal cells execute excitotoxic death commitment, but

also potential approaches for therapeutic intervention target-

ing excitotoxic signaling pathways in neurological disorders.
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Different roles of glutamate receptors in excitotoxicity

Excitatory amino acids (EAAs) refer principally to gluta-

mate (glutamic acid), but also include various metabolites

that act via glutamate receptors including endogenous

molecules such as aspartic acid, quinolinic acid (QA), homo-

cysteic acid, and exogenous molecules such as N-methyl-D-

aspartate (NMDA) and kainate (reviewed in [4]). EAAs

produce their actions via a family of receptors generally

called glutamate receptors. Glutamate receptor types are

classified into three ionotropic classes: NMDA, a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionate (AMPA) recep-

tors, and kainate; and three metabotropic classes [5, 6].

Ionotropic receptors are ligand-gated ion channels that open

upon the binding of glutamate, leading to the influx of

sodium and/or calcium and the efflux of potassium. Metab-

otropic receptors belong to the G-protein coupled receptor

superfamily. Activation of metabotropic receptors leads to

changes in cAMP levels and release of Ca2? from intracel-

lular stores [7].

NMDA receptors are tetra-heteromeric structures per-

meable to sodium, potassium, zinc and calcium. At normal

physiological resting membrane potential, magnesium

blocks the channel pore. When magnesium is removed, the

ligand activated NMDA receptor allows an influx of cal-

cium, leading to postsynaptic depolarization and action

potential in the postsynaptic neuron. NMDA receptors play

an important role in excitotoxicity as calcium entering

through over-activated NMDA receptors results in more

cell death as opposed to calcium entering through non-

NMDA glutamate receptors or voltage-gated calcium

channels [8]. As an additional support, NMDA receptor

antagonists can block most excitotoxic effects of glutamate.

NMDA receptor-mediated neurotoxicity occurs through

distinct calcium signaling pathways that may involve the

NMDA receptor specific interaction with postsynaptic

density (PSD) proteins, a family of postsynaptic scaffold

proteins [7]. Besides changes in calcium levels, over-acti-

vation of NMDA receptors could result in mitochondrial

membrane depolarization, increases in free radicals and

caspase activation [9–11].

AMPA receptors are permeable to sodium, potassium,

zinc and occasionally calcium. The efficiency of calcium

permeability through AMPA receptors is highly dependent

upon the combination of subunits making up the hetero-

meric receptor [12]. The pre-mRNA editing of one subunit,

GluR2, causes the replacement of a neutral glutamine with

a positively charged arginine residue in the channel-form-

ing membrane loop segment [13]. Presence of an edited

GluR2, as is the case in an overwhelming majority of cells

expressing AMPA, renders the heteromeric receptor mostly

impermeable to calcium. Calcium-impermeable AMPA

receptors can still cause excitotoxicity by allowing sodium

influx to slightly depolarize the cell membrane, leading to

the subsequent activation of NMDA receptors, as has been

demonstrated by several investigators [4, 14]. Some studies

suggest that changes in expression of glutamate receptor

subunits under certain conditions may affect receptor

activity. However, many studies show that changes in

glutamate receptor subunits after neurological insults may

not be specific, but instead generally affect expression of

several glutamate receptor subunits [15, 16]. Under path-

ological conditions, such as seizures or hypoxia–ischemia,

many principal cells may increase their Ca2? influx

regardless of the existing stoichiometry of AMPA or

NMDA receptor assemblies [17]. It is important to note

that the specific AMPA or NMDA receptor patterns

expressed after an insult depend upon the age of the animal

and history of early-life seizures [18].

Kainate receptors are heteromeric receptors permeable

to sodium, potassium, and sometimes calcium [19].

Excitotoxicity enhanced by kainate receptor activation may

be due to release of glutamate and sodium influx to

depolarize the membrane and release the magnesium

blockade of NMDA, leading to the subsequent activation of

NMDA receptors [20, 21]. Excitotoxicity resulting from

kainate receptor stimulation may be proceeded by apop-

totic pathways rather than the necrotic pathway sometimes

observed with NMDA receptor-mediated cell death. In

addition, there are several studies suggesting that excessive

stimulation of non-NMDA glutamate receptors with kainic

acid (KA) can induce autophagy and activates lysosomal

enzymes, which play an important role in excitotoxic

neuronal injury [22, 23].

Metabotropic glutamate (mGlu) receptors have been

grouped into three categories (Group I–III) based on

pharmacological properties, signal transduction mecha-

nisms, and sequence similarities. Group I mGlu receptors

play a role in regulating multiple calcium, potassium, and

non-selective cationic channels as well as NMDA and

AMPA receptors, which may influence the firing patterns

of neurons [24]. Group I mGlu receptors potentiate NMDA

receptor activation, thus affecting excitatory neurotrans-

mission, synaptic plasticity, and the generation of long-

term potentiation [25, 26]. Group II and III mGlu receptors

inhibit various calcium channels and may inhibit presyn-

aptic release of neurotransmitters [27]. A growing number

of studies have shown an important and complex role for

mGluR in neuronal cell death [28, 29]. Metabotropic

receptor stimulation leads to the death of striatal neurons

by a mechanism having the biochemical stigmata of

apoptosis. Moreover, metabotropic receptor stimulation

evidently exerts opposite effects on pre- or postsynaptic

mechanisms contributing to the NMDA and KA-induced

apoptotic-like death of these neurons [30]. Activation

of Group I and Group II/III mGlu receptors may have
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opposite effects on neuronal cell survival. Stimulation of

group I receptors potentiates neuronal excitation, as well as

NMDA receptor activity, and thus, exacerbates excitotox-

icity. In contrast, Group II or Group III receptors activation

may provide neuroprotection through presynaptic inhibi-

tion of glutamate release [31, 32], downregulation of

adenylate cyclase activity [33], or modulation of mitogen-

activated protein kinase (MAPK)/phosphatidylinositol

3-kinase (PI3K) activity [34]. Opposite effects of group I

and Group II/III mGluR activation on EAA release have

been shown in rat spinal cord injury model. In this model,

treatment with selective group I mGluR antagonists

decreased EAA release, whereas the Group II antagonist

LY 341495 increased EAA levels. Administration of the

Group III agonist L-AP4 also significantly downregulates

extracellular EAA levels after spinal cord injury [35].

Mixed forms of cell death in excitotoxicity

Excitotoxic neuronal death in brain is not a uniform event

but, rather, a continuum of necrotic, apoptotic, and auto-

phagic morphologies. The characteristics of morphological

features of excitotoxic neuronal death might prove useful

for analyzing the mechanisms that govern cell death under

pathological conditions. Early studies found that excito-

toxin-induced cell death was characterized by cell swelling,

cytoplasm vacuolization and disruption of cell membranes.

These features imply that cells die of necrosis (reviewed in

[36]). Later studies found that DNA internucleosomal

degradation, chromosome condensation and fragmentation,

activation of caspases were observed, indicating dying

neurons also exhibit apoptotic features [37, 38]. Thus, it is

generally agreed that excitotoxic neuronal death is a mixed

form of necrosis and apoptosis [39].

In recent years, it has been suggested that autophagy

may be a possible mechanism for non-apoptotic cell death

induced by excitotoxins, despite evidence from many

species that autophagy represents a survival strategy in

times of stress. Increases in glutamate receptor activity

could induce expression of proapoptotic proteins such as

p53, leading to neuronal injury and death by inducing

apoptosis and autophagy [40–42]. Autophagy is reportedly

activated in response to acute excitotoxic insults in cultured

hippocampus slices and mouse hippocampus [43, 44].

We have found that KA- or the NMDA receptor agonist

QA-induced neuronal death was accompanied by increases

in the formation of autophagosomes and secondary lyso-

somes. KA and QA also increase levels of autophagy

biomarkers including the autophagosomal membrane-

associated form of microtubule associated protein light

chain 3 (LC3-II) and beclin-1 [23, 45]. Our recent studies

have demonstrated that KA activates the lysosomal enzyme

cathepsin B, and that the cathepsin B inhibitor Z-FA-fmk

and the autophagy inhibitor 3-methyadenine (3-MA)

potently attenuates apoptosis of striatal neurons induced by

KA [22], suggesting autophagy contributes to excitotoxic

cell death through lysosomes [22, 23].

Mobilization of ions and excitotoxicity

Prolonged overstimulation of the glutamate receptors leads

to Ca2? and Na? overload in postsynaptic neurons [46].

Ca2? inflow through voltage-dependent or independent

channels can enhance neuronal Ca2? overload under

excitotoxic [47] or ischemic [48] conditions. In addition,

mitochondrial Ca2? accumulation and its subsequent

release may play an important role in maintaining a per-

sistent Ca2? overload. Nevertheless, the combination of

increased Ca2? influx into neurons and mitochondrial Ca2?

release may not fully account for the irreversible buildup of

intracellular Ca2? after excitotoxic stimulation. Conceiv-

ably, the delayed increase in cellular Ca2? should be

rectified by the mechanisms governing cellular Ca2?

extrusion.

In neurons, Ca2? extrusion is enabled by the plasma

membrane Ca2? pump (PMCA) and by Na?/Ca2?

exchangers (NCX). PMCA has high Ca2? affinity but low

transport capacity, whereas NCX has a low affinity, but a

higher capacity to transport Ca2? [49]. Inhibition of Ca2?

efflux from cells is sufficient to cause a sustained intra-

cellular Ca2? elevation and the demise of non-neuronal

cells by activating Ca2?-dependent hydrolytic enzymes

including members of the calpain protease family. It has

been found that the plasma membrane NCX [50] is

cleaved in the ischemic brain and in cultured cerebellar

granule neurons (CGNs) exposed to glutamate. In partic-

ular, it has been shown that proteolysis of NCX isoform 3

[51] by calpains play prominent roles in the delayed,

irreversible excitotoxic Ca2? elevation leading to neuronal

demise.

Cl- movement has also been shown to be a central

component of the acute excitotoxic response in neurons.

The acute excitotoxicity is thought to be mediated by

excessive depolarization of the postsynaptic membrane.

This results in an osmotic imbalance, which is countered

by an influx of Cl-, Na?, and water, and eventually cell

lysis. A significant increase in intracellular Cl- concen-

tration ([Cl-]i) is observed in hippocampal neurons during

oxygen–glucose deprivation (OGD) [52]. Removal or

reduction of Cl- from extracellular medium during EAA

exposure completely eliminates the acute excitotoxic

response in hippocampal [53] and retinal neurons [54].

Blockage of Cl- entry through the Cl-/HCO3
- exchanger

or GABA receptor effectively protects cells against the
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acute excitotoxicity. The Cl- influx is mediated by multi-

ple pathways. GABAA receptor-coupled anion channels

appear to serve as one of the Cl- influx pathways in neu-

rons exposed to excitotoxic insults, because GABAA

receptor blockers partially blocked excitotoxic injury [55].

Also, an involvement of some other anion channel in the

excitotoxic Cl- influx have been suggested [56]. It is

reported that, in cultured cortical neurons, volume-sensi-

tive outwardly rectifying (VSOR) Cl- channels, but not

GABAA receptors or Cl- transporters, serve as the pathway

for volume-regulatory anion efflux and play a requisite

role in varicosity resolution after a sublethal excitotoxic

insult [57].

Na–K–Cl cotransporter isoform 1 (NKCC1) also con-

tributes to the Cl- movement during excitotoxicity.

NKCC1 belongs to the cation-dependent Cl- transporter

family and transports Na?, K?, and Cl- into cells under

physiological conditions [58]. NKCC1 was involved in

ischemic cell death through an association with excitotox-

icity. NKCC1 may be involved in K? uptake from the

paranodal region of myelinated axons and thereby may

regulate extracellular ionic environment and the excitability

of axons [59]. Development-dependent expression of

NKCC1 occurs in rat spinal cords, which regulates intra-

cellular Cl- in spinal oligodendrocytes [60]. Oligodendro-

cyte damage in white matter causes axonal demyelination

and determines subsequent neurological function deficit

[61]. Oligodendrocytes express glutamate receptors

including NMDA, AMPA, and KA receptors [62, 63].

Cerebral hypoxia/ischemia, intracerebral injection of

AMPA, or spinal cord ischemia causes white matter damage

and loss of oligodendrocytes, which is significantly atten-

uated by AMPA receptor antagonist NBQX [64–66].

Exposure of cultured oligodendrocytes to AMPA or gluta-

mate induces immediate Ca2? influx and leads to cell death

after prolonged treatment [67, 68]. Intracellular Ca2?

overload, mitochondrial dysfunction, and apoptosis have

been implicated as cellular mechanisms in excitotoxic

oligodendrocyte damage [69].

Connections of cellular organelles and excitotoxicity

Dysfunction of cell organelles occurs in many human

neurological diseases. Cell death in neurons is controlled

by the activity of signaling pathways and proteins with a

cross-talk between various organelles [70]. In neurons that

are dying of excitotoxicity, morphologic changes include

swelling of endoplasmic reticulum (ER), Golgi vesicula-

tion, mitochondrial disruption and increases in the number

of secondary lysosomes. Recently, mitochondrial and other

organelles including ER, lysosomes and peroxisome have

been linked to cell stress responses in human diseases such

as Parkinson’s disease (PD) and amyotrophic lateral scle-

rosis (ALS) [71, 72].

Mitochondria

Mitochondria are not only ATP producers through oxida-

tive phosphorylation but also are regulators of intracellular

Ca2? homeostasis and endogenous producers of reactive

oxygen species (ROS). Mitochondrial injury is understood

to have a critical impact on cellular energetics and exci-

totoxic neuronal death [73]. The mitochondria have been

implicated as a central executioner of cell death. Increased

mitochondrial Ca2? overload as a result of glutamate

receptor over-activation has been associated with the gen-

eration of superoxide and the release of proapoptotic

mitochondrial proteins, leading to DNA fragmentation/

condensation and culminating in cell demise by apoptosis

and/or necrosis. On the other hand, it has also been well-

established that mitochondrial dysfunction contributes to

excitotoxic demise by changing membrane potential and

increasing generation of ROS [73]. Dysregulated mito-

chondrial functions accompanied by disturbed calcium

homeostasis have been considered to underlie excitotoxic

and other brain injuries [74].

Mitochondria have the ability to sequester large amounts

of Ca2?, however this carries a risk of mitochondrial

dysfunction [75]. Exposure of neurons to glutamate was

previously demonstrated to result in mitochondrial depo-

larization associated with increased Ca2? uptake into the

mitochondria [11]. Activation of NMDA receptors was

reported to induce faster mitochondrial Ca2? uptake, and in

a more tightly coupled way, compared to kainate or KCl.

This observation suggested a privileged access of Ca2? to

mitochondria, entering through NMDA receptors, which

could be accounted for by the possibility that mitochondria

are in closer proximity to NMDA receptors than other

routes of Ca2? entry [76]. Excessive influx of Ca2? via

NMDA receptors attenuates the mitochondrial membrane

potential (Dw), and leads to the opening of the permeability

transition pore (PTP). Through the disruption of mito-

chondrial potential, excess Ca2? can reduce ATP synthesis,

rendering the cell more vulnerable to death insults. Mito-

chondria appear to be the primary mediators of cell death

caused by abnormal levels of intracellular Ca2? during

excitotoxicity [77, 78].

Mitochondrial Ca2? loading is the critical step in acute

glutamate excitotoxicity. NMDA receptor-dependent tran-

sient mitochondrial Ca2? loading could initiate oxidative

damage and/or inhibit mitochondrial respiration; two fac-

tors suggested to precipitate delayed Ca2? deregulation

(DCD), a failure of the cell to maintain a low cytoplasmic

free calcium concentration [11]. Under the conditions of

continued Ca2? entry, plasma membrane Ca2? extrusion
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may be the first to fail, whereas after inhibition of the

receptor, mitochondrial dysfunction may precipitate DCD.

It has been found that even a brief exposure to glutamate

initiates DCD and it is apparent that mitochondrial dys-

function is initiated in this period. The damage inflicted by

transient Ca2? loading may include cytochrome c release,

altering the redox poise of complex III and enhancement of

superoxide generation. The critical parameter that becomes

rate-limiting to initiate DCD depends on the experimental

design. In cultured retinal neurons, a decrease in oxygen

consumption upon glutamate exposure has been observed,

coincident with the inhibition in the activity of mitochon-

drial complexes I, II/III, and IV [79]. Curiously, during

continuous activation of the NMDA receptors, mitochon-

dria depolarization occurred concomitantly with the DCD,

which seems to precede the subsequent necrotic death of

the cell. In addition, in cells stimulated with glutamate and

glycine, the mitochondria continued to generate ATP, but

once started, the NMDA receptor-induced DCD was shown

to be irreversible in cultured cerebellar granule cells, as

determined upon exposure to antagonists of NMDA or non-

NMDA glutamate receptors, Ca2? channel blockers, or

even in the presence of inhibitors of the PTP [80].

It is well-known that cytochrome c release from the

mitochondria to the cytosol is a key indicator of classical

apoptotic program development [81, 82]. Two different

signal transduction pathways could be involved in apop-

tosis initiation under the condition of oxygen depletion:

one of them is accompanied with cytochrome c release

[83], while the other is accomplished without this process

[84]. The occurrence of apoptosis upon NMDA-mediated

excitotoxicity has been controversial. During excitotox-

icity, the release of mitochondrial cytochrome c associ-

ated with a delayed mitochondrial depolarization and

production of ROS were documented [85, 86]. Previous

reports have also shown that caspase-3, in particular,

plays a major role in NMDA excitotoxicity [87]. More-

over, apoptosis-inducing factor (AIF) translocation was

observed upon the stimulation of the NMDA receptors in

a process requiring the activation of poly (ADP-ribose)

polymerase (PARP) and the consequent depletion of

NAD? [88], although the mechanisms involved are still

not completely clear.

In recent years, mitochondria have assumed a great

importance by clarifying the link between different sig-

naling molecules (e.g., cytosolic Ca2?) and the commit-

ment to cell death. Mitochondria regulate the death

execution phase, marking the point of no return in necrosis

and apoptosis. Furthermore, because damaged mitochon-

dria can accumulate in aging as a result of deficient

autophagy [89], it will also be important to identify the

mechanisms involved in autophagy in neurons committed

to die in various neurodegenerative disorders.

Endoplasmic reticulum

Endoplasmic reticulum (ER) is an important cell organelle

that is responsible among others for correct folding and

sorting of proteins [90]. ER functions can be disturbed by

different insults such as accumulation of unfolded proteins

and changes in calcium homeostasis [91]. ER disturbance

induces expression of chaperones, attenuate protein trans-

lation, and activate ER-associated degradation [92]. These

occur by the activation of ER sensor proteins controlled by

the chaperone Bip/Grp78, which is localized in the ER

[93]. ER stress leads to activation of the RNA-dependent

protein kinase (PKR)-like endoplasmic reticulum kinase

(PERK)/pancreatic eukaryotic translation initiation factor 2

subunit a (eIF2a) kinase, activating transcription factor-6

(ATF6), and the inositol-requiring enzyme 1 (IRE1), which

in turn activates distinct signaling cascades mediating the

ER stress response [94, 95]. ER stress has been widely

studied for its role in unfolded protein response (UPR), in

cellular homeostasis and in calcium regulation [90, 91].

Apart from the UPR that is mainly adaptive and restorative

in function, prolonged ER stress can trigger mitochondria-

dependent and -independent forms of cell death [96–98].

Although little is known about the precise mechanisms

responsible for activation of ER stress after NMDA or

ischemia–reperfusion, both stimuli cause intracellular Ca2?

overload and increased NO production, resulting in apop-

totic cell death. Several lines of studies suggest that intra-

cellular Ca2? overload and excessive production of NO

deplete Ca2? in the ER, thereby resulting in ER stress [99].

Uehara et al. [100] reported that NO induces S-nitrosylation

of protein-disulphide isomerase (PDI), an enzyme that

assists in the maturation and transport of unfolded secretory

proteins and thereby helps to prevent the neurotoxicity

associated with ER stress. S-nitrosylated-PDI exhibits

reduced enzymatic activity and induces cell death through

the ER stress pathway. These mechanisms may contribute

to the activation of ER stress in NMDA receptor stim-

ulation.

Activation of KA receptors is known to induce different

signaling pathways and ion fluxes including elevation of

calcium in neurons [101]. Previously, caspase-12 cleavage

has been observed in hippocampal neurons lacking the

calcium-binding protein hippocalcin [102]. Blocking cal-

cium by 2-bis(2-aminophenoxy)ethane-N,N,N0,N0-tetraace-

tic acid (BAPTA-AM, an intracellular calcium chelator)

inhibited caspase-12 cleavage, demonstrating that increased

calcium can trigger ER-mediated caspase activation.

Neurotoxicity induced by NMDA is influenced, in part, by a

mechanism dependent on BiP and CHOP protein induction

through excessive ER stress [103]. It has also been shown

that Grp78/Bip suppresses ER stress and protects neu-

rons against glutamate-induced excitotoxicity [104]. Data
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obtained with salubrinal showed that the inhibition of ER

stress is also neuroprotective in vivo. Salubrinal and other

compounds preventing ER stress may therefore be of value

in novel therapies for excitotoxic and other brain disorders

[105].

Lysosomes

Lysosomes contain hydrolytic enzymes necessary for

intracellular digestion. Uncontrolled release of lysosomal

contents into the cytoplasm causes necrotic cell death. It

has been reported that certain cathepsins can directly or

indirectly activate caspases. The latter is meditated through

cleavage of BID by cathepsin B. The BID cleavage results

in BID mitochondria translocation and cytochrome c

release. When cells are subjected to limited oxidative

stress, some lysosomes rupture or leak their contents

leading to a non-necrotic cell death. Activation of the FAS/

APO-1 receptors results in a decline of the cytosolic pH

and, perhaps as a result, lysosomal labilization. Lysosomal

labilization might be an initial and general event in apop-

tosis [106].

Cysteine proteases from the caspase family play a crucial

role in the process. However, there is increasing evidence

that lysosomal proteases are also involved in apoptosis.

Various lysosomal proteases and their potential contribu-

tion to propagation of apoptosis are discussed (reviewed in

[107]). Kazuyoshi Tominaga’s data [108] indicated that

excitotoxin-induced neuronal death was associated with a

response of lysosome enzyme: cathepsin E. Our studies

showed that lysosomal enzyme cathepsin B was involved in

KA-induced excitotoxicity in rat striatum [22].

Several lines of evidence support a positive role of

lysosomal and autophagic mechanisms in programmed cell

death [109–111]. Apoptotic and autophagic cell death have

been implicated, on the basis of morphological and bio-

chemical criteria, in neuronal loss occurring in excitotoxic

animal models and neurodegenerative diseases [23, 112].

Cross-talk between apoptosis and autophagy has been

reported. Apoptosis is accompanied by an early and

marked proliferation of autophagosomal–lysosomal com-

partments [113, 114]. Autophagy is blocked by inhibitors

of apoptosis, as well as by adenovirus-mediated overex-

pression of Bcl-2. 3-Methyladenine (3-MA), an inhibitor of

autophagy, not only arrests autophagic cell death, but it

also blocks apoptosis. The neuroprotective effect of 3-MA

is accompanied by blocking cytochrome c release from

mitochondria and by inhibition of caspase-3 activation,

which appears to be mediated by cathepsin B as CA074-

Me, a selective inhibitor of this enzyme, fully blocks the

processing of pro-caspase-3 [115]. As the lysosome is an

important component of autophagy activity and autophagy

has now been found to play a role in excitotoxicity, it is

believed that the lysosome is a contributor of excito-

toxicity.

A lysosomal–mitochondrial axis theory of cell death has

been proposed [116]. A few studies have indicated that

lysosomal activation was involved in pathogenesis of cer-

tain neurodegenerative diseases [117, 118]. Cathepsin

inhibitors can be protective in some models of neurode-

generation, and could be therapeutic in ischemic injury,

Alzheimer’s disease (AD), and other protein deposition

diseases in which compensatory responses by lysosomal

enzymes may contribute to brain pathology [119, 120].

Contributions of intracellular signaling molecules

to excitotoxicity

Accompanying the increase in intracellular calcium is the

activation of transcription factors and IEGs, calcium-

dependent enzymes, protein kinases and production of

ROS. These intracellular signaling molecules make sig-

nificant contributions to the excitotoxic death of neurons

[121, 122].

Free radicals

The CNS is notable for its level of oxygen utilization and

ATP synthesis, resulting in a distinct susceptibility to

oxidative stress. There is ample evidence to suggest that

increased production of ROS may play an important role in

excitotoxicity. Generation of ROS can occur with mito-

chondrial respiration as well as during other aspects of

cellular homeostasis maintained through a balance between

biosynthesis and catabolism. Oxidative stress is now rec-

ognized as being accountable for redox regulation involv-

ing ROS and reactive nitrogen species (RNS). Its role is

pivotal for the modulation of critical cellular functions such

as apoptosis program activation, ion transport and calcium

mobilization, notably for neurons, astrocytes and microg-

lia. Mitochondrial dysfunction, cell energy impairment,

overproduction of ROS and apoptosis, is a final common

pathogenic mechanism in aging and in neurodegenerative

disease such as AD, PD and ALS.

Excitotoxicity is associated with marked increases in

free intracellular calcium levels [123]. Glutamate-induced

excitotoxicity induces cytoskeletal alterations, EAA

release, impaired EAA uptake, and the production of ROS.

Glutamate excitotoxicity is associated with higher cellular

levels of ROS [124, 125]. Glutamate also increases DNA

binding of the redox-regulated transcription factors,

nuclear factor-jB (NF-jB) and activating protein 1 (AP-1),

in human neuroblastoma cells, and increases the expression

of the IEGs, c-fos, in murine neuronal cells. These events

occur before glutamate-induced apoptosis or necrosis in
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several neuronal cell types, suggesting a possible causal

role in excitotoxic cell death [126].

Nitric oxide (NO), an RNS which can be produced by

three isoforms of NO-synthase in brain, plays a promi-

nent role in excitotoxic neuronal death. Massive gener-

ation of the pleiotropic messenger molecule NO has been

implicated in many neuropathological conditions and

may have similar biochemical consequences as ischemia.

At NMDA receptors, glutamate triggers the opening of

cation-permeable channels. The entry of Ca2? through

these channels into cells stimulates nitric oxide synthe-

tase (NOS) activity by binding to calmodulin, which is a

cofactor for NOS. Activation of NOS causes NO pro-

duction, and NO reacts with superoxide anion (O2
-) to

form peroxynitrite (OONO-), which results in neuronal

damage [127, 128].

It has been established that NO triggers a vicious loop

strictly dependent on endogenous glutamate release and

NMDA receptor activation, which forms the basis of neu-

ronal apoptosis in cerebellar granule cells [129]. NO

inhibits the mitochondrial respiratory chain in vitro, stim-

ulates neurotransmitter release from synaptosomes and can

cause autocrine excitotoxicity in neuronal cultures. A

cyclic process of self-enhancing loops has been suggested

to account for NO-mediated neuronal death. NO triggers

conditions which lead to an impairment of mitochondrial

function and energy failure, followed by impairment of ion

pumps and partial hypopolarization. This in turn sensitizes

neurons towards glutamate stimulation by releasing the

magnesium blockade of NMDA receptors. NMDA recep-

tor-mediated calcium increase enhances depolarization,

triggers further calcium increase and favors release of

endogenous glutamate [130]. This putatively self-propa-

gating process results in loss of intracellular calcium

homeostasis and excitotoxicity. Recently, it has been found

that NO switches on the over-expression of metallopro-

teinase, which, in turn, destroys the environment that sur-

rounds nerve cells. The extracellular proteolytic cascades

that are triggered by metalloproteinase can disrupt the

extracellular matrix, contribute to cell detachment and lead

to anoikis (apoptosis due to cell detachment from the

substrate) [131].

Proteases

The mechanism of excitotoxin-induced apoptosis requires

activation of cysteine proteases such as calpains and

caspases, which work independently [132, 133] and also

co-operatively [134, 135] to cause neuronal apoptosis.

Studies imply that calpain and caspase-3 inhibitors may

provide neuroprotective effects in the animal models of

traumatic brain injury and neurodegenerative diseases

[136].

Calpains are calcium-dependent proteases. They modu-

late a variety of physiological processes [137] and can also

become important mediators of cell death [134]. Ample

evidence documents the activation of calpains in brain

ischemia and excitotoxic neuronal degeneration [132].

Calpain activation has been associated with excitotoxicity

[138–140]. Activation of calpain has been reported to

identify those neurons that are vulnerable to excitotoxic

cell death in hippocampal slices exposed to NMDA [141].

Reports indicate that in excitotoxic injury induced by

NMDA in vitro [132] or by 3-nitropropionic acid (3-NP) in

vivo [142], calpains negatively regulate caspase-3/9 acti-

vation and lead to caspase-independent neuronal death. In

addition to direct cleavage of caspases, calpains have been

shown to cleave several apoptosis regulatory proteins

including apoptotic protease-activating factor-1 (Apaf-1)

[143], Bax [144, 145], Bid [146–148] and p53 [149].

Calpain-mediated degradation of p53 is correlated with

anti-apoptotic effects and degradation of Apaf-1 correlated

with a reduced ability of cytochrome c to activate caspase-

3-like proteases, whereas the cleavage products of Bcl-2

family proteins exerts proapoptotic function. Therefore,

calpains can influence apoptotic pathways at different steps

by blocking activation of the caspase cascade and acti-

vating other caspase-independent cell death pathways.

The caspase-dependent death pathway is initiated by

release of cytochrome c, which associates with Apaf-1 to

activate caspases [150]. Activated caspases cause neuronal

apoptosis via the extrinsic and intrinsic pathways with the

final activation of caspase-3 [151]. Caspase-3 was report-

edly activated in glutamate-induced apoptosis of cultured

cerebellar granule cells [152]. Activation of other caspases

such as caspase-6 and caspase-9 in glutamate-induced

apoptotic cascade was also reported [153]. Ha and Park

[154] reported an increase in caspase-1 and caspases-3/-7

activity following L-glutamate treatment [155].

As seen with other caspases, post-translational activa-

tion of caspase-3 requires a proteolytic cleavage of the

precursor protein into two subunits (p17 and p12), of which

the larger subunit contains the functional catalytic site.

Increase in caspase-3 family activity after glutamate

stimulation may be attributed to an increase in cleavage of

the proenzyme into functional protease, or by an up-regu-

lation of caspase-3 gene expression. A number of studies

suggest that caspase-3 can be either auto-activated or

activated by members in the same or other caspase families

[156]. Caspase-3 may mediate glutamate induced cell

death via several mechanisms. Mature caspase-3 cleaves

specific cellular proteins, which include the death substrate

PARP [157]. Other potential targets for caspase-3 include

DNA-dependent protein kinase (DNA-PK) [158], protein

kinase C [159], the transcription factors, sterol regulatory

element binding proteins (SREBPs) [160] and actin [161].
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Protein kinases

While the immediate events in excitotoxic injury, such as

NMDA receptor activation and consequent Ca2? influx, are

well-established, the subsequent downstream events that

result in neuronal death remain less clear. Signal trans-

duction pathways that relay extracellular signals to the

nucleus via a series of phosphorylation events are strong

candidates for mediating the downstream effects of exci-

totoxic injury. Several protein kinases including cAMP-

dependent protein kinase (PKA), Calmodulin-dependent

protein kinase-II (CaMK-II) and some members of protein

tyrosine kinases (PTK), such as c-Src, have been shown

to transduce Ca2? signaling to ERK1/ERK2 (extracel-

lular signal-regulated kinases) cascade and excitotocixity

[162, 163].

ERK1/ERK2, with molecular masses of 44 and 42 kDa,

respectively, are classical members of the MAPK super-

family. Both require specific diphosphorylation of both

threonine and tyrosine residues at the regulatory sites by

MEK1/MEK2 (ERK1/ERK2 kinase) for activation. ERK1/

ERK2 cascades play important roles in signal transduction

from cell surface to nucleus. The well-documented neuro-

tropic growth factor receptor-mediated activation cascade

(Ras/Raf/MEK/ERK) has been thought to play important

roles in cell growth, proliferation and survival [164]. ERK1/

ERK2 have been found to be activated after relatively mild

stimulation of glutamate receptors and to be involved in

some activity-dependent functions [165]. Furthermore,

ERK1/ERK2 have also been found to be activated in some

excitotoxicity-associated events, such as stroke, seizure and

AD [166, 167]. ERK1/ERK2 were transiently activated in

glutamate-induced apoptotic-like death in cultured rat cor-

tical neurons, and PD98059, a specific inhibitor for MEK1/

MEK2, completely inhibited such activation and partially

prevented the glutamate-induced apoptotic-like death [168].

Therefore, ERK1/ERK2 might be excessively activated

transiently and involved in the glutamate-induced cortical

neurotoxicity.

Phosphorylation of the transcription factor cAMP

response element binding protein (CREB) represents a

potential downstream target of MAPK/ERK activation in

models of neuronal death. CREB phosphorylation is

observed in hippocampal neurons following both transient

[169] and permanent [170] focal cerebral ischemia in the

rat, suggesting this event may be important to the injury

process. Whilst several CREB kinases are involved in

neuronal injury, including PKA, MAPK-activated protein

kinase-1 (MAPKAP-K1) and mitogen and stress activated

protein kinase-1 (MSK1). Calcium induces ERK via Ras

independent PKA-dependent stimulation of the small

G-protein, Rap1, and the downstream kinase, B-Raf.

PKA signaling pathway has been implicated in NMDA

receptor-induced neuronal death [171] and in epidermal

cell autophagy in Drosophila [172].

Calmodulin-dependent protein kinase-II (CaMK-II) has

been shown to play a key role in mediating some of the

biochemical events leading to cell death following an acute

excitotoxic insult of cortical neurons. Treatment with

DY-9760e, a calmodulin antagonist, resulted in a dose-

dependent prevention of neuronal cell death elicited by

excitotoxicity, voltage-gated channel opening, and inhibi-

tion of ER Ca2? ATPase [173]. Although the mode of

cell death and underlying mechanisms are not yet clear,

CaMK-II that is regulated by calcium has been shown to

induce ERK activation in neurons and vascular smooth

muscle cells [174, 175]. Therefore, it is plausible that ERK

might be a downstream player of CaMK-II-mediated

excitotoxic cell death.

Src constitute a family of tyrosine kinases, which can act

as upstream activators of ERK and have been implicated in

neuronal cell death mediated by zinc, glutamate and

ischemia. Zinc-induced neuronal death can be apoptotic or

necrotic depending upon the intensity of Zn2? exposure

[176]. Zn2? has been shown to produce oxidative neuronal

necrosis in cortical cell cultures via Src family kinase

[177]. Glutamate triggers neuronal degeneration after

ischemia–reperfusion in brain. It has been suggested that

tyrosine phosphorylation, including Src kinase activation,

might propagate delayed neuronal death in the mature

hippocampus following glutamate overload, after ischemia

reperfusion. Similarly, increased activation of Src was seen

in microglia of the post-ischemic hippocampus, indicating

that Src signaling may be involved in the microglial

response to an ischemic insult [178]. Although these

studies do not provide evidence for an involvement of ERK

in their models, it has been suggested that Src family

tyrosine kinases are critical for ERK activation [179]. One

study in a hippocampal cell line showed that glutamate-

induced neuronal death is accompanied by an activation of

Src kinase and ERK. Numerous other studies in non-neu-

ronal cells suggested ERK as a downstream target of Src

[180]. In addition, calcium and its regulation by NMDA

receptors have been shown to be modulated by Src [181,

182]. Together, these reports suggest that glutamate, zinc

and ischemia induce neuronal degeneration via Src-tyro-

sine kinase. However, the precise role of ERK in mediating

Src induced neuronal degeneration still needs to be further

investigated.

Transcription factors and immediate early genes

Increased DNA binding of redox-regulated transcription

factors, nuclear factor-kappaB (NF-jB) and activator pro-

tein-1 (AP-1), are associated with the mechanisms of

excitotoxicity. Kaltschmidt et al. [183] reported that KA
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activates NF-jB. Later studies defined the nuclear trans-

location and a pro-apoptotic role of NF-jB activation

mediated by AMPA/KA receptors [184, 185]. Similarly,

the stimulation of glutamate NMDA receptors robustly

activates NF-jB through the degradation of NF-jB inhib-

itor-a (IjB-a) [186, 187]. In other studies, pharmacological

upregulation of NF-jB increased glutamate-induced

excitotoxicity, while the upregulation of CREB decreased

excitotoxicity [188]. Grilli et al. [189] reported a neuro-

protective role of aspirin on the glutamate-induced death of

hippocampal neurons, opening a new avenue for the study

of excitotoxicity. Since then, several studies have reported

that the inhibition of NF-jB has neuroprotective effects

[187, 190–192]. In studies conducted by Casper et al.

[193], neuroprotection against glutamate-mediated excito-

toxicity was also found with ibuprofen. The inhibition of

NF-jB with a herbal active component glycyrrhiza acid,

free radical scavenger OCT14117 [194], and glutamate

metabotropic receptor agonists (2S,10S,20S)-(carboxycy-

clopropyl) glycine and L(?)-2-amino-4-phosphonobutyric

acid [195, 196] was associated with a neuroprotective

effect. Pretreatment with a cell-permeable recombinant

peptide inhibitor of NF-jB, selectively blocked quinolin-

ate-induced NF-jB nuclear translocation as well as apop-

tosis [187]. Studies have suggested that neurotoxicity

through glutamate-NMDA receptors or oxidative stress is

dependent upon CREB and NF-jB DNA transcription that

regulates vitality of neurons [188], suggesting that NF-jB

inhibitors could be suitable drugs for blocking excitotox-

icity (reviewed in [41]).

In the NMDA-triggered apoptotic process involving

NF-jB activation, NF-jB regulated the expression of many

proteins including c-Myc and p53, which in turn regulate a

broad range of physiological and pathological responses.

Levels of both proteins increase upon NF-jB nuclear

translocation, and play a prominent role in the control of

the cell cycle and apoptosis in dividing cells. AP-1 is a

transcription factor sensitive to stress conditions, and

induced by diverse stimuli, including glutamatergic stim-

ulation [187]. AP-1 consists of a variety of dimers consti-

tuted by proteins of the Jun and Fos families. The Jun

proteins (c-Jun, JunB and JunD) can both homodimerize

and heterodimerize with Jun or Fos proteins, while the Fos

proteins (c-Fos, FosB, Fra-1 and Fra-2) can only hetero-

dimerize with the Jun family members to form transcrip-

tionally active complexes [197]. AP-1 activation is

mediated, in part, by the phosphorylation of c-Jun by the

c-Jun N-terminal kinases (JNKs). In the Jun family, c-Jun

is the most potent activator of transcription. There are

direct [198] and indirect lines of evidence [199, 200] that

the JNK/c-Jun signaling pathway is important for neuronal

death induced by excitotoxicity. Studies show that activa-

tion of the AP-1 transcription factor, mediated through

Ca2?-permeable GluR4-containing AMPA receptors, is

involved in excitotoxicity-induced cell death. Thus, neu-

ronal cells preferentially expressing the GluR4 subunit of

AMPA receptors are particularly vulnerable to AMPA-

induced excitotoxicity.

Within minutes of neurotransmitter release, the expres-

sion of a family of genes termed IEGs is induced in the

postsynaptic neuron. IEGs are genes that are responsive to

transsynaptic stimulation and membrane electrical activity

in neuronal cells. Transcription of these genes occurs

rapidly and transiently within minutes of stimulation. Many

IEGs encode transcription factors that then induce sub-

sequent waves of delayed-response gene expression. These

delayed-response genes encode proteins that are likely to

be determinants of neuronal plasticity. These proteins may

include neurotransmitter-synthesizing enzymes and neuro-

transmitter receptors, as well as structural components of

the synapse. The prototypic IEG, c-fos, has been reported

to be both rapidly and transiently transcribed in response to

a variety of neurotransmitters that trigger Ca2? influx in in

vitro cell culture systems [201, 202]. The c-fos gene

encodes the transcription factor c-Fos, which forms a het-

erodimer with members of the Jun family of transcription

factors via a leucine zipper, forming the transcription factor

complex AP-1. Griffiths et al. [203, 204] proposed that the

assessment of c-fos mRNA expression levels could be used

as a specific indicator of excitotoxicity.

Multiple mechanisms lead to excitotoxicity

in neurological disorders

Glutamate receptor-mediated excitotoxicity is closely

associated with neurochemical and neuropathological

changes occurring in acute neural damage (stroke, spinal

cord trauma, and head injury) and neurodegenerative

diseases such as AD, PD, Huntington’s disease (HD),

ALS, Creutzfeldt-Jakob disease, Guam-type ALS/Parkin-

son dementia (ALS/PDC), and multiple sclerosis (MS). In

the past decades, our understanding of the biochemistry,

molecular biology, and neurophysiology of the glutamate

receptors has exploded. It is becoming increasingly evident

that excitotoxicity is involved in pathogenesis of many

neurological disorders. The underlying mechanisms by

which disease conditions contribute to excitotoxicity appear

to be due to dysregulation of glutamate levels and glutamate

receptor activity.

Disease conditions associated with hyperactivity

of glutamate receptors

Some investigators find that overstimulation of NMDA or

AMPA-type glutamate receptors can induce apoptosis in
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striatal projection neurons in vitro and in vivo [205, 206].

Intrastriatal infusion of KA can induce excitotoxic lesions

in striatum, and has become a well-established chemical

model of HD [207]. In HD model, changes in kynurenine

metabolism [208] and hyperactivity of glutamate receptors

[209] were reported. Schiefer et al. [210] suggested

that inhibition of glutamate neurotransmission via specific

interaction with mGluRs might be important for both

inhibition of disease progression as well as early symp-

tomatic treatment in HD.

Altered NMDAR function has been reported in corti-

costriatal synapses, and NMDAR mediated current and/or

toxicity have been found to be potentiated in striatal neu-

rons from several HD mouse models as well as heterolo-

gous cells expressing the mutant huntingtin (mhtt) protein

[211]. Several possible mechanisms may allow mhtt to

modulate NMDAR function at the receptor level and may

contribute to excitotoxicity in HD [212]. Mhtt may mod-

ulate NMDARs via intermediate interacting proteins. In a

heterologous system, mhtt expression increased Src-medi-

ated tyrosine phosphorylation of NMDARs, an effect

enhanced by expression of postsynaptic density 95 (PSD-

95) [213]. Other mhtt-mediated alterations of NMDAR

phosphorylation were documented in N171-82Q mouse

models of HD: down-regulation of PSD-95 expression and

of the dopamine D1 receptor pathway that normally acts

via protein kinase A activation to phosphorylate Ser897 of

NR1 and increase NMDAR activity [214]. Finally, while

htt indirectly interacts with NMDARs via PSD-95, mhtt

has a reduced ability to interact with PSD-95, increasing

the vulnerability of neurons to glutamate-mediated

excitotoxicity [213].

Disease conditions associated with secondary

excitotoxicity

Mitochondrial dysfunction has been found in HD and other

types of neurodegenerative diseases [215–217]. Glutamate-

mediated neuronal death is highly influenced by the energy

state of the cells, and even physiological concentrations of

glutamate become toxic during energy failure [218],

causing cell death through a process known as secondary

excitotoxicity. The secondary excitotoxicity is refered to

cellular injury by glutamate is triggered by disturbances in

neuronal energy status, which causes substantial decreases

in membrane potential. The NMDA receptor channel is

normally blocked by Mg2? ion in a voltage-dependent

manner, and this ion is extruded to the extracellular med-

ium when the plasma membrane is depolarized. The resting

membrane potential, sustained through the activity of

the Na?/K? ATPases, will collapse during ATP-limiting

conditions such as impaired glycolytic or mitochon-

drial metabolism, depolarizing the plasma membrane and

causing the extrusion of Mg2? ions and the activation of

NMDA receptors by ambient glutamate. Previous studies

have shown that neuronal death induced by the accumu-

lation of glutamate and aspartate after inhibition of gluta-

mate transporters is facilitated in the striatum of animals

previously treated with the mitochondrial toxin 3-NP, an

irreversible inhibitor of complex II of the mitochondrial

electron transport chain [219]. Similarly, inhibition of the

glycolytic enzyme, glyceraldehyde-3-phosphate dehydro-

genase (GAPDH), by iodoacetate (IOA) facilitates neuro-

nal damage induced by glutamate transport inhibition or by

the intrastriatal administration of glutamate [220]. Mech-

anisms associated with the increased vulnerability to glu-

tamate toxicity have not been completely elucidated, but

recent studies indicate that IOA treatment induces a

decrease in the content of glutamate transporter GLT-1 and

an increase in the protein and phosphorylation levels of the

NR2B subunit of NMDA receptors [221]. Studies have

shown that energy substrates such as pyruvate, acetoacetate

(AcAc), and beta-hydroxybutyrate (BHB) reduce excito-

toxic lesions induced by the intracerebral administration

of glutamate or glutamate uptake inhibitors [220, 222].

Energy substrates potentially have the ability to treat

excitotoxic neuronal death.

In other conditions, synaptic glutamate concentration

can reach toxic levels. Glutamate transporters remove the

excitatory neurotransmitter glutamate from the extracellu-

lar space after neurotransmission is complete, by taking

glutamate up into neurons and glia cells. As thermody-

namic machines, these transporters can also run in reverse,

releasing glutamate into the extracellular space [223].

Glutamate transport by the plasma membrane transporters

is reversible. While the conventional transport direction is

inward under physiological conditions, glutamate can also

be transported in the outward direction when extracellular

[Na?]/intracellular [K?] decrease and/or intracellular

[Na?]/extracellular [K?] increase [224, 225]. Due to the

electrogenicity of glutamate transport, membrane depolar-

ization will also result in a reversal of the transport direc-

tion because the driving force for uptake decreases under

depolarized conditions. Glutamate transport in the outward

direction was also termed reversed transport, to indicate the

reversal from the conventional transport direction. Since

glutamate is excitotoxic, this transporter-mediated release

is detrimental to the health of neurons and axons, and thus,

may contribute to CNS disorders [226, 227].

Disease conditions associated with alterations

in excitatory amino acid transporters

A family of sodium-dependent excitatory amino acid

transporters (EAATs) is of prominent importance for glu-

tamate uptake and for regulating glutamate homeostasis in
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the CNS [228, 229]. Thus, EAATs are considered to be a

critical buffer against excitotoxicity in CNS disorders. To

date, five high-affinity EAATs have been cloned from

human and animal tissues, and they are identified as excit-

atory amino acid transporters 1–5 (EAAT1–5). According

to previous studies, EAAT1 and EAAT2 are predominantly

expressed in glial cells, EAAT3 and EAAT4 are typically

present only in neurons [230, 231], and EAAT5 is located in

retinal ganglion cells [232]. A study has shown that astro-

cytes also express EAAT4 [233]. EAATs are considered to

contribute to prevention of excitotoxicity by promoting

glutamate uptake.

Many of the original inhibitors of glutamate transporters

are substrates of the transporters, and are often referred to

as ‘substrate-inhibitors’ [234, 235]. As the name implies,

these compounds are translocated by the transporters, much

like glutamate or aspartate. In a cell culture model, one of

the more selective substrate-inhibitor trans-pyrrolidine-

2,4-dicarboxylate (t-PDC) potentiates glutamate toxicity

and increases the sensitivity of neurons to OGD [236].

Similarly, the substrate inhibitor t-PDC causes both

NMDA-dependent neurotoxicity and NMDA-independent

gliotoxicity in hippocampal mixed cultures [237]. The

mechanism of t-PDC-induced gliotoxicity remains unclear,

but it is also independent of oxidative stress and glutathi-

one deficiency. As mentioned above, transportable inhibi-

tors have the potential to affect intracellular targets, which

is one possible explanation accounting for gliotoxicity. On

the other hand, blockade of glutamate transporters by the

non-transportable glutamate uptake inhibitor threo-b-ben-

zyloxyaspartate (TBOA) is neurotoxic through activation

of NMDA receptors but is not toxic to glia [237]. In a

series of experiments, Bonde and colleagues have shown

that blocking glutamate transporters with TBOA under

normal conditions in rat hippocampal slice cultures results

in marked necrotic neurodegeneration, presumably due to

increased glutamate in the synaptic cleft, as the effect is

blocked by glutamate receptor antagonists [238]. In addi-

tion, TBOA exacerbates ischemia in rat hippocampus

[239].

In cultures, glutamate uptake into glia has a dramatic

effect on the sensitivity of neurons to excitotoxic insults

[236]. With the cloning of the transporters, several addi-

tional tools became available to manipulate glutamate

transporter activity. Using anti-sense knockdown, Rothstein

and his colleagues demonstrated that impaired glutamate

transporter expression was associated with neurodegenera-

tion in normal animals [240]. In addition, mice deleted of

GLT-1 (also called EAAT2), display markedly diminished

transport activity, seizures, and increased sensitivity to

neurotoxicity [241], convincingly demonstrating that

impaired glutamate transport can cause neurodegeneration

in an otherwise normal setting.

Studies have demonstrated that activated microglia are a

significant source of redundant extracellular glutamate that

induces excitotoxic neuronal death [242–244], and thus the

regulation of such microglial glutamate may be a key

therapeutic strategy against excitotoxicity-driven neuro-

logical diseases. Glial activation is a neuropathological

hallmark in various neurological disorders [242, 245]. It

remains undetermined whether glial activation is neuro-

protective or neurotoxic. Activated microglia produce

glutamate via the upregulation of glutaminase, then release

this glutamate from the connexin32 gap junction hemi-

channel, and thereby induce excitotoxic neuronal death

[246]. A study has shown that activated microglia act on

glutamate transporters in oligodendrocytes, leading to a net

increase in extracellular glutamate and subsequent oligo-

dendrocyte death [247]. Neurons express fewer EAATs

compared to glial cells [248]. Activated microglia may also

downregulate or dysregulate astrocytic EAATs, which may

also contribute to neurodegeneration in various neurologi-

cal diseases.

Over the last decade, it has become clear that many

neurodegenerative disorders are associated with a change

in localization and/or expression of some of the subtypes of

these transporters. Alterations in glutamate transporters

have been reported for several neurodegenerative disorders

including ALS [249], HD [250, 251], PD [252], and AD

[253, 254]. This would suggest that therapies directed

toward enhancing transporter expression might be benefi-

cial. However, there is also evidence that glutamate

transporters might increase the susceptibility of neuronal

tissue to insults causing collapse of the normal cellular

electrochemical gradients, such as ischemic/hypoxic insult

in acute cerebral stroke. It is not clear in most cases whe-

ther glutamate dysfunction contributes to pathogenesis, or

results from the disease pathology. It is important to

determine whether the onset of neurodegeneration precedes

or follows glutamate transporter alterations. In any case,

decreases in transporter expression could contribute to

ongoing pathology by making the tissue more vulnerable to

excitotoxicity.

Enhanced excitotoxicity by other signaling molecules

Endogenous compounds able to modulate glutamatergic

transmission may interfere with glutamate-induced cell

death. Neurotensin (NT) is a 13 amino acid neuropeptide

that is implicated in the regulation of luteinizing hormone

and prolactin release and has significant interactions with

the dopaminergic system. In view of the enhancing effects

of NT on glutamate transmission and glutamate-induced

neurotoxicity, this peptide may play a relevant role

in reinforcing the effects exerted by glutamate on a variety

of CNS functions and pathologies, in particular on
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glutamate-mediated excitotoxicity. NT immunoreactive

cell bodies and terminal systems and their receptors are

found in many parts of the brain and interact, preferen-

tially, with the mesolimbic, mesocortical and nigrostriatal

dopamine (DA) neurons [255–257]. However, the impor-

tant role of central NT receptor mechanisms played in

modulation of glutamate transmission has not been fully

understood [258]. The probable reason is that it has

only recently become clear that NT enhances glutamate

excitotoxicity in DA neurons and that NT receptors are

involved in NMDA induced excitotoxicity through the

work of the Tanganelli et al. [259, 260]. NT may be

involved in the degeneration of dopaminergic mesence-

phalic neurons and cortical neurons by enhancing gluta-

mate signaling, leading to excitotoxicity, most likely via a

rise of intracellular calcium and/or to an amplification of

the NMDA-mediated glutamate signalling. Morphological

and biochemical findings obtained in primary cultures of

rat cortical neurons and rat mesencephalic dopaminergic

neurons [259, 260] strengthen the evidence of an involve-

ment of NT in neurodegenerative processes.

Cyclooxygenase (COX) has two well-studied isoforms,

called COX-1 and COX-2. Studies demonstrate that sys-

temic treatment of a commercially available and clinically

useful nonselective COX inhibitor, naproxen, ameliorates

hippocampal and parenchymal cell death and edema for-

mation mediated by excessive activation of neuronal

NMDA receptors in vivo [261]. Studies also demonstrate

similar and significant neuroprotection by the COX-2

selective inhibitor rofecoxib (p.o.) in the same in vivo

excitotoxic model, supporting the notion that the cell death

occurs predominantly via a COX-2-dependent mechanism.

Animals overexpressing COX-2, as well as cells derived

from said animals, are more susceptible to injury induced

by kainate and glutamate [262]. Selective inhibition of

COX-2 effectively ameliorates cortical brain damage

caused via direct intracortical injection of NMDA [263]

and hippocampal oxidative damage following intraperito-

neal injection of kainate [264]. Glutamate receptor-medi-

ated injury to cortical, hippocampal, and cerebellar granule

cell neurons in vitro is also reduced when COX-2 is

pharmacologically inhibited [265, 266]. In addition,

COX-2 expression is increased in brains from animals

subjected to experimental manipulations mimicking neu-

rological diseases known to have an excitotoxic compo-

nent. Importantly, up-regulation of COX-2 is reported to

occur in neurons and non-neuronal cells in human brains

following a lethal cerebral ischemic insult [267], in AD

brains [268], in postmortem PD specimens [269], and in

spinal cord [270], cortex, and hippocampus of ALS patients

[271], indicating that these experimental observations may

have direct relevance to human pathology. Pharmacologi-

cal inhibition of COX-2 or use of COX-2 null mutant

animals in these same models has, in most cases, proven

beneficial [263, 272, 273].

Conclusions

The signaling pathways and the roles of excitotoxicity have

been studied for about half of century. However, we still

have limited knowledge on the role of excitotoxicity in CNS

neurons and the molecular mechanisms underlying its

actions. In particular, its critical roles in neuronal death and

underlying molecular mechanisms need to be carefully

evaluated in relation to human neurological diseases (Fig. 1).

The involvement of excitotoxicity in human diseases

certainly establishes it as a potential target for therapy.

However, with the exception of memantine [274], human

clinical trials using NMDA receptor antagonists have

proven to be disappointing. The reasons for these failures

may be diverse and could depend on whether the initial

injury develops slowly over time or is rapidly initiated. In

the latter case, it is likely that compounds that prevent

excitotoxic neuronal injury, after initial receptor binding

of glutamate has occurred, may actually be more clinically

practical. For example, studies have demonstrated signif-

icant neuroprotection by COX inhibitor naproxen and

COX-2 inhibitor rofecoxib in in vivo excitotoxic models

[261, 275]. The nother potential advantage is that target-

ing post-receptor signal pathways may avoid excessive

blocade of excitotary neurotransmission. The benzothia-

zole drug riluzole has a number of pharmacological

effects that contribute to neuroprotection in experimen-

tal paradigms of neurodegenerative diseases including

anti-excitotoxic activity, blocking of voltage dependent

sodium-channels, free-radical scavenging, anti-apoptotic

and neurotrophic effects and inhibition of protein aggre-

gation [276, 277]. Riluzole (up to 200 mg daily) is well

tolerated and prolongs survival in ALS [278]. The com-

bined treatment of riluzole and the histone deacetylase

inhibitor, sodium phenylbutyrate, significantly extended

survival and improved both the clinical and neuropatho-

logical phenotypes in G93A transgenic ALS mice beyond

either agent alone [279]. Thus far, some potential agents,

i.e., anti-glutamatergic drugs, anti-oxidants, enhancers of

mitochondrial functions, anti-COX-2 drugs, anti-inflam-

matory agents, and therapeutic implications of deep brain

stimulation, cell transplantation, stem cells therapy, gene

therapy, were shown to modify disease progression in

human neurodegenerative disorders. Further investigation

of upstream signals controlling excitotoxicity, and which

cause hyperactivity of glutamate receptors under disease

conditions may provide new insights on the mechanisms

contributing to neurodegenerative diseases in humans,

thereby unveiling new strategies for therapy.
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Mazovec G, Oresić K, Turk V (2002) Apoptotic pathways:

involvement of lysosomal proteases. Biol Chem 383:1035–1044

108. Tominaga K, Nakanishi H, Yasuda Y, Yamamoto K (1998)

Excitotoxin-induced neuronal death is associated with response

of a unique intracellular aspartic proteinase, cathepsin E. J

Neurochem 71:2574–2584

109. Pan T, Kondo S, Le W, Jankovic J (2008) The role of autoph-

agy-lysosome pathway in neurodegeneration associated with

Parkinson’s disease. Brain 131:1969–1978

110. Rajawat YS, Hilioti Z, Bossis I (2009) Aging: central role for

autophagy and the lysosomal degradative system. Ageing Res

Rev 8:199–213

111. Turk B, Turk V (2009) Lysosomes as ‘‘suicide bags’’ in cell

death: myth or reality? J Biol Chem 284:21783–21787

112. D’Herde K, Diez-Fraile A, Lammens T (2009) Apoptotic,

autophagic and necrotic cell death types in pathophysiological

conditions: morphological and histological aspects. In: Krysko

DV, Vandenabeele P (eds) Phagocytosis of dying cells: from

molecular mechanisms to human diseases. Springer, Nether-

lands, pp 33–62
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