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Abstract It is still enigmatic under which circumstances

cellular demise induces an immune response or rather

remains immunologically silent. Moreover, the question

remains open under which circumstances apoptotic, auto-

phagic or necrotic cells are immunogenic or tolerogenic.

Although apoptosis appears to be morphologically

homogenous, recent evidence suggests that the pre-apop-

totic surface-exposure of calreticulin may dictate the

immune response to tumor cells that succumb to anticancer

treatments. Moreover, the release of high-mobility group

box 1 (HMGB1) during late apoptosis and secondary

necrosis contributes to efficient antigen presentation and

cytotoxic T-cell activation because HMGB1 can bind to

Toll like receptor 4 on dendritic cells, thereby stimulating

optimal antigen processing. Cell death accompanied by

autophagy also may facilitate cross priming events.

Apoptosis, necrosis and autophagy are closely intertwined

processes. Often, cells manifest autophagy before they

undergo apoptosis or necrosis, and apoptosis is generally

followed by secondary necrosis. Whereas apoptosis and

necrosis irreversibly lead to cell death, autophagy can clear

cells from stress factors and thus facilitate cellular survival.

We surmise that the response to cellular stress like che-

motherapy or ionizing irradiation, dictates the

immunological response to dying cells and that this

immune response in turn determines the clinical outcome

of anticancer therapies. The purpose of this review is to

summarize recent insights into the immunogenicity of

dying tumor cells as a function of the cell death modality.

Keywords Cell death � Calreticulin � Cancer immunity

Introduction

Depending on the lethal stimulus, tumor cells can die by

distinct cell death mechanisms including apoptosis and

necrosis. Cellular stress or oncogenic transformation can

also cause the induction of mitotic catastrophe, cellular

senescence and/or autophagy, which in many instances

accompanies early apoptosis. A panoply of noxious agents

including anti-cancer chemotherapeutics can induce cell

death. Most chemotherapeutic agents kill tumor cells

through a morphologically homogeneous apoptotic path-

way. Among these, only a few agents have the capacity to

stimulate immunogenic cell death. EL4 thymoma, Glasgow

osteosarcomas, and CT26 colon cancer cells treated with

oxaliplatin, as well as CT26 colon cancers and MCA205

fibrosarcomas treated with anthracyclins, respond far better

to chemotherapy when they are implanted into immuno-

competent mice rather than into immunodeficient, athymic

(nu/nu) hosts [1–3]. Local radiotherapy of TS/A breast

cancers is also more efficient in immunocompetent than in
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immunodeficient mice [1]. In conclusion, the outcome of

treatment with anthracyclins, oxaliplatin and radiotherapy

depends on the active contribution of the host immune

system [4, 5].

Whether tumor cell death is immunogenic or not

depends to a large extent on the death-initiating stimulus,

yet is not a simple correlate of cell death. Thus some, but

not all cell death inducers cause the exposure of immu-

nogenic factors on the cell surface or the release of

immunogenic signals into the extracellular space. In addi-

tion, the same anticancer agent can cause the exposure/

release of immunogenic signals from some tumor but not

for others, due to the fact that this exposure/release requires

the intervention of specific signal transduction pathways

[6, 7].

Anticancer chemo- and radiotherapies induce cell death

in rapidly proliferating tumor cells, as well as in cells of the

hematopoietic system including the immune system. Due

to its role during normal development and physiological

cellular turnover, the main cell death modality, apoptosis,

has been thought to be intrinsically non-immunogenic or

tolerogenic. Nevertheless, the dogma that apoptosis is non-

immunogenic while necrosis is automatically pro-inflam-

matory and immunogenic, does not withstand experimental

verification. Tumor vaccination studies in mice showed

that some apoptosis-inducing treatments caused immune-

dependent tumor regression whereas others did not [1, 8],

pointing to a hitherto unsuspected heterogeneity in the

biochemical pathways leading to apoptotic cell death.

DNA-damaging agents as they are used in cancer therapy

can induce apoptosis. In addition, such agents can induce

an irreversible arrest of the cell cycle termed ‘‘senes-

cence’’. Recently, cellular senescence has been shown to

lead to the release of a broad spectrum of cytokines and

immunologically relevant factors [9–11], thereby suggest-

ing yet another scenario in which cancer treatment may

influence and perhaps ignite anti-cancer immune responses.

Cell death modalities triggered by anti-tumor

therapy

Tumor cell death can be induced by a panoply of distinct

triggers including hypoxia, shortage of nutrients, absence

of essential growth factors or conventional anticancer

treatments (that is radiotherapy and chemotherapy). Cancer

cells can die through different mechanisms and this cell

death can be accompanied by distinct morphological

changes, depending on the precise cause of death. The cell

death modalities can be classified according to phenome-

nological and ultrastructural changes [12, 13] into type 1, 2

and 3 cell deaths that are apoptosis, autophagic cell death

and necrosis, respectively (Fig. 1).

Apoptosis

Apoptotic cell death is morphologically defined by chro-

matin condensation (pyknosis), nuclear fragmentation

(karyorrhexis), shrinkage of the cytoplasm and formation

Fig. 1 Cell death modalities.

Cell death can be classified in

apoptotic (type 1), necrotic

(type 2) and autophagic

(type 3), mostly based on

morphological criteria.

Autophagy is characterized by

the formation of autophagic

vesicles. It is an important

eukaryotic response to cellular

stress and in many cases lead to

adaptation and survival of the

cell. Apoptosis, which typically

shows nuclear fragmentation

and apoptotic blebbing, is often

accompanied by autophagy,

especially at earlier stages. At

later stages, apoptotic cells can

acquire features of necrosis

(then termed secondary

necrosis), namely swelling and

membrane rupture. The network

of cell death modalities is

closely intertwined and

facilitates efficient removal of

cells destined to die
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of apoptotic bodies [14]. Apoptosis is usually, but not

exclusively, associated with caspase activation [15, 16]

and mitochondrial membrane permeabilization [17, 18].

Caspases are the major proteases responsible for the pro-

teolytical cleavage of numerous substrates during this

process. Most of the aforementioned morphological chan-

ges are direct or indirect consequences of the controlled

activation of caspases and other hydrolases that catalyze

the rapid degradation of cellular substructures.

Two major pathways can lead to the activation of the

apoptotic program. The intrinsic pathway is under the strict

control by members of the Bcl-2 protein family. These

proteins contain at least one Bcl-2 homology (BH) domain

and can be subdivided into pro- and anti-apoptotic mem-

bers. So-called ‘‘BH3 only’’ proteins are always

proapoptotic and act as stress sensors. DNA damage can

cause the transcriptional activation of some BH3-only

proteins such as Puma and Noxa, whose expression is

governed by p53 [19]. Moreover, some BH3-only proteins

can be activated by posttranslational modifications, as this

has been demonstrated for Bad, Bim and Bmf [20, 21].

BH3-only proteins can neutralize the antiapoptotic action

of some Bcl-2 family proteins (such as Bcl-2, Bcl-XL or

Mcl-1) and/or stimulate the proapoptotic activity of mul-

tidomain proteins from the Bcl-2 family (such as Bak and

Bax) [22]. Once activated, Bax and/or Bak form supra-

molecular complexes within intracellular membranes and

cause mitochondrial outer membrane permeabilization

(MOMP), thus releasing proapoptotic mitochondrial inter-

membrane space proteins including cytochrome c [23] into

the cytosol. Cytochrome c triggers the activation caspase-9

within the apoptosome, hence setting of the caspase acti-

vation cascade.

The extrinsic pathway is involved in the clearance of

tumor cells by the immune system [24]. This pathway

depends on the binding of a series of specific ligands (such

as tumor necrosis factor, TNF) to death receptors of the

TNF receptor family, causing their trimerisation. The

subsequent recruitment of adapter molecules like TRADD

or FADD enables the binding and autoproteolytic activa-

tion of pro-caspase-8, which in turn leads either to a direct

activation of effector caspases such as caspase-3 and -7 or

rather stimulates an indirect pathway, namely by triggering

MOMP with subsequent cytochrome c release, apoptosome

activation and caspase-9-dependent caspase-3 and -7 acti-

vation [25].

Cells that undergo physiological apoptosis are rapidly

and specifically recognized and engulfed by phagocytic cells

[26] like macrophages, immature dendritic cells (DCs),

endothelial cells or fibroblasts. Phagocytosis by macro-

phages is associated with the release of anti-inflammatory

mediators like transforming growth factor-b (TGF-b) [27],

prostaglandin E2 [28] or platelet-activating factors [29], in

apparent accord with the hypothesis that apoptosis is

immunologically silent due to the avoidance or even sup-

pression of local inflammation [30]. However, this

appealing hypothesis does not apply to all experimental

situations. Recent studies have revealed that treatment of

tumor cells with anthracyclins [31], oxaliplatin or ionizing

irradiation [1, 32, 33], but not with other apoptosis inducing

drugs (such as mitomycin C, etoposide or staurosporin)

could induce a potent immune response in vivo when dying

cells were injected into immunocompetent mice. This

implies that some types of apoptosis are immunogenic while

others are not [8, 34–36]. In other words, the apparent

morphological homogeneity of apoptosis can hide a certain

degree of biochemical heterogeneity that in turn influences

the immunogenicity of cell death.

Autophagy

Autophagy is an important eukaryotic response to cellular

stress like protracted nutrient deprivation, hypoxia or

infection. Macroautophagy, hereafter referred to as

autophagy, involves the sequestration of cellular material

within characteristic double- or multi-membraned auto-

phagosomes and its subsequent degradation upon fusion of

the autophagosomes with lysosomes [37]. Initiation of

autophagy upon growth factor deprivation involves

reduced signaling via class I phosphatidylinositol-3-kinase,

resulting in the inactivation of Akt/PKB and mTOR [38].

Conversely, enhanced signaling through the class III PI3K/

Vps34 complex, which contains Beclin-1 (or Atg6), can

initiate autophagy [39]. Autophagy serves as a major

turnover mechanism to eliminate supernumerary or dam-

aged organelles, intracellular pathogens, aggregate-prone

proteins and superfluous portions of cytoplasm. By pro-

moting catabolic reactions, autophagy generates new

metabolic substrates that meet the bioenergetic needs of

cells and allow for adaptive protein synthesis. Autophagy

promotes survival by adapting cells to stress conditions.

Nevertheless, persistent autophagy, which depletes the cell

of organelles and critical proteins, reportedly can lead to a

caspase independent form of cell death [40].

The tumor suppressor p53 has been identified as a central

node in stress- and nutritional-response networks as it exerts

pleiotropic effects on metabolism, anti-oxidant defense,

genomic stability, proliferation, senescence and cell death

[41]. DNA damage, which is typically induced by chemo-

therapeutic agents, can result in p53-dependent autophagy

[42]. Moreover, the re-expression of p53 in p53-deficient

cancer cells has been shown to cause senescence and

apoptosis [43], as well as autophagy [44]. Although the

activation of p53-dependent genes can induce autophagy,

the removal of a cytoplasmic pool of p53 stimulates
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autophagy through transcription-independent mechanisms

[45], underscoring the central role of p53 in the regulation

of the cellular catabolism.

During autophagy, cells usually fail to manifest signs of

apoptosis such as chromatin condensation, although an

initial massive autophagic vacuolization may precede or

accompany apoptosis in some circumstances [46]. How-

ever, these morphological observations cannot distinguish

whether cell death is simply accompanied by autophagy or

whether it is truly executed by autophagy. Reportedly, in

some settings autophagy acts as a molecular backup

mechanism to execute cell death when apoptosis is inhib-

ited. However, when the adaptive functions of autophagy

are blocked during nutrient starvation, cells undergo

accelerated death by apoptosis [46, 47]. In other settings,

autophagy deficiency can stimulate necrotic cell death [48].

Inhibition of autophagy also compromises the clearance of

dying cells [49], which exacerbates local inflammation and

may favor tumor growth.

Apart from its role as innate defense mechanism against

invading pathogens [50] autophagy and digestion of

endogenously synthesized cytosolic proteins enables their

processing for MHC II presentation [51, 52], thus con-

necting autophagy with adaptive immunity. Additional

implications for autophagy in activating an immune

response have recently been discovered in a comparative

study in which apoptosis-incompetent Bax-/-Bak-/-

mouse embryonic fibroblasts (MEF) were compared with

apoptosis-competent wild type MEF, after treatment with

etoposide (which usually induces non-immunogenic

apoptosis, see above). Bax-/-Bak-/- MEF demonstrate

massive autophagy in response to this two cell death

inducer and were found to be superior in facilitating

crosspriming of CD8? and CD4? T cells in vivo. Since this

gain in immunogenicity was lost after depletion of the

essential autophagy mediator Atg5, autophagy likewise

enhances the immunogenicity of etoposide- or staurospo-

rin-induced cell death [53].

Necrosis

Necrosis, named type 3 cell death, is morphologically

characterized by an increase in cell volume (oncosis)

leading to the early rupture of the plasma membrane. This

process is accompanied by dilatation and final dismantling

of cytoplasmic organelles, in particular mitochondria [12,

54]. Necrosis often is the unregulated consequence of non-

physiological stress or massive, acute cell injury. On the

contrary, programmed necrosis can occur as a result of the

activation of specific signal transduction cascades, even

during development [55] and in adult tissue homeostasis

[56]. One particular form of programmed necrosis,

necroptosis, is induced by TNF-receptor signaling and

involves the obligatory activation of the RIP-1 kinase [57].

In these settings, the RIP-1 kinase can inhibit ATP/ADP

exchange by a direct interaction with the adenine nucleo-

tide translocase (ANT), thereby causing mitochondrial

dysfunction and cell death [58]. Thus mitochondrial alter-

ations may constitute a rate-limiting step of necrotic cell

death, at least in some instances [13].

The cell’s decision to die from necrosis or apoptosis is

dictated at least in part by the abundance of intracellular

energy stores. Indeed, whereas apoptosis requires a mini-

mal amount of intracellular ATP, necrosis is generally

accompanied by its near-to-complete depletion [59]. The

inhibition of caspases or the elimination of essential cas-

pase activators such as APAF-1 [60], can switch the

morphological appearance of cell death from apoptosis to

autophagy or necrosis [15, 60, 61]. Thus, the same

upstream signal can produce different types of cell death as

a function of the activation or inhibition of catabolic

enzymes in the cell, underlining the close relation between

cell death modalities. In contrast to apoptotic cells, whose

remains are engulfed completely by phagocytes, necrotic

cells are internalized by a macropinocytotic mechanism,

meaning that only parts of the cell are taken up by

phagocytes [62].

Unlike apoptosis, which only under certain circum-

stances exhibits an immunogenic response, necrosis is

considered to be immunologically harmful at all times,

because of the sudden release of proinflammatory media-

tors [63]. Necrotic cell death often causes the release of

proinflammatory cytokines, such as interleukin-8 (IL-8),

IL-10, tumor necrosis factor-a (TNF-a) [64] or of terminal

mediators of inflammation like HMGB1 [65, 66] (Fig. 2).

Mitotic catastrophe

Mitotic catastrophe represents a type of cell death that

occurs during mitosis and that is often preceded by mi-

cronucleation and multinucleation events. Mitotic

catastrophe results from a combination of cellular damage

and deficient cell cycle checkpoints like the DNA structure

and the spindle assembly checkpoints [67]. Failure to arrest

the cell cycle before or at mitosis triggers an attempt of

aberrant chromosome segregation, which culminates in the

activation of the apoptotic pathway and ultimately leads to

cellular demise. Cell death occurring during the metaphase/

anaphase transition is often characterized by the activation

of caspase-2. Inhibition of cell death resulting from mitotic

catastrophe, leads to asymmetrical division resulting in the

generation of aneuploid daughter cells [68]. Thus, mitotic

catastrophe may be viewed as a mechanism that protects

against unwarranted (and possibly oncogenic)
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aneuploidization [13, 67]. The possible immunogenic

potential of cells undergoing mitotic catastrophe has not

been investigated yet.

Cellular senescence

Senescence was first described as a permanent state of

proliferative arrest occurring in cells after extended culture

in vitro [69]. Telomere erosion has been found to be one of

the causes of replicative senescence during extended cell

culture. Several other stress-inducing factors including

DNA damage, exposure to reactive oxygen species (ROS),

chemotherapeutic drugs, and aberrant oncogenic signaling

initiate a similar process of senescence. Cellular senes-

cence limits the proliferative capacity of damaged cells due

to a cell cycle arrest in the G1 phase, in response to stress

that puts cells at risk of malignant transformation [70].

Senescent cells develop a flattened, enlarged morphology

and exhibit specific molecular senescence-associated

markers like senescence associated b-galactosidase, het-

erochromatin foci and lipofuscin granules [71, 72]. Cellular

senescence can be induced by stimuli as diverse as telo-

mere shortening, DNA damage, oxidative stress,

chemotherapeutic drugs, and expression of certain acti-

vated oncogenes [70, 73]. In spite of the diversity of these

stimulatory signals, only a few senescence-inducing signal

transduction pathway, mainly involving p53 and pRB have

been characterized [74–76]. Under normal conditions in the

healthy cell, p53 is constitutively degraded through mouse

double minute 2 (MDM2) mediated proteasomal targeting.

Suppression of MDM2 activity upon mitogenic stress or

DNA damage leads to the stabilization of functional p53,

which arrests the cell cycle by upregulating the cyclin-

dependent kinase inhibitor p21. In a second pathway, the

retinoblastoma protein pRB can be activated by p16 upon

cellular stress or DNA damage and then binds to members

of the E2F family of transcription factors, thus avoiding

cell cycle progression [77, 78]. The two pathways manifest

ample crosstalk in the control of cellular senescence, and

can also overlap with death pathways like apoptosis and

necrosis [79].

Although IL-8 and GROa have well characterized tumor

promoting activities, recent results suggest that these che-

mokines can participate in senescence through an action on

the chemokine receptor CXCR2. Thus, senescent cells can

activate a self-amplifying secretory program in which

CXCR2-binding chemokines reinforce growth arrest [9].

Another secreted factor, insulin growth factor binding

protein 7 (IGFBP7), also induces cellular senescence in

melanocytes that contain activating mutations in the BRAF

oncogene [11].

The first oncogene shown to trigger senescence was a

tumor-derived allele of H-RAS [80]. Recent reports sug-

gest that RAS-induced senescence involves a DNA damage

response induced by replication stress [70]. Thus, senes-

cence may counter the tumor-promoting effects of

hyperproliferative mutations, acting as a cell-intrinsic

mechanism of tumor suppression [81]. Although the

physiological relevance of oncogene-induced senescence

has been debated, recent reports indicate that this process

acts as a potent barrier against tumorigenesis [82].

Expression of oncogenic BRAFV600E induces senescence

in cultured fibroblasts or melanocytes. A genome-wide

RNA interference (RNAi) screen led to the identification of

IGFBP7, a secreted protein that is required for the induc-

tion of senescence in these cells [11]. The synthesis and

secretion of IGFBP7 in turn can trigger apoptosis in cells

that have progressed to melanoma, showing how a feed-

back loop of secreted factors initiates a cell death program

in oncogene transformed cells. Whether such secreted

factors also affect anti-cancer immunosurveillance and

Fig. 2 Immunogenic determinants of tumor cell death. During early

apoptosis calreticulin (CRT) is exposed on the surface. This CRT

exposure is followed by that of phosphatidylserine (PS). High

mobility group box 1 (HMGB1) is released during late stages of

apoptosis. During necrosis (or secondary necrosis, if following

apoptosis), heat shock proteins are exposed and released. Plasma

membrane ruptures can also lead to the release of interleukin 8 (IL-8)

and IL-10. Additionally, tumor necrosis factor a (TNF-a), HMGB1,

major histocompatibility complex class I related A (MIC-A) as well as

RNA and DNA are released from necrotic cells to trigger an immune

response
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later anti-cancer immune responses elicited by chemo-

therapy remains on open conundrum.

Immunogenic effectors and their influence

on the immune system

Calreticulin

Calreticulin (CRT) is a Ca2?-binding chaperone that is

usually located in the lumen of the endoplasmic reticulum

(ER). In interplay with the ER-resident disulfide isomerase

ERp57, CRT facilitates proper folding of most ER-chap-

eroned proteins. In addition, CRT has been implicated in

cell removal by binding and activating CD91 (also called

LDL-receptor related protein, LRP) on engulfing cells [83].

Calreticulin was found to be exposed on the outer leaflet

of the cells during the early phase of cell death upon

treatment with anthracyclins. The translocation of CRT is

induced upon treatment of tumor cells with anthracyclins,

oxaliplatin and ionizing irradiation. Unlike, other cell death

inducers targeting ER (like thapsigargin, tunicamiycin and

brefeldin), mitochondria (arsenite, betulinic acid and C2

ceramide) or DNA (Hoechst 33342, camptothecin, etopo-

side and mitomycin C) fail to induce CRT exposure and

immunogenic cell death [1]. The translocation and expo-

sure of CRT dictates the immunogenicity of tumor cell

death, presumably because surface-exposed CRT facilitates

the engulfment of dying tumor cells by DC [1, 32, 33].

In patients with acute myeloid leukemia (AML), CRT

has been found to translocate to the surface of circulating

tumor cells in response to intravenous injection of anthra-

cyclins. However, this CRT translocation was only

observed in malignant myeloblasts of some but not all

treated patients [84]. Therefore, the existence of resistance

mechanisms has to be postulated, meaning that some

tumors but not others can be stimulated to expose CRT on

the cell surface. The human neuroblastoma cell line (SH-

SY5Y) is intrinsically incapable to expose CRT in response

to anthracyclin treatment. However, this defect can be

overcome by depleting ER Ca2?. Treatment with thapsi-

gargin (which blocks the ER Ca2? pump SERCA and

hence induces ER Ca2? depletion) or transgenic expression

of the Ca2?-permeable ER channel reticulon-1C restored

the ability to expose CRT in SH-SY5Y cells, strongly

suggesting that a Ca2?-related signaling event is necessary

for CRT-exposure [7].

Anthracyclin-induced CRT exposure is accompanied by

ER stress such as the phosphorylation of the eukaryotic

initiation factor 2a (eIF2a), which signals an immediate

arrest in protein synthesis. Inhibition of the eIF2a-specific

phosphatase, which consists of the general protein phos-

phatase 1 (PP1) and its regulatory subunit growth arrest

and DNA damage inducible gene 34 (GADD34), by means

of chemical inhibitors induced CRT translocation, which

was accompanied by the hyperphosphorylation of eIF2a
[1]. The phosphorylation of eIF2a therefore seems to be a

prerequisite for the exposure of CRT from the ER at the

cell surface, as it occurs after treatment of tumor cells with

anthracyclins or ionizing irradiation. In addition, caspase

signaling is required for efficient CRT exposure. Treatment

with the pan-caspase inhibitor Z-VAD-fmk or transfection

of cells with the caspase inhibitor p35 (a Baculovirus-

derived inhibitor of apoptosis protein, IAP) abolished the

immunogenic effect of anthracyclin treatment [31] and

inhibited CRT surface exposure [1]. This result implies that

one biochemical hallmark of apoptosis—caspase activa-

tion—is closely linked to the immunogenicity of cell death.

When CRT moves to the cell surface at a pre-apoptotic

stage (that is before phosphatidylserine expose and before

plasma membrane permeabilization), it does not travel

alone. We found that the co-translocation of CRT with the

ER-resident disulfide isomerase ERp57 is obligatory for the

immunogenic outcome of anthracyclin treatment. The

knockdown or knockout of ERp57 inhibits the anthracy-

clin-induced translocation of CRT, and conversely,

knockdown or knockout of CRT inhibits the anthracyclin-

induced surface exposure of ERp57, indicating that the

interaction of both proteins is obligatory for their co-

translocation [6]. CT26 tumors that lack ERp57 (and hence

are unable to expose CRT) are resistant to anthracyclin

chemotherapy in immunocompetent hosts in conditions in

which isogenic control cell lines do respond to chemo-

therapy. The failure of tumor cells with ERp57 knockdown

to elicit immune responses and to respond to chemotherapy

can be overcome by exogenous supply of recombinant

CRT protein. Thus, intratumoral injection of CRT can

reestablish the response of ERp57-deficient tumor cells to

anthracyclin therapy [6]. These observations indicate that

tumors that possess an intrinsic defect in the CRT-trans-

location machinery become resistant to anthracyclin

chemotherapy due to their incapacity to elicit an anti-

cancer immune response.

The presence of a CRT specific receptor on the surface

of dying tumor cells is essential for the immunogenicity of

cell death because neutralizing CRT-specific antibodies or

siRNA-mediated CRT silencing suppress the efficacy of

anti-cancer vaccines based on dying tumor cells. Con-

versely, such vaccination effects could be restored by

supplying recombinant CRT [1, 32, 33]. It has been shown

that phagocytosis of dying cells by J774 macrophages can

be abolished by blocking the CD91 receptor with a specific

antibody or by saturating it with recombinant receptor

associated protein (RAP) [83]. Other proteins like throm-

bospondin as well as the complement factor C1q have also

been suggested to bind to CRT and to function as
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molecular bridges between CRT and CD91 [85]. CRT

reportedly binds to other surface receptors like the scav-

enger receptor A (SR-A) or the scavenger receptor

expressed on endothelia cells (SREC-I) [86]. Therefore, the

exact nature of the CRT receptor involved in the engulf-

ment of dying tumor cells by immature DC remains to be

elucidated.

Heat shock proteins

Inducible heat shock proteins (HSP) constitute a class of

chaperones that can be induced by multiple different

stressors [87]. Under non-lethal stress conditions, HSP

function to protect cells by refolding damaged proteins or

by redirecting them to proteasomal degradation. HSP70

and HSP90 can translocate from intracellular compart-

ments to the cell surface and hence can participate in the

activation of the immune system during necrosis [88]. The

recognition of HSP exposed by tumor cells can be medi-

ated by TLR4, which facilitates intracellular antigen

processing and presentation [89]. Scavenger receptors may

also participate in the recognition of HSP and might

stimulate DC maturation. Interestingly the a-isoform of

HSP90 shows similarities to CRT with regard to its

ER-localization and function as a chaperon, suggesting a

general mechanism that may account for the exposure of

ER proteins during immunogenic treatments. The exposure

of HSP has been closely related to necrosis [90] and

apoptosis inhibitory effects have been assigned to HSP

overexpression [91]. Intracellular HSP70 can block apop-

tosis at multiple levels including through the inhibition of

Apaf-1, apoptosis inducing factor (AIF), p53, JNK or Bax

[92–94]. HSP90 also exerts antiapoptotic functions by

interacting with Apaf-1, by inactivating Bad and by acti-

vating NFjB [95]. Recently, surface-exposed HSP90 has

been shown to contribute to the immunogenicity of human

myeloma cell death elicited by the proteasome inhibitor

bortezomib. This surface HSP90 may stimulate DC matu-

ration [96]. These results suggest that the presence of HSPs

at the surface of dying tumor cells facilitates their recog-

nition by DC and/or stimulate the maturation of DC.

High-mobility group box 1

Cells that undergo necrosis release HMGB1, which has

proinflammatory properties [65]. It has been thought for

long that HMGB1 release would be a specific marker of

necrosis. Nonetheless, apoptotic and autophagic cells [97]

may also release HMGB1, at least under certain circum-

stances. Recently, the redox status of HMGB1 has been

discovered to be important for its immunological potential

during apoptotic release [98]. In healthy cells, HMGB1

binds to chromatin and influences transcription and other

nuclear functions. HMGB1 can either be actively secreted

from inflammatory cells or passively released from

necrotic cells [66]. The release of HMGB1 from the

nucleus of dying tumor cells to their cytoplasm and sub-

sequently to the extracellular space during later stages of

apoptosis constitutes a crucial step in the activation of

antigen presenting cells [2]. HMGB1 has been shown to

bind to at least three different surface receptors expressed

on DC, namely the receptor for advanced glycosylation

(RAGE), TLR2 and TLR4 [99, 100]. The binding of

HMGB1 to TLR4 can facilitate the processing and pre-

sentation of tumor derived antigens by inhibiting fusion of

phagosomes with lysosomes, thereby preventing the pre-

cocious degradation of tumor antigens and enabling their

traffic towards the dedicated antigen-presenting compart-

ment [2]. Neutralization or knockdown of HMGB1 or

knockout of TLR4 abolishes the capacity of dying tumor

cells to elicit anticancer immune responses both in vitro

and in vivo. CT26 colon cancers, TS/A mammary cancers,

EL4 thymomas or Glasgow osteosarcomas failed to

respond to anti-cancer chemotherapies or radiotherapies

when they were implanted in tlr4-/- mice, in conditions in

which they readily responded to therapy in TLR4-sufficient

wild type mice [2].

The intracellular adapter molecule MyD88 is involved

in TLR signaling by mediating a signaling cascade that can

be separated from TRIF-dependent signals. It could be

shown that MyD88 (but not TRIF) is important for the

perception of immunogenic cell death. Oxaliplatin, which

proved to block the growth of Glasgow osteosarcomas

established in WT mice (as well as trif-/- mice) failed to

induce an anti-tumor effect in myD88-/- hosts. Thus, a

TLR4/MyD88 dependent pathway participates in the che-

motherapy-induced anti-cancer immune response. The

relevance of this signaling has been underlined by studies

with breast cancer patients bearing a loss-of-function allele

of TLR4 that reduces the affinity of TLR4 for HMGB1.

Patients bearing the loss-of-function alleles of TLR4

relapsed more rapidly after local radiotherapy and systemic

anthracyclin therapy than patients bearing the normal allele

of TLR4 [2, 3].

NKG2D-ligands

In response to oncogenes or DNA damaging agents, cells

manifest a stereotyped DNA damage response. This

response can lead to the expression of ligands for the

stimulatory immune receptor expressed by natural killer

(NK) cells and T cells, NKG2D, such as MHC class I

polypeptide-related sequence A (MICA) or the retinoic

acid early transcript 1 (RAE1) [101]. During the DNA

damage response, DNA double strand breaks elicit the

recruitment and enzymatic activation the protein ataxia
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telangiectasia mutated (ATM), a kinase, followed by the

ATM-mediated activation of check point kinases (such as

Chk1 or Chk2) and the activating phosphorylation of the

tumor suppressor protein p53. Pre-neoplastic lesions and in

situ carcinomas often harbor activated, phosphorylated

ATM, CHK1, and p53, coupled to an increase in senes-

cence and apoptosis. In contrast, advanced cancers tend to

suppress or lose this DNA damage response. NK, NKT and

cytotoxic T cells efficiently destroy cancer cells that

express NKG2D [102]. In addition, DNA damage can

stimulate the expression of Fas/CD95 and TNF-related

apoptosis-inducing ligand (TRAIL) receptors on cancer

cells, sensitizing them to FasL or TRAIL-mediated lysis

[103].

The senescence of tumor cell, which can be triggered in

a p53 dependent fashion in cells undergoing DNA damage,

may also elicit signals to the innate immune system

Senescence has been associated with the up regulation of

inflammatory cytokines such as MCP-1, IL-1ß, IL-15 or

TLR4, which in turn stimulate an innate immune response

that facilitates the clearance of senescent tumor cells [43].

Nucleotide release

During apoptotic and necrotic cell death, degrading cellular

corpses release nucleotides, RNA and DNA, which may

exert immunostimulatory effects. RNA which is released

during cell death can interact with TLR3 on the surface of

DC [104], double-stranded DNA can stimulate macro-

phages and DC [105]. Nucleotides may stimulate the

maturation of DC accompanied by an activation of the

NF-jB signaling [106, 107]. Multiple pattern recognition

Fig. 3 Key events of

immunogenic tumor cell death.

A temporal sequence of events

headed by calreticulin (CRT)

exposure during early apoptosis

and followed by high-mobility

group box 1 (HMGB1)-release

during later stages of cell death

facilitates efficient dendritic cell

(DC) activation and maturation.

HMGB1 uses toll like receptor 4

(TLR4) to bind to DC. In

contrast, the CRT receptor is

still elusive. The presentation of

tumor antigens by mature DC

finally leads to CD4? and CD8?

T-cell activation
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receptors (PRR) expressed on the surface by antigen-pre-

senting cells are necessary for mediating these reactions

[108]. However, the contribution of tumor-derived poly-

nucleotides, oligonucleotides, nucleotides and nucleosides

and their PRR to the anti-cancer immune response has to be

further investigated [109].

Inflammatory cytokines

Dying tumor cells can release proinflammatory cytokines

that can be instrumental in eliciting an immune response.

Necrotic cell death is assumed to be the cell death modality

that is associated with the indiscriminate release of soluble

intracellular constituents to the extracellular medium [110].

Indeed, necrotic cells are able to act on fibroblasts, mac-

rophages and DCs, activating NF-jB and inducing the

expression of genes that are involved in inflammatory

responses and tissue repair [90] including the cytokine-

induced neutrophil chemoattractant (KC) and macrophage

inflammatory protein-2, metalloproteinase 3 and vascular

endothelial growth factor, TNF-a, IL-8, IL-10, and IL-6

[111]. These general proinflammatory features seem to be

absent from apoptotic cells [62]. The induction of an

immune response by a general and unspecific release of

multiple immunogenic factors therefore seems to be a

unique feature of necrosis.

Conclusion

The innate and cognate immune responses elicited by

immunogenic chemotherapy and ionizing irradiation are

required for an optimal outcome of anti-cancer treatments.

During the course of immunogenic cell death intracellular

factors are exposed on the cell surface. These changes in

the composition of the cell surface, as well as the release

of soluble immunogenic signals determine the outcome of

therapy. In some cases, apoptosis may become fully

immunogenic. The exposure of CRT together with ERp57

occurs early during apoptosis and depends on caspase

activation. The release of soluble factors that accompanies

later stages of cell death (namely secondary necrosis)

facilitates the efficient activation of the immune system

and thereby the clearance of tumor cells from the

organism. The order of events and its spatiotemporal

appearance during the course of tumor cell death seems to

constitute the key that can unlock the immune system

(Fig. 3a, b). As discussed here, the immune response

against dying tumor cells can play a major role in

determining therapeutic success. If tumor cell death

occurs in a potentially immunogenic fashion and if the

immune system is capable of perceiving this immunoge-

nicity, a potent innate and cognate immune response

raised against dying cancer cells can contribute to the

control and elimination of residual cancer (stem) cells. It

is tempting to speculate that such an anticancer immune

response constitutes a conditio sine qua non for the long-

term success of tumor therapy.
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