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Abstract Medulloblastoma and neuroblastoma are

malignant embryonal childhood tumours of the central and

peripheral nervous systems, respectively, which often show

poor clinical prognosis due to resistance to current che-

motherapy. Both these tumours have deficient apoptotic

machineries adopted from their respective progenitor cells.

This review focuses on the specific background for tumour

development, and highlights biological pathways that

present potential targets for novel therapeutic approaches.
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Abbreviations

ALK Anaplastic lymphoma kinase

BDNF Brain-derived neurotrophic factor

BID Bcl-2 homology domain 3-interacting death

agonist

BMP Bone morphogenic protein

CNS Central nervous system

CTL Cytotoxic T-lymphocyte

DED Death effector domain

DISC Death-inducing signalling complex

EGL External granular layer

FADD Fas-associated protein with death domain

FRET Fluorescence resonance energy transfer

GNP Granule neural precursor

HGF Hepatocyte growth factor

IAP Inhibitor of apoptosis protein

IGF Insulin-like growth factor

MAPK Mitogen-activated protein kinase

MCL-1 Myeloid cell leukaemia-1

NGF Nerve growth factor

NPM Nucleophosmin

NSAID Non-steriodal anti-inflammatory drug

NT Neurotrophin

PI3K Phosphatidylinositol 3-kinase

PNA Peptide nucleic acid

RA Retinoic acid

SCID Severe combined immunodeficiency

sPNET Supratentorial primitive neuroectodermal

tumour

TGF Transforming growth factor

TNF Tumour necrosis factor

TRAIL TNF-related apoptosis-inducing ligand

VEGF Vascular endothelial growth factor

VIP Vasoactive intestinal peptide

Clinical background; medulloblastoma

and neuroblastoma

Today the majority of children with cancer are curable with

different combinations of chemotherapy, often used toge-

ther with surgery and irradiation. The higher cure rate in

childhood cancers compared to adult malignancies is

related to paediatric tumours being more prone to apoptosis

using current cytotoxic drugs, and children being able to
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stand relative higher doses of chemotherapy than adults.

However, despite recent progress, cancer is still the leading

cause of childhood death due to disease in Western coun-

tries, and worldwide second to infectious diseases that have

a very high prevalence in underdeveloped countries [1–4].

Today more than 75% of children can be cured from

cancer, although the prognosis varies between different

diagnoses and clinical subsets [1, 3].

Medulloblastoma and neuroblastoma are embryonal

childhood tumours of the central and peripheral nervous

systems, respectively, (Fig. 1) [5, 6]. Medulloblastoma most

often arises in the cerebellum [when presenting outside the

cerebellum called supratentorial primitive neuroectodermal

tumour (sPNET), see Fig. 1a, in this review included in the

medulloblastoma entity] and present mainly in young chil-

dren with a clinical prognosis related to primary surgical

resectablility and metastatic spread dependent on inherent

biological features. Neuroblastoma arises in the sympathetic

nervous system showing heterogeneous biological and

clinical features with one subset of neuroblastoma prone to

undergoing spontaneous apoptosis with little or no therapy,

another subset differentiating over time, whereas the

majority are tumours difficult to cure with current treatment

modalities. Both medulloblastoma and neuroblastoma are

unfavourable malignant tumours with relatively high pro-

portion of children that die due to therapy resistant disease

Fig. 1 Medulloblastoma and neuroblastoma localisation. (a) Medul-

loblastoma primary tumours arise in the infratentorial posterior fossa of

the CNS whereas supratentorial primitive neuroectodermal tumours

(sPNET) arise in the superior fossa (indicated by asterisk, *).

(b) Neuroblastoma primary tumours derived from the neural crest arise

in the sympathetic nervous system including the adrenal medulla,

sympathetic ganglia and paraganglia. Medulloblastomas metastasize

primarily within the CNS whereas neuroblastomas mainly metastasize

to lymph nodes, bone and bone marrow, and in infants also spread to

liver and subcutaneous tissue

Fig. 2 Medulloblastoma and neuroblastoma incidence and mortality.

Both these embryonal neural tumours show a worse outcome

compared to all other childhood cancers, with relative more deaths

(18.8% of all) than diagnosed cases (10.5% of all; population based

data from Swedish Childhood Cancer Registry [3]). Relative

incidence and mortality for medulloblastoma (4.8 and 9.6%, respec-

tively) and neuroblastoma (5.7 and 9.2%, respectively) among all

diagnosed cases and deaths of cancer in children \15 years, from

their diagnosis 1984–2000 and followed until 2007
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(Fig. 2). Childhood malignancies, including medulloblas-

toma and neuroblastoma, not curable with current

therapeutic modalities often show defects in the apoptotic

machinery. Although further refined use of cytotoxic drugs

may somewhat improve prognosis, development of novel

therapies based on identification of specific targets seems the

most promising way forward to better outcome for children

with cancer [7, 8]. Both medulloblastoma and neuroblastoma

belong to the most challenging oncologic diseases of child-

hood and serve as useful models for development of targeted

therapy based on novel biological understanding. Amplifi-

cation of the MYCN oncogene characterizes the subset of

most aggressive neuroblastomas [6], whereas in medullo-

blastoma, activation of the c-MYC oncogene has been shown

to be one of the most reliable prognostic factors [9, 10]. Even

though MYCN-amplification also occurs in medulloblas-

toma, its value as a prognostic factor has not been clearly

established ([10] and reviewed in [11]). Despite intensive

multimodal therapy, often resulting in good immediate

response in many children, both high-risk neuroblastoma and

metastatic medulloblastoma frequently acquire therapy

resistance with fatal clinical outcome. Moreover, many of

the survivors suffer great risks of severe consequences from

the intensive treatment; in particular children with medul-

loblastoma that often experience long-term side effects

mainly due to radiation therapy to the developing brain with

high risks of severe morbidity even if cured from the tumour.

Origin of embryonal tumours of the nervous system

and mechanisms of apoptotic resistance

The delicate balance between programmed cell death,

proliferation, self-renewal, migration and differentiation is

crucial for normal neural development. Defects in any of

the mechanisms controlling these processes could promote

transformation, making developing cells prone to tumo-

urigenesis. During the last years, it has become

increasingly clear that paediatric neoplasms of the nervous

system are linked to disordered mechanisms of normal

development, supporting a model of embryonic tumouri-

genesis [12]. Compared to adult tumours, embryonal

tumours have a dramatically shortened latency period and

generally harbour fewer genetic aberrations causing onco-

gene activation or loss of apoptotic regulators. The reason

for these differences is that embryonic malignancies arise

from progenitor cells which are already proliferating as a

part of the normal developmental process [13]. The major

molecular mechanisms controlling neural development

consists of a handful of signalling transduction pathways of

which Wnt, Hedgehog, Notch, BMP (bone morphogenic

protein), TGF-b (transforming growth factor-b) and

receptor tyrosine kinases are the most important ones [14].

Medulloblastoma and neuroblastoma as developmental

disorders

Recent discoveries have shown that normal development and

tumourigenesis have several common characteristics. Both

processes involve altered proliferation, differentiation,

migration and apoptosis [15]. Medulloblastoma is believed

to originate from cerebellar granule neural precursor (GNP)

cells located in the external granular layer (EGL) of the

cerebellum (Fig. 1a) [16, 17]. The EGL contains actively

proliferating progenitor cells deriving from the rhombic lip

during embryogenesis. While GNP cell proliferation

requires Hedgehog signalling [18], their expansion and

survival is also promoted by insulin-like growth factor (IGF)

signalling [19]. Medulloblastoma cells retain many features

resembling precursor cells of the embryonic brain [17] and

more than half of these tumours contain abnormal activation

of the Hedgehog or Wnt signalling pathways [20]. Neuro-

blastoma is an embryonal tumour of the peripheral nervous

system that originates from neural crest cells and usually

manifests in the adrenal gland or in a paraspinal location in

the abdomen or chest (Fig. 1b) [6]. The neural crest is a

transient embryonal structure that arises from ectoderm

during closure of the neural tube. It consists of a population

of multipotent progenitor cells that will differentiate into

peripheral sensory neurons, cells in the enteric nervous

system, Schwann cells, pigment cells, and parts of the cra-

niofacial skeleton. A complex interplay between Hedgehog

and Wnt signalling has been shown to be important for

proper neural crest formation [21]. Both Hedgehog and Wnt

signalling have been shown to induce expression of MYCN,

a transcription factor that is widely expressed in the

peripheral neural crest and has critical roles in the regulation

of cell cycle progression, differentiation, and apoptosis

(discussed below). High MYCN expression stimulates pro-

liferation and migration of neuroblasts, while a reduced

expression is associated with terminal differentiation [12].

Amplification of MYCN occurs in a large fraction of high-

risk neuroblastoma and is associated with aggressive disease

in children and poor clinical outcome [6]. Moreover, con-

stitutive activation of phosphatidylinositol 3-kinase (PI3K)/

Akt as well as activation of Wnt signalling has recently been

shown in primary neuroblastomas [22–24]. Activation of

both these signalling pathways is associated with increased

MYCN expression in neuroblastoma [22, 24, 25].

Apoptosis in the developing nervous system

During neural embryogenesis approximately 50–70% of

the neural cells die through programmed cell death [26].

Cells that are committed to differentiate into neurons are

more prone to undergo apoptosis compared to the neural
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progenitor cells which through different mechanisms are

effectively protected against apoptosis [27]. Normal cells

usually have a fine tuned equilibrium between the expres-

sion levels of pro-apoptotic and anti-apoptotic proteins. In

neural progenitor cells as well as in medulloblastoma and

neuroblastoma this equilibrium has been shifted towards

less expression of pro-apoptotic proteins and higher

expression of anti-apoptotic proteins.

A central component of the apoptotic process is a pro-

teolytic system consisting of a family of cysteine-rich

proteases called caspases. These enzymes participate in a

cascade that is triggered by various extracellular (extrinsic)

or intracellular (intrinsic) stress signals and culminate in

cleavage of a set of proteins resulting in disassembly of the

cell into apoptotic bodies (Fig. 3a) [28]. Caspases have

been assigned into three major classes: initiator caspases

such as caspase-2, -4, -8, -9, -10, and -12; effector caspases

such as caspase-3, -6 and -7; and inflammatory caspases

such as caspase-1, -5 and -11 depending on their roles in

mediating cell death and inflammatory responses [29].

Antagonising these caspases are a family of proteins called

inhibitor of apoptosis proteins (IAPs) that block apoptosis

by direct binding to caspases [30]. Currently there are nine

known IAPs: X-linked IAP, cIAP1, cIAP2, melanoma IAP,

neural apoptosis inhibitor protein, IAP-like protein 2, livin,

apollon and survivin [31]. The functions of IAPs are in turn

inhibited by endogenous antagonists like Smac/DIABLO,

Omi/HtrA2 and XAF1. Smac/DIABLO and Omi/HtrA2 are

released from the mitochondria along with cytochrome c

whereas XAF1 binds and sequesters XIAP in the nucleus

thus preventing XIAP to inhibit cytosolic caspases

(reviewed in [32]). Also located to the mitochondria is the

Bcl-2 family of proteins that plays a central role in con-

trolling the intrinsic mitochondrial-dependent apoptotic

signalling. To date more than 20 members of this family

have been identified in humans, including suppressors

(Bcl-2, Bcl-XL, Bcl-G, Bcl-W, Bfl1/A1, Mcl-1) and pro-

moters (Bcl-XS, Bax, Bak, Bid, Bad, Bok, Bik, Bim, Bcl-B,

Noxa, Nix, Nip3, Puma, Hrk, Mtd) of apoptosis [33, 34].

This family modulates apoptosis by modulating the per-

meability of inner and/or outer mitochondrial membranes

leading to the deterrence or release of cytochrome c.

Fig. 3 Apoptosis pathways and their regulation in medulloblastoma

and neuroblastoma. Schematic overview of the two major apoptosis

pathways: the extrinsic death receptor pathway and the intrinsic

mitochondrial pathway. A selection of molecules involved and their

potential interactions in response to apoptotic stimuli is shown in (a).

Stimuli such as death receptor ligands (Fas ligand, TNF, or TRAIL)

enable assembly of the death-inducing signalling complex (DISC),

leading to caspase-8 cleavage and activation. Active caspase-8 can

either bridge over to the mitochondrial pathway by cleavage and

activation of Bid, or activate a caspase cascade via the effector caspase-3

which will ultimately result in chromatin condensation and DNA

degradation. In the intrinsic pathway, tBid will activate pro-apoptotic

Bak or Bax to enable the release of molecules from the intermembrane

space of mitochondria. Of the pro-apoptotic molecules (Smac/DIABLO,

Omi/HtrA2, and cytochrome c), cytochrome c binds to APAF-1 and

forms the apoptosome complex together with procaspase-9, leading to

caspase-9 activation and downstream events. Among the many ways

for activated Myc to stimulate apoptosis are enabling activation of

either Bax (at the mitochondria) or p53 (transcription of pro-apoptotic

genes), or enhancing the Fas-mediated apoptosis signalling [122].

Anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-XL, and Mcl-1)

prevent mitochondrial pore formation and subsequent cytochrome c
release, and are in turn inhibited by BH3-only molecules such as Bim.

(b) Simplified schematic of key molecules involved in regulating

apoptosis in medulloblastoma and neuroblastoma. Molecules that are

labelled in green are proteins reported to be overexpressed, and the

ones labelled in red are molecules reported to be inhibited in

medulloblastoma and neuroblastoma

b
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Aberration of the extrinsic apoptotic pathway

Neural progenitor cells are effectively protected against

extracellular death signals acting on the extrinsic apoptotic

pathway [33]. This is partly demonstrated by the dismal

expression of caspase-8 in these progenitor cells, whereas

the DED (death effector domain)-containing anti-apoptotic

protein PED/PEA-15 is overexpressed (Fig. 3b) [35].

Absence of caspase-8 expression is also commonly

observed in primary medulloblastoma and neuroblastoma

[36–39]. In both these tumours, epigenetic silencing

through gene hypermethylation has been demonstrated as

the mechanism resulting in reduced caspase-8 expression

[38–41]. In medulloblastoma loss of caspase-8 expression

was significantly correlated with poor prognosis [36], while

in neuroblastoma some reports show a correlation between

caspase-8 hypermethylation and poor prognosis whereas

others do not [37–40]. Loss of caspase-8 protein expression

has also been shown to be correlated to MYCN amplification

in some studies, suggesting a tumour suppressor function in

neuroblastoma [38, 40]. However, a recent study analysing

a large cohort of neuroblastoma patients detected loss of

caspase-8 expression in the majority of tumours but no

correlation was found either to poor prognosis, or to MYCN

amplification [37]. In addition, FLIPL, a structural homo-

logue of caspase-8 lacking caspase activity, has been shown

to be overexpressed in neuroblastoma (Fig. 3b) [42]. When

overexpressed, FLIPL acts as an inhibitor of apoptosis by

incorporating into the death-inducing signalling-complex

(DISC) where it inhibits the activation of caspase-8 [43].

Taken together, these studies suggest that caspase-8 has an

important function in the development and progression of

embryonic tumours of the nervous system and that the loss

of caspase-8 expression or activation in these tumours

reflect the developmental status of the neural cells at the

time of malignant transformation [44].

Deregulation of the intrinsic apoptotic pathway

Although several pathways of apoptosis have been linked

to neural development, knockout of apoptotic genes in

mice suggest that the intrinsic apoptotic pathway also is

fundamental in neural progenitor cells [27]. The anti-

apoptotic mitochondria-associated proteins Bcl-2, Bcl-XL,

Mcl-1 and survivin are all highly expressed in the devel-

oping neural tissue indicating that these proteins are

important for the survival of progenitor cells [31, 45, 46].

Among these, myeloid cell leukaemia-1 (Mcl-1) has

recently been shown to be absolutely required for neural

precursor cell survival [46]. Mcl-1 contains a PEST domain

leading to a rapid protein turnover and short half-life [47].

This rapid induction and degradation suggests that Mcl-1

plays an important role in apoptotic control in multiple cell

types in response to rapidly changing environmental cues

[48]. The exact molecular mechanism by which Mcl-1

promotes cell survival is not fully understood but is thought

to involve inhibition of cytochrome c release from mito-

chondria, possibly via heterodimerisation with and

neutralisation of pro-apoptotic Bcl-2 family proteins [49].

Several studies have suggested that Bcl-2 is an impor-

tant regulator of apoptosis in cerebellar GNP cells from

which medulloblastomas are thought to arise [50, 51]. The

Hedgehog pathway effector Gli-1 has been shown to

induce Bcl-2 expression whereas pharmacological sup-

pression of Hedgehog activity resulted in decreased Bcl-2

expression and increased apoptosis [52]. It has also been

shown that postnatal overexpression of Bcl-2 in coopera-

tion with Hedgehog induces high frequency of

medulloblastomas in mice. However, expression of

endogenous Bcl-2 was not up-regulated in Hedgehog-

induced tumours. Instead, elevated levels of phosphory-

lated Akt were found, suggesting that activated PI3K

signalling is one intrinsic mechanism for suppressing

apoptosis in Hedgehog-dependent medulloblastomas [53].

In neuroblastoma, pro-apoptotic mediators of the

intrinsic apoptotic pathway were found to be expressed to a

lower extent in tumours with unfavourable biology sug-

gesting that mitochondrial-dependent apoptosis is

suppressed in advanced stage disease and linked to unfa-

vourable clinical outcome [54]. In contrast, overexpression

of Bcl-2 has been shown to be correlated to poor prognosis

and MYCN amplification in neuroblastoma [42, 55].

Moreover, Bcl-2 is a powerful antagonist of MYCN-aug-

mented apoptosis in neuroblastoma [56].

Myeloid cell leukaemia-1 maps to a region of chromo-

some 1q that is frequently gained in high-risk

neuroblastomas and the protein is highly expressed in

malignant cells [44, 47]. Gain of chromosome 1q is a nega-

tive prognostic marker for survival also in medulloblastoma

[57], but so far no correlation to the expression of Mcl-1 has

been reported. Survivin is encoded by a single-copy gene

located on human chromosome 17q25, a region that is fre-

quently gained in unfavourable medulloblastoma and high-

risk neuroblastoma [58–60]. Moreover, elevated expression

of survivin is highly correlated to poor survival in both

medulloblastoma and neuroblastoma (Fig. 3b) [60–62]. In

normal cells the synthesis and degradation of survivin is

modulated in a cell cycle-specific manner and survivin

functions primarily as a mitotic regulator [63, 64]. However,

in cancer cells survivin expression has been shown to be

deregulated by several mechanisms, including p53 mutation,

amplification at the gene locus [60], demethylation of exons

[65], increased promoter activity [64], or increased upstream

signalling of PI3K/Akt or MAPK pathways [66]. Further-

more, the upregulation of survivin expression in cancer cells
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seems to be independent of the cell cycle, suggesting an

enhancement of its anti-apoptotic role [31].

p53 and related proteins

The TP53 gene encoding the p53 protein is probably the most

commonly mutated gene in human cancers but it is infre-

quently mutated in primary childhood tumours including

medulloblastoma and neuroblastoma [6, 67, 68]. However,

inactivation of p53 contributes significantly to medullo-

blastoma and neuroblastoma development in specific animal

models [69–71]. Furthermore, individuals with the Li-Fra-

umeni syndrome carrying germ-line mutations of p53 may

develop medulloblastoma, and isochromosome 17q impli-

cating loss of 17p including TP53 is the most common

genetic aberration in PNET differentiating between infra-

tentorial medulloblastoma and sPNET [72, 73]. Although

uncommon, primary somatic mutations of TP53 have been

linked to the anaplastic medulloblastoma subset [74]. Wild

type p53 is not infrequently inactivated in medulloblastoma

due to aberrations in the p53-ARF pathway including HDM2

and WIP1/PPM1D [75, 76]. In neuroblastoma cell lines

established at relapse p53 mutations are more frequent,

indicating a role in the development of a therapy resistant

phenotype [77, 78]. In addition, p53 dysfunction in neuro-

blastoma has been linked to HDM2 amplification, WIP1/

PPM1D activation, cytoplasmic sequestration, and TWIST1-

mediated suppression [79–81]. Homozygous deletions of

CDKN2A (INK4A/p16) a regulator of p53 stabilization, has

been identified in neuroblastoma cell lines and recently in a

subset of unfavourable primary neuroblastomas [82, 83].

Likewise, alterations of the p53 homologue, p73 have also

been shown to contribute to inhibition of apoptosis in neu-

roblastoma. Expression of the oncogenic p73 isoform

DNp73 has been associated with decreased survival in both

neuroblastoma and medulloblastoma [84, 85].

ALK and neuroblastoma

Anaplastic lymphoma kinase (ALK) is an orphan tyrosine

kinase first identified as being activated by the

t(2;5)(p23;q25) ALK-nucleophosphmin (NPM) transloca-

tion in anaplastic non-Hodgkin lymphomas and later shown

to be oncogenic also in other neoplasias and dominantly

expressed during neural development [86–88]. Besides

expression in the normal developing neural system the

ALK protein is expressed in neuroblastoma tumours and

cell lines and some of these respond to ALK-specific small

molecule inhibitors [89, 90]. Recently, specific germline

mutations targeting the ALK tyrosine kinase domain were

described in families with hereditary neuroblastoma and

subsequently somatic mutations and gene amplifications

were detected in sporadic primary tumours predominantly

of metastatic stage or locally advanced tumours [91–95].

Specific knockdown of ALK expression in sensitive neu-

roblastoma cell lines in vitro as well as treatment using

small molecule inhibitors (TAE684 and PF2341066) could

inhibit cell proliferation and expression of downstream

targets, and induce apoptosis. These preliminary results

indicate that children with neuroblastoma could favour

from future clinical application of ALK-specific targeted

therapy that is under development [96].

Signal transduction and apoptosis in medulloblastoma

and neuroblastoma

In addition to inactivation of apoptotic pathways, constitu-

tive survival signalling can inhibit apoptosis. Neural

progenitor cells, like other cell types, need trophic factors for

their survival [97]. Neurotrophic factors like BDNF (brain-

derived neurotrophic factor), NT-3 (neurotrophin-3), NT-4/5

(neurotrophin-4/5) and NGF (nerve growth factor) act

through binding to their cognate tropomysin receptor kinases

(TrkA,TrkB and TrkC) and p75 neurotrophin receptor

(p75NTR) [98, 99]. Brain-derived neurotrophic factor and

TrkB are required for the survival and protection of normal

neurons [98] and aggressive high-risk neuroblastomas con-

tain high levels of BDNF and elevated expression of the

TrkB receptor [100, 101]. On the other hand, favourable low-

risk neuroblastoma prone to differentiation or regeression

through apoptosis, expresses high levels of both the high-

affinity NGF receptor TrkA, and the low affinity receptor p75

[102–104]. Similarly, different expression levels of Trk

receptors also occurs in medulloblastoma with high

expression of the NT-3 receptor TrkC being indicative of a

favourable outcome [10, 105]. High TrkC expression is also

found in favourable neuroblastoma although TrkA is a more

reliable prognostic indicator [104, 106, 107]. Binding of

neurotrophins to their receptors leads to the activation of

downstream signalling pathways including PI3K/Akt, Ras/

Raf/MAPK and phospholipase C-v [108]. During the last

years it has become increasingly clear that activation of

PI3K/Akt signalling is an essential anti-apoptotic event and

PI3K/Akt directly targets a number of pro- and anti-apop-

totic proteins (reviewed in [109]). A majority of both

medulloblastoma and neuroblastoma primary tumours con-

stitutively express activated Akt [22, 23, 110], and inhibition

of PI3K/Akt signalling induces apoptosis of neuroblastoma

cells [22, 25]. Moreover, activated Akt significantly aug-

ments Hedgehog-induced medulloblastoma in mice and

activation of PI3K/Akt signalling is important for the pro-

liferation of cancer stem cells residing in the perivascular

niche following radiation of medulloblastoma [111]. Both
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Hedgehog and IGF signalling have been found activated in

medulloblastoma, but their respective roles in the disease

have not yet been established [112]. In mice, Hedgehog

appears to cooperate with MYCN in inducing medulloblas-

toma. Recently, it has been suggested that expression of

Mxd3 (or Mad3), a member of the Mxd family of Myc an-

tagonising transcription factors, is associated with MYCN

expression [113]. In mouse models, Mxd3 has been found

upregulated in medulloblastoma but, even though the protein

is expressed during S-phase in proliferating cells, it does not

appear to antagonise MYCN [113, 114]. The other three

members of the Mxd family (Mxd1, 2, and 4) are expressed

in differentiated cells [115].

Another potential contributor to medulloblastoma,

hepatocyte growth factor (HGF), has been suggested to be

functionally linked to c-Myc by inducing its expression on

both mRNA and protein level [116]. This involved PI3K

signalling as well as the Wnt pathway. Interestingly, the

HGF-mediated induction of c-Myc also promoted pro-

apoptotic effects by downregulation of Bcl-XL [116]. Since

c-Myc appears to play a causal role in inducing anaplasia,

observed mainly in recurrent medulloblastoma, c-Myc

deregulation is proposed to be involved in disease pro-

gression rather than its induction [117].

The MYC protein network and apoptosis

Amplification of the MYCN oncogene observed in 40–50%

of high-risk neuroblastoma cases is one of the key pre-

dictors of poor outcome and is associated with advanced-

stage disease, rapid tumour progression and a low survival

rate despite intensified treatment [6]. Alternative treatment

options for children with MYCN-amplified neuroblastoma

are therefore urgently needed.

MYCN belongs to the MYC network of transcriptional

regulators that plays a key role in regulation of cell growth,

apoptosis and differentiation. While the c-MYC gene is

expressed in a wide variety of tissues at all stages of the

life-cycle, MYCN expression is restricted to neuronal tis-

sue, mainly during early stages of embryonic development.

A link between the transformed phenotype and MYCN has

been established by a range of in vitro and in vivo studies,

including the transgenic mouse model of neuroblastoma in

which MYCN overexpression targeted to neuronal tissue by

the use of a tyrosine hydroxylase promoter leads to

development of neuroblastoma in transgenic animals [71].

Downregulation of MYCN expression either by antisense

treatment targeted against MYCN mRNA or by retinoids

has been shown to decrease proliferation and/or induce

neuronal differentiation of neuroblastoma cells [6].

c-MYC, the best studied member of the network, is

expressed during all stages of the cell cycle in dividing

cells and is normally downregulated during differentiation.

MYC sensitizes cells to apoptosis induced by different

cellular insults, such as ligation of the Fas death receptor

and serum deprivation [118]. The ability of c-MYC to

potentiate the apoptotic effects of many mechanistically

distinct inducers indicates that c-MYC acts in a general

control and/or execution apoptosis pathway.

The biological effects of MYCN are very similar to

those of c-MYC. Inactivation of the strict regulation of

MYC protein expression results in uncontrolled cell pro-

liferation [119]. The enlarged pool of proliferating cells

may enhance the risk of secondary mutations contributing

to tumour development. Mutations in the apoptotic pro-

gram results in an imbalance between proliferation and cell

death with predominance for the former, thereby facilitat-

ing MYC-driven tumourigenesis. MYC is activated in a

number of different tumours such as small cell lung cancer,

breast carcinoma, medulloblastoma, glioblastoma, myeloid

leukaemia, plasma cell leukaemia, Burkitt’s lymphoma and

neuroblastoma [120]. The frequent amplification of the

MYCN gene, an established causal link between the

malignant phenotype and the resistance to treatment,

together with the restriction of expression in normal tissues

to early stages of development makes MYCN an attractive

therapeutic target to explore.

Deregulated MYC expression has been reported to

enhance tumour cell death in response to anti-cancer agents

[121–123]. One pioneering study in this field showed that

MYCN synergizes with the cytotoxic drug doxorubicin to

promote apoptosis through upregulation of the Fas recep-

tor, enhancing sensitivity to Fas ligand signalling, and

induction of p53 and Bax protein expression [122]. In this

way, MYCN targets both the extrinsic and the intrinsic

pathway of apoptosis induction in response to drug treat-

ment (Fig. 3a). This data suggests that the MYCN

amplification observed in high-risk neuroblastoma is not

solely responsible for the aggressiveness of the tumour but

that additional cellular aberrations are required in order to

promote the dysfunction in apoptosis signalling. Although

recent data suggest that activation of oncogenic c-MYC

enhances drug-induced apoptosis through mitochondria by

Bax activation [121, 124], the precise mechanism linking

MYC and mitochondrial function in neuroblastoma cells is

still unclear. Overexpression of Bcl-2 and Bcl-XL, in

neuroblastoma cells may contribute to the drug resistance,

characteristic of high-risk neuroblastomas [125]. Other

studies confirm that the pro-apoptotic effect of cytotoxic

drugs is enhanced in neuroblastoma cells with MYCN

overexpression compared to the effect in cells with wild

type MYCN levels [121, 123]. However, screening of a

panel of 80 well defined drugs together with selected small

molecules with different mechanisms of action revealed

that only a limited subset show a MYC-specific apoptosis
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response (A. Albihn, M. Vita, H. Zirath, and M. Henriks-

son, unpublished data).

Targeting apoptotic pathways in medulloblastoma

and neuroblastoma

The therapeutic modalities currently used in the clinic to

kill tumour cells, including chemotherapy and c-irradia-

tion, exert their effects by triggering apoptosis. Although

both medulloblastoma and neuroblastoma initially often

respond well to current therapy, relapsed tumours have

commonly acquired resistance to cytotoxic agents. Hence,

the development of novel therapeutic approaches to over-

come this apoptotic resistance is of great importance in the

treatment of patients with these diseases. Current strategies

to overcome the evasion of cancer cells from apoptosis

include agents acting directly on apoptotic molecules

aberrantly expressed in cancer cells and indirectly through

the inhibition of signal transduction pathways that are

crucial for cancer cell proliferation.

Activation of death receptor-mediated apoptosis

Death receptors are members of the tumour necrosis factor

(TNF) receptor family of proteins. These proteins share

similar extracellular cysteine rich domains and contain a

cytoplasmic death domain which is essential for the

transmission of death signals from the cell surface to the

intracellular apoptotic pathways [126]. Although several

death receptors of the TNF family have been characterized,

the most promising in cancer therapy is TNF-related

apoptosis-inducing ligand (TRAIL) receptors (TRAIL-R1

and TRAIL-R2; [127]). Compared to other TNF proteins,

TRAIL has preferential selectivity for triggering apoptosis

in tumour cells and is less active in normal cells. TRAIL

also acts as an important immune effector molecule in the

surveillance and in the elimination of developing tumours

[127]. TRAIL, has been shown to bind to at least five

receptors. Two of them (TRAIL-R1 and TRAIL-R2) are

capable of transducing an apoptotic signal, whereas the

other three (TRAIL-R3, TRAIL-R4, and the soluble

receptor OPG) serve as decoy receptors to block TRAIL-

mediated apoptosis. Once activated, both TRAIL-R1 and

TRAIL-R2 bind to the cytoplasmic adaptor molecule Fas-

associated protein with death domain (FADD) which then

recruits the initiator caspases, caspase-8 or caspase-10

[126]. Proteolytic activation of the initiator caspases is

followed by activation of downstream effector caspases,

such as caspase-3, which cleaves numerous cellular pro-

teins ultimately leading to apoptotic cell death [126]. One

therapeutic advantage of activating apoptosis through death

receptors is that the extrinsic pathway bridges over to the

intrinsic pathway since caspase-8 activation has been

shown to activate the Bcl-2 homology domain 3-interacting

death agonist (Bid). Truncated Bid (tBid) activates the

intrinsic apoptotic pathway by interacting with Bax, Bak,

or by blocking pro-survival Bcl-2 family proteins [127].

Resistance to TRAIL-mediated apoptosis due to loss of

caspase-8 expression has been demonstrated in both

medulloblastoma and neuroblastoma (see above). Although

DNA methyltransferase inhibitors and IFN-c have been

shown to restore caspase-8 and sensitize neuroblastoma cells

to TRAIL-mediated apoptosis, a number of neuroblastoma

cell lines are still resistant to death receptor-mediated

apoptosis [128–130]. Interestingly, several reports have

demonstrated that cytostatic drugs augment TRAIL-induced

apoptosis, and more importantly sensitise cancer cells that

are resistant to TRAIL (reviewed in [127]). The cancer cell

sensitivity to TRAIL has also recently been shown to be

enhanced when the Bcl-2 family protein Mcl-1 is down-

regulated by the Raf/vascular endothelial growth factor

(VEGF) kinase inhibitor sorafenib [131]. Hence, the com-

bination of TRAIL with cytostatic drugs is an interesting

approach for cancer treatment.

Indeed, several clinical trials using soluble recombinant

TRAIL (rTRAIL) and monoclonal antibodies (mAbs) tar-

geting TRAIL-R1, such as mapatumumab, and TRAIL-R2,

such as lexatumumab, AGM 655 and apomab, have shown

promising results in combination therapies. However, it is

important to recognize that the utility of rTRAIL and

agonistic anti-TRAIL mAb therapies was limited to

TRAIL-sensitive tumours and that some of these agents

may cause hepatocyte-and bile ducts-toxicities [127].

Targeting Bcl-2 homology proteins and the intrinsic

apoptotic pathway

The balance between pro-apoptotic and anti-apoptotic

members of the Bcl-2 protein family is crucial in control-

ling the activation of the intrinsic apoptotic pathway.

Members of the Bcl-2 protein family control the release of

apoptogenic factors (cytochrome c, Omi/HtrA2 and Smac/

DIABLO) from the inter-membrane space of mitochondria.

The survival promoting members of the Bcl-2 family of

proteins (Bcl-2, Bcl-XL, Bcl-W, Bcl-G, Bfl1/A1 and Mcl-

1) all contain four Bcl-2 homology domains (BH1-4), with

the exception of Mcl-1, which lacks the BH4 domain. All

these proteins are critical for cell survival and have been

found overexpressed in a number of different tumour

samples. The pro-apoptotic Bcl-2 homology proteins can

be divided into two classes; the Bax (Bcl-2-associated

protein X)-like proteins (Bax, Bak, and Bok) that contain

three BH domains and the BH3-only proteins (Bim, Bid,
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Bmf, Bad, Bik, Puma, Noxa, and Hrk). The BH3 domain

forms an amphipathic alpha helix that enables binding to

other BH domains and inhibition of the pro-survival

function of Bcl-2 proteins (reviewed in [132]).

Several lines of evidence suggest that suppression of the

intrinsic apoptotic pathway is important in medulloblas-

toma and neuroblastoma (see above), making Bcl-2

homology proteins a possible target for designing novel

therapy. A number of genetic and pharmacological

approaches have recently been developed to target Bcl-2

homology proteins. Targeting the expression levels of Bcl-

2 using G3139 (Oblimersen), an anti-Bcl-2 antisense oli-

gonucleotide, has shown promising results and phase III

clinical trials have recently been completed in advanced

melanoma, myeloma, and chronic lymphocytic leukaemia

[133]. In addition, peptide-based drugs containing pro-

death BH3 minimal death domains have been shown to

attenuate Bcl-2 function. In neuroblastoma, BH3 peptides

activated apoptosis and demonstrated single agent efficacy

in vivo [134]. Although peptides represent an intriguing

pharmaceutical class, they have potential drawbacks

including limited serum stability and cellular absorption.

Therefore, a new class of small inhibitors of Bcl-2

homology proteins have currently attracted much attention.

These agents are either derived from natural products like

epigallocatechin-3-gallate from tea extracts or gossypol

isolated from cottonseeds and roots or from in vitro

screening of chemical compounds that interact with BH3

domains (reviewed in [135, 136]). Although some of these

agents have shown promising effect and safety in clinical

phase I and phase II trials, more studies will be needed to

estimate the true value of these inhibitors.

Targeting inhibitor of apoptosis proteins (IAPs)

The main function of IAPs is to inhibit the activation of

effector caspases. Since IAPs inhibit apoptosis downstream

of several signalling pathways they are attractive as ther-

apeutic targets.

The IAP that has attracted most attention as a potential

target for cancer therapy is survivin, since it is selectively

expressed in most human cancers, including medulloblas-

toma and neuroblastoma. Several experimental therapeutic

strategies have been developed to target survivin. These

include targeting RNA expression, small molecule inhibi-

tors of survivin function, or vaccination strategies to

generate an antigen-specific immune response against

survivin [31]. This latter strategy might prove efficient in

neuroblastoma since children with high-risk neuroblastoma

harbour robust cellular immune responses to survivin at the

time of diagnosis [137]. Two transcriptional repressors of

survivin, YM155 and EM-1421, have recently entered

clinical trials but so far only modest anti-tumour activity

has been obtained [31]. One perhaps even more interesting

finding is that several other anti-cancer agents like ARC (4-

amino-6-hydrazino-7-beta-D-ribofuranosyl-7H-pyrrol-

o[2,3-d]-pyrimidine-5-carboxamide), histone deacetylase

inhibitors, and non-steroidal anti-inflammatory drugs

(NSAIDs), shown to be effective apoptosis inducers in

preclinical medulloblastoma and neuroblastoma therapy,

also indirectly inhibit the expression of survivin [138–143].

Targeting MYC and the MYC pathway

As mentioned above, MYCN is frequently amplified in

severe cases of neuroblastoma and is a marker for bad

prognosis. Therefore, selective targeting of MYCN in

neuroblastoma cells provides a promising treatment strat-

egy. In effect, the antisense technique has been explored

for inhibition of MYCN [144, 145]. The use of antisense

oligonucleotides resulted in suppression of cell prolifera-

tion, induction of differentiation, and apoptosis [145].

Similar effects were observed in response to the more

sophisticated peptide nucleic acids (PNA), designed to

selectively inhibit MYCN in neuroblastoma cells [145].

Pession et al. [144] also showed that neuroblastoma cells

without MYCN amplification were not sensitive to the PNA

treatment. Promising effects of the antisense approach have

also been demonstrated in vivo, treating transgenic mice

with MYCN-induced neuroblastoma with oligonucleotides

that were either antisense or scrambled [146]. No effect

was observed with the scrambled oligonucleotides whereas

the antisense downregulated MYCN expression by half and

significantly reduced tumour mass.

Another potential approach for targeting MYCN is

vaccine therapy [147]. In this study, cytotoxic T-lympho-

cytes (CTLs) raised to a peptide derived from a patient with

MYCN-amplified neuroblastoma were found to selectively

lyse HLA-matched MYCN-amplified neuroblastoma cells.

In contrast, non-MYCN-amplified neuroblastoma cells, or

HLA-mismatched cells were not lysed by the CTLs.

The strategy to target MYCN as a tumour treatment

approach is beneficial due to its expression pattern, being

restricted to cells of neuronal origin during embryogenesis.

In the case of c-Myc on the other hand, its nearly ubiqui-

tous expression in proliferating cells complicates a similar

approach since targeting such a vitally important protein

might have detrimental effects on continuously regenerat-

ing tissues. However, recently Soucek and colleagues

elegantly showed that transgenic mice could tolerate the

effects of extended Myc inhibition while their K-Ras-

induced lung tumours regressed almost completely. Their

approach was to employ conditional expression of the

dominant interfering Myc bHLHZip dimerization domain
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mutant Omomyc [148]. Even though proliferating tissues

such as intestinal crypts and the skin were heavily affected,

they were reverted within 1 week after restoring normal

Myc function by shutting down Omomyc and animals

appeared unaffected. While this study requires translation

into human subjects, it provides reassurance that pharma-

cological inhibition of c-Myc is possible and may even be

the preferred means of treating Myc-driven tumours.

One way of targeting Myc would be through the use of

small molecules. These could be identified by screening or

by rational design to target the Myc pathway at different

levels such as blocking its transcription or translation,

promoting Myc protein degradation, blocking transcription

of Myc target genes by either disrupting Myc/Max

dimerization or preventing Myc/Max DNA binding, or

interfering with Myc interaction with other factors (i.e. the

TRRAP-histone acetylase complex or E3 ligases). They

could also affect indirectly by inhibiting the function of key

Myc target genes (reviewed in [120]). There are several

advantages in identifying small molecules that affect the

desired cellular function or target the appropriate molecule.

Their small size makes them easy to handle, relatively

cheap to synthesize, easy to modify in order to improve

their solubility and absorption, and reduce potential tox-

icity once a positive substance has been identified. Hence,

there have been several studies screening for molecules

targeting Myc at different levels, the majority of which

focus on the c-Myc protein, but also for MYCN targeting

molecules. Berg et al. [149] used the fluorescence reso-

nance energy transfer (FRET) technique to screen 7,000

small molecules and identified four compounds that

inhibited the formation of Myc/Max complexes. Interest-

ingly, two of the inhibitors were effective in inhibiting soft

agar growth of Myc transformed chicken embryo fibro-

blasts but did not inhibit Src-transformed cells and thus

showed specificity for Myc. Using a yeast two-hybrid

approach, Yin et al. screened a library of 10,000 com-

pounds and identified several substances that inhibited Myc

transactivation and resulted in decreased growth of Myc

transformed cells. Seven of these compounds elicited their

effects by specifically inhibiting c-Myc/Max complex for-

mation [150]. One molecule, 10058-F4, has been

extensively studied and found to induce cell cycle arrest,

apoptosis, and differentiation in some cells in addition to

its disruption of Myc/Max [151, 152]. However, the rela-

tively low potencies of the identified Myc/Max compounds

called for attempts to improve their efficacy, a challenge

that was taken on by Prochownik et al. They have chem-

ically modified 10058-F4 to generate analogues with

improved efficacy that are better suitable for in vivo

treatment [153]. By this approach, they showed that 10058-

F4 and its analogues bind directly to monomeric Myc,

which may be important in design of even more potent

compounds in the future. These analogues may have a

higher in vivo stability than the original 10058-F4 structure

that was recently reported to have a very short half-life,

limiting its applications as an anti-tumour agent [154].

Xu et al. based their screen on the design and synthesis of

a so-called credit-card library consisting of 285 substances.

Several compounds with the ability to disrupt c-Myc/Max

interaction were identified, some of which inhibited Myc-

induced transformation in vitro [155]. Yet another approach

was employed by Lu et al. who based their screen on a

luciferase reporter gene under the control of the promoter of

Ornithine decarboxylase (Odc), a MYCN target gene. By

screening 2,800 molecules, five candidate molecules with

inhibitory activities specific for MYCN overexpressing

cells were identified [156]. Further evaluation of these

compounds may reveal their specific molecular targets and

determine their suitability as lead molecules.

In line with the above mentioned studies, we applied a

cellular screening strategy in search for compounds that

specifically inhibited proliferation in cells overexpressing

c-Myc without affecting those with low c-Myc levels. With

this approach, several candidate substances were identified

that induced apoptosis and inhibited transformation in a

c-Myc-dependent manner. None of the substances interfered

with c-Myc/Max dimerization but targeted the Myc pathway

at other levels [157]. In addition, these compounds inhibited

cell proliferation in MYCN overexpressing neuroblastoma

cells much more potently than in cells with low MYCN

levels [158]. Recently, we have initiated a screen to identify

small molecules that specifically affect MYCN-amplified

neuroblastoma cells in an anti-proliferative or a pro-apop-

totic manner (M. Vita and M. Henriksson, unpublished data).

Indirect targeting of MYCN can be achieved by induc-

ing differentiation of neuroblastoma cells, using for

instance retinoic acid (RA). This method is already in

clinical use, both for treatment of neuroblastoma and cer-

tain lymphomas. It has been shown that differentiation

induction rapidly decreases expression and DNA binding

activity of MYCN in MYCN amplified, but only modestly

so in non-amplified neuroblastoma cells [159]. In a similar

manner, RA in combination with IFN-c treatment down-

regulates MYCN protein expression in vitro, and shows

promise for future clinical use [160]. A recent study

showed a reduced MYCN expression when MYCN ampli-

fied neuroblastoma cells were treated with RA in

combination with vasoactive intestinal peptide (VIP), a

neuropeptide known to control proliferation or differenti-

ation of numerous cancer cells [161]. The possibility of

using RA treatment is being explored also in treatment of

medulloblastoma, and in vitro data indicate that cell cycle

arrest is induced via inhibition of c-Myc [162].

Despite the promising outlook in targeting Myc as a

therapeutic approach in medulloblastoma, there are very
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few studies exploring this possibility. Both c-Myc and

MYCN have been found amplified in medulloblastoma and

shown to mediate the effects of pathways such as Hedge-

hog, Wnt, c-Met, and IGF-R (reviewed in [11]). It would

therefore be highly desirable to identify Myc inhibitors that

can be brought to clinical trials for medulloblastoma

treatment and to be further developed into clinically useful

drugs.

Conclusions

Taken together, the several lines of evidence described

above suggests that embryonal tumours of the nervous

system have adopted many of the mechanisms to restrain

apoptosis from their respective progenitor cells. This

together with the fact that current therapeutic intensity for

unfavourable medulloblastoma and high-risk neuroblas-

toma has advanced to near tolerance with limited gains in

survival, implies that further improvements in outcome will

require novel treatment approaches that potentiate the

available therapy. One of the major challenges for such

therapies will be to directly target the cancer cells without

affecting the normal progenitor cells. This is especially

important since these tumours in most cases develop in very

young children. Therefore, treatment approaches that also

affect the normal progenitor cells will have detrimental

effects on the patient and should be avoided as far as pos-

sible. Here we have outlined the major pathways involved

in disease progression and discussed a few of the ongoing

studies in search for potential new therapies, some of which

are already showing promising results in clinical trials.
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