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Abstract A universal cellular defense mechanism against

viral invasion is the elimination of infected cells through

apoptotic cell death. To counteract host defenses many viruses

have evolved complex apoptosis evasion strategies. The

oncogenic human retrovirus HTLV-1 is the etiological agent

of adult-T-cell leukemia/lymphoma (ATLL) and the

neurodegenerative disease known as HTLV-associated mye-

lopathy/tropical spastic paraparesis (HAM/TSP). The poor

prognosis in HTLV-1-induced ATLL is linked to the resistance

of neoplastic T cells against conventional therapies and the

immuno-compromised state of patients. Nevertheless, several

studies have shown that the apoptotic pathway is largely intact

and can be reactivated in ATLL tumor cells to induce specific

killing. A better understanding of the molecular mechanisms

employed by HTLV-1 to counteract cellular death pathways

remains an important challenge for future therapies and the

treatment of HTLV-1-associated diseases.

Keywords HTLV-1 (human T-cell leukemia

virus type 1) � Apoptosis � Transformation � Tax �
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Introduction

Apoptosis, or programmed cell death, plays a major role in

tissue development, homeostasis, and the immune response

[1]. Virus-infected cells are frequently removed from the

body through apoptosis, effectively eliminating the

infection in the absence of an inflammatory response.

Apoptosis is tightly controlled by a group of cysteine

proteases known as caspases, as well as the Bcl-2 family of

proteins which regulate the release of pro-apoptotic pro-

teins from the mitochondria. Despite multiple levels of

regulation, deregulated apoptosis contributes to the devel-

opment of cancer, while excessive apoptosis is conversely

associated with tissue destruction seen in various auto-

immune disorders [2]. To regulate apoptosis induced by the

host, many viruses have evolved strategies to modulate key

checkpoints of the apoptotic pathway. Some viruses, such

as members of the c-herpesvirus family, encode a homo-

logue of cellular anti-apoptotic Bcl-2 [3]. A variety of other

novel viral anti-apoptotic mechanisms have been char-

acterized, including: caspase inhibitors (i.e. poxviruses,

murine herpes virus-68, and African swine fever virus);

soluble cytokine receptors (EBV); the inhibition of cellular

stress responses (Papillomaviridae, Polyomaviridae, and

Adenoviridae); and the inhibition of death receptor-medi-

ated apoptosis (c-herpesviruses and poxviruses) [4–7]. A

number of DNA viruses, such as poxviruses, adenoviruses,

and human cytomegalovirus (CMV), also encode mito-

chondrial-localized inhibitors of apoptosis which function

to regulate cytochrome c release [5].

In stark contrast to these anti-apoptotic mechanisms,

other viruses appear to sensitize cells to apoptosis to the

benefit of virus replication and egress. Human immuno-

deficiency virus (HIV) and hepatitis B (HBV) virus encode

pro-apoptotic alpha-helical proteins Vpr and HBX that

form pores in the mitochondrial membrane [5], thereby

sensitizing the mitochondria to cytochrome c release. Other

viral proteins, including E1A from adenovirus, the envel-

ope protein from HIV, human papilloma virus (HPV)

protein E1E4, the fusion protein from respiratory syncytial

virus (RSV), and the reovirus protein mu1, also induce
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apoptosis through various mechanisms, including the dis-

ruption of the mitochondrial network and p53 activation [8,

9]. While some of these viral proteins, such as Vpr and

HBX, specifically induce programmed cell death to the

benefit of the virus, other viral proteins such as E1A appear

to induce apoptosis as a consequence of detection by innate

cellular defense mechanisms.

HTLV-1: human T-cell leukemia virus type 1

The retrovirus human T-cell leukemia virus (HTLV)-1 is

the etiological agent of adult T-cell leukemia/lymphoma

(ATLL), a fatal lymphoproliferative disease [10]. While the

majority of HTLV-1-infected individuals remain asympto-

matic, upwards of 5% of patients ultimately develop ATLL.

ATLL is characterized by the rapid and uncontrolled clonal

proliferation of mature transformed CD25+/CD4+ T cells,

and the mean survival of patients in the acute phase of the

disease is approximately 6 months [11]. HTLV-1-infection

is also associated with a neurodegenerative disease known

as HTLV-associated myelopathy/tropical spastic parapar-

esis (HAM/TSP) [12, 13]. Other autoimmune diseases,

including uveitis, arthritis, polymyositis, Sjögren syndrome,

atopic dermatitis, and alveolitis, have been reported in

HTLV-1 infected individuals [13]. Altogether, the treat-

ment of HTLV-1-infected patients is generally difficult as

infected cells are refractory to conventional chemotherapy

and radiation-based cancer treatments.

HTLV-1-infected cells and ATLL cells from patients are

highly resistant to multiple pro-apoptotic stimuli, including

death receptor-mediated, DNA damage-induced, and c-irra-

diation apoptosis compared to uninfected normal cells [14–

18]. HTLV-1-infected ATLL cells removed from the in vivo

environment, however, die spontaneously by apoptosis when

cultured in vitro, thereby complicating investigations into

mechanisms employed by patient-derived ATLL cells [19].

As a result, most studies with ATLL and HTLV-1-infected

cells rely on HTLV-1-transformed cells in vitro or short term

culture of ATLL derived cells.

In contrast to ATLL, TSP/HAM is associated with

chronic and progressive inflammation of the spinal cord

[12]. TSP/HAM derived cell lines, like ATLL [20, 21], also

exhibit resistance to FasL- and etoposide-induced apoptosis

[22, 23], and FasL and the Fas-associated phosphatase are

up-regulated in TSP/HAM cells [22, 24, 25]. While TSP/

HAM cell lines exhibit a general resistance to apoptosis,

expression of the viral protein Tax sensitizes astrocytomas

to programmed cell death, and HTLV-1-infection induces

the expression of IL-1b, IL-1a, IL-6, TNF-a, TNF-b [26].

A rat model for HTLV-1 infection demonstrated a role for

apoptosis in the destruction of oligodendricytes and

Schwann cells associated with the down-regulation of Bcl-

2 and the up-regulation of Bax and p53 [27, 28]. Future

work is needed to fully elucidate the roles of programmed

cell death and the induction of a pro-inflammatory response

in this chronic inflammatory disease.

HTLV-1 exhibits several unique properties not seen in

other animal onco-retroviruses. The end of the proviral

genome contains several open reading frames encoding for

the regulatory proteins p12, p30, p13 and HBZ (Fig. 1),

which are involved in virus infectivity, immune escape,

and the establishment of a latent state [29]. The viral

protein Rex binds an RNA element (RxRE) present in the

30 region of the viral mRNA and stimulates the transport of

unspliced or singly spliced viral RNA to the cytoplasm to

express structural proteins. Perhaps the most studied viral

protein is the viral transcriptional transactivator Tax, which

is involved in cellular transformation and specifically

interacts with CREB, coactivators CBP/p300, and PCAF to

stimulate transcription from the viral long terminal repeat

(LTR) [30–34]. Tax plays an important role in the initiation

of cellular transformation and also stimulates cellular

Fig. 1 Proteins encoded by HTLV type I. Multiple differentially

spliced mRNA molecules transcribed from the genome of HTLV-1

encode for a dozen known proteins, with transcription initiated via the

long terminal repeat (LTR). Homologues of proteins such as Gag, Pol

(polymerase), Pro (protease), and Env (envelope protein) are also

found in other retroviruses such as HIV, and are responsible for virus

replication and virion formation. The remaining non-structural

proteins characterized to date, such as Tax, Rex, p13, p12, p30,

p21Rex and HBZ, are unique proteins translated from the pX region

of the viral genome, and their localization is shown at right. Proteins

shaded in grey have been shown to play either a direct or indirect role

in modulating the apoptotic cascade in HTLV-1-infected cells
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proliferation by inactivating several cell cycle checkpoints

[35–37]. In addition, several studies have shown that Tax

inhibits the nucleotide excision repair (NER) pathway,

beta-polymerase and topoisomerase [37–39]. While these

events may facilitate cellular transformation, it is likely

that cells need to acquire a pre-tumoral genotype and tol-

erance to Tax expression before transformation takes place.

Recent studies have shown that the apoptotic pathway

can be reactivated in HTLV-1-transformed cells, indicating

that the apoptotic machinery is likely intact. It is the focus

of this review to examine the underlying mechanisms

HTLV-1 uses to repress apoptosis, and to highlight the

therapies being evaluated to reactivate and trigger the

apoptotic pathway in HTLV-1-transformed cells and

infected patients.

HTLV-1 Tax: regulation of NF-jB, Akt, and gene

expression

Tax is a potent trans-activator of transcription, and induces

the constitutive activation of the major cellular pro-survival

pathways NF-jB and Akt. Twenty years ago, it was first

documented that Tax could induce transcription from the

interleukin-2 gene via NF-jB related factors, indicating

that Tax could activate NF-jB-regulated genes [40, 41]. It

has since been demonstrated that Tax activates NF-jB

through several different mechanisms. Tax can directly

interact with IKKc, ultimately triggering the continual

phosphorylation and ubiquitin-mediated degradation of

IjB to allow NF-jB translocation to the nucleus (Fig. 2)

[42–45]. The direct activation of IKK by Tax has recently

been demonstrated using an in vitro assay [46], and this

activation step requires the phosphorylation of IKK.

Alternatively, Tax can form a complex with the p100 NF-

jB precursor protein along with IKKa/IKKc to facilitate

the cleavage of p100 into the active p52 NF-jB subunit

[47]. Thirdly, Tax can interact directly with NF-jB sub-

units to facilitate NF-jB transcriptional activation [48–50],

and has also been shown to directly recruit transcriptional

co-activators CBP/p300 to NF-jB complexes in the

nucleus [32, 51, 52].

The nuclear translocation and activation of NF-jB can

lead to the transcriptional up-regulation of a number of

anti-apoptotic proteins (Fig. 2). One potent anti-apoptotic

protein up-regulated by Tax-mediated NF-jB and CREB

activation is Bcl-xL [53, 54], and T-cells from HTLV-1-

infected patients correspondingly display up-regulated

levels of Bcl-xL [55]. In support of the role that NF-jB

plays in the inhibition of cell death in HTLV-1 infected

cells, drugs which inhibit NF-jB are potent inducers of

tumor cell death in vitro [56] (Discussed below, see

Table 1). The induction of NF-jB activation by Tax also

increases expression of the inhibitor of apoptosis (IAP)

family (Fig. 1) [57, 58]. IAPs are capable of directly

binding to caspases, and can induce caspase degradation.

Indeed, siRNA directed against one IAP, HIAP, greatly

sensitized cells to apoptosis, suggesting HIAP expression

may be important for Tax-mediated survival [58]. The cell

regulatory protein p21 is also transactivated by Tax, and

contributes to an anti-apoptotic phenotype of Tax-immor-

talized cells via the transactivation of NF-jB/CREB

leading to the activation of anti-apoptotic genes [59]. The

T-cell co-stimulatory molecule 4-1BB (TNFRSF9/CD137/

ILA), which is involved in cell proliferation and survival, is

also up-regulated by Tax, likely through NF-jB [60].

Another cell signaling pathway modulated by Tax is

Akt, a pro-survival serine/threonine kinase that is con-

stitutively activated in most ATLL patients [61]. Akt is

phosphorylated on Serine473 in most ATLL patients, and

Tax promotes this by interacting with and activating the

upstream phosphatidylinositol-3-kinase (PI3K) [62, 63].

Activated Akt induces the downstream activation of

Fig. 2 Apoptotic regulatory pathways interrupted by HTLV-1 proteins.

The viral oncoprotein Tax inactivates the inhibitors of jB through the

activation of IKK, resulting in IjB phosphorylation and degradation,

and the release of NF-jB. NF-jB is free to translocate to the nucleus to

induce the transcription of pro-survival genes. Tax also stimulates the

constitutive activation of Akt, resulting in the activation of b-catenin

and AP-1 transcriptional pathways, leading to the up-regulation of

additional anti-apoptotic genes. The small viral protein p12 has been

shown to interact with the IL-2 receptor (IL-2R), thus stimulating Jak-

recruitment. This leads to the phosphorylation, dimerization, and

nuclear translocation of STAT5 to facilitate the up-regulation of pro-

survival gene products. The HTLV-1 protein p13 localizes to the inner

mitochondrial membrane where it may play a role in mitochondrial

morphology and regulation of the permeability transition (PT) pore
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additional transcription factors such as AP-1 and b-catenin

[64] (Fig. 2), leading to Bcl-xL expression, p53 repression,

and cell survival. Indeed, under specific conditions treat-

ment of HTLV-1-infected cells with LY294002, an

inhibitor of the PI3K pathway, induces cell death [61, 65],

supporting the role that Akt plays in Tax-mediated cell

survival. As well, certain reports have suggested that there

is a cross-talk between Akt and NF-jB [61].

In addition to the activation of the NF-jB and Akt

pathways, Tax also alters the transcription factor AP-1

[66, 67], although the specific effects of Tax-mediated

AP-1 activation remain to be characterized. Tax also

modulates a number of apoptotic genes via unknown

mechanisms. Tax induces the production of cellular

FLICE-inhibitory proteins (c-FLIPs) [68], which can

inhibit CD95-induced cell death. HTLV-1 infection also

induces the expression of the telomerase gene hTERT to

protect transformed cells from replicative senescence

[69]. Interestingly, hTERT also has the ability to inhibit

mitochondrial cell death induced by specific pro-apoptotic

stimuli [70]. Whether the induction of hTERT expression

by Tax also has pro-survival effects at the mitochondria

has yet to be explored. Recent microarray data demon-

strated the general down-regulation of anti-apoptotic

genes in HTLV-1-transformed cells [71] and that the

induction of Akt/PI3K and the inactivation and phos-

phorylation of the pro-apoptotic Bcl-2 family member

Bad might be critical to the regulation of apoptosis.

While Tax constitutively activates Akt and NF-jB, Tax

also negatively regulates the cell cycle checkpoint tumor

suppressor p53, which normally triggers cell cycle arrest

and apoptosis in response to DNA damage [72]. p53 is

functionally inactivated by Tax and is mutated in

approximately 30% of all ATLL patients [73–75], thereby

abrogating p53-mediated G1 cell cycle arrest and p53-

mediated apoptosis in ATLL tumour cells [76]. Even in

absence of genetic mutation, p53 appears to be inactivated

in ATLL cells in vivo [77]. Tax-mediated inactivation of

p53 is believed to occur through p53 phosphorylation on

specific residues [74, 78]. As well, a recent study also

suggests that the transcriptional repressor of p53, MdmX,

is up-regulated in HTLV-1 infected cells in vitro and

in vivo, and may play an important role in the inactivation

of p53 in the absence of Tax expression [79]. The ability of

Tax to repress the non-transcriptional functions of p53 is

intriguing. Tax-mediated repression of p53 transactivation

has a profound effect on G1 arrest and apoptosis induced

by p53 overexpression [80]. In that study, the CREB/ATF,

but not the NF-jB activation by Tax was essential for p53-

inhibition [81]. The amount of protection from apoptosis

obtained upon expression of Tax correlated with the

decreased transcriptional activation of p53 observed in the

various cell lines, indicating that the Tax-mediatedT
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protection from apoptosis may in part be related to the

suppression of p53 transcriptional activity. Interestingly,

p53 has also been shown to have a direct pro-apoptotic role

at the mitochondria [82]. Whether this particular pro-

apoptotic function is altered in ATLL or HTLV-1-infected

cells is unknown.

In addition to p53, Tax has been shown to affect vir-

tually every other cell cycle phase and checkpoint,

including G1phase, G1/S checkpoint, S phase, G2/M

checkpoint, and mitosis. Tax directly interacts with the cell

cycle checkpoint kinase 2 (Chk2), and inhibits gamma-

irradiation-induced apoptosis [17]. Additional effects of

Tax on the cell cycle have been recently reviewed [36, 37].

The fact that Tax constitutively activates both NF-jB

and Akt, and that Tax simultaneously inactivates p53

should point to a broad anti-apoptotic activity of Tax.

Experimental data, however, remain controversial, as

numerous studies have reported that the overexpression of

Tax induces apoptosis. Over-expression of Tax sensitized

cells to DNA-damage-induced apoptosis in a p53-inde-

pendent manner [83, 84], and induced cell death in Jurkat

cells expressing CD95 (Fas) in a caspase-dependent man-

ner [85]. This Tax-induced death can be blocked by Bcl-2

expression [86]. Tax was also observed to induce caspase-

dependent cell death that correlated with the ability of Tax

to regulate p300/CBP activity, but not NF-jB activity [87].

These observations are similar to those seen with other

oncogenic factors such as Myc, Cyclin D and E1A, which

also display both proliferative and pro-apoptotic effects. In

contrast to most viral proteins which directly inhibit a

particular checkpoint of the apoptotic cascade, Tax alters

the expression of cellular genes and hijacks cell signaling

pathways. Therefore, cells of different origin expressing

different proteins may respond in different ways to Tax

expression adding confusion to the field. Additional factors

that influence cellular fate are the levels and duration of Tax

expression. Tax transgenic mice develop numerous tumors

and cells isolated from those tumors are highly refractory to

various apoptotic stimuli [56]. It is possible that Tax

directly protects these tumor cells by inducing NF-jB or

Akt activation or other pathways. On the other hand, it is

also possible that Tax does exert an initial pro-apoptotic

stimulus, and that tumor cells are derived from cells that

have subsequently acquired resistance to Tax-induced pro-

apoptotic signals. In support of such model, thymus atrophy

has been reported in some transgenic models, and was also

associated with massive amounts of apoptosis [88].

Although Tax appears to be required for cell transfor-

mation and the inhibition of apoptosis, ATLL tumor cells

do not express detectable levels of Tax [89–91]. Surpris-

ingly, ATLL tumor cells that lack Tax still retain the

characteristics of Tax-expressing cells, and multiple sig-

naling pathways such as NF-jB are constitutively active in

ATLL cells. These observations suggest that following cell

transformation, cellular signaling molecules remain per-

manently activated in the absence of Tax. This correlates

with the requirement of Tax for the initial transformation

event, but not for the maintenance of the transformed state.

ORFII: the mitochondrial p13 and the regulatory

protein p30

Many viruses encode proteins that localize to the mito-

chondria to modulate this important apoptotic checkpoint,

and HTLV-1 appears to be no exception. The small HTLV

protein p13 is a small, 87 amino acid non-structural protein

encoded by the XII open reading frame. p13 targets to

mitochondria via an N-terminal mitochondrial targeting

motif between amino acids 19 and 31 that allows p13 to

insert into the inner mitochondrial membrane (Fig. 2) [92].

While most integral inner membrane proteins of the

mitochondria possess classic signal sequences which are

cleaved during protein import, p13 does not appear to be

cleaved, leaving the mechanism of import unknown. The

targeting motif is rich in arginine residues and is predicted

to resemble an amphipathic alpha helix, similar to other

mitochondrial proteins produced by RNA viruses. One

such alpha-helical protein is the viroporin Vpr from HIV

[93]. The amphipathic alpha-helical nature of Vpr allows it

to form cation-selective channels in the mitochondria

membrane. This results in mitochondrial depolarization

[93], which is dependent on the mitochondrial permeability

transition pore proteins ANT and VDAC that interact with

Vpr [93]. Other viroporins include HBX from hepatitis B

virus and PB1-F2 from Influenza A virus, which also

localize to the mitochondria via short transmembrane

domains and induce mitochondrial alterations leading to

apoptosis [94–98]. Although Vpr and HBX induce cyto-

chrome c release, there is no evidence to suggest that p13

similarly induces cytochrome c release. p13, however, does

appear to sensitize cells to pro-apoptotic stimuli, as p13

expression has a dose-dependent effect on amplifying

apoptosis induced by either anti-Fas or ceramide [99]. p13

directly interacts with farnesyl pyrophosphate synthetase,

which catalyzes the generation of substrates involved in the

Ras pathway [100]. Inclusion of a farnesyl transferase

inhibitor that blocks Ras prenylation also blocks FasL- and

ceramide-induced apoptosis in p13-expressing T-cells [99].

Exactly how p13 modulates apoptosis at the mitochondria

is unknown, although biochemical studies showed that p13

expression induced the loss of the mitochondrial membrane

potential and caused a decrease in the calcium retention

capacity of mitochondria [101]. These events appear to be

independent of the permeability transition (PT) pore, as the

PT pore inhibitor cyclosporine A has no effect on
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p13-mediated PT [101]. This is in contrast with other viral

mitochondrial pro-apoptotic proteins such as Vpr, which

interact with components of the PT pore to directly induce

PT [93]. It has been demonstrated that accumulation of p13

at the mitochondria results in the rounding and fragmen-

tation of the mitochondrial network, and is associated with

mitochondrial swelling and cristae fragmentation [101].

Substitution of glutamine for each of the four arginine

residues present in the N-terminal alpha-helix has no effect

on p13 localization, but prevents p13-dependent mito-

chondrial rearrangement and fragmentation [101]. This

may be important since recent work has implicated the

fission and fusion of the mitochondrial network in the

regulation of apoptotic cell death [102–105]. How p13

controls mitochondrial morphology remains to be investi-

gated. Future work using p13 mutants which localize to but

do not induce mitochondrial rearrangements will help

elucidate the mechanism used by p13 to modulate mito-

chondrial morphology and establish whether these

morphological changes are required for the regulation of

apoptosis or virus virulence.

Another viral protein synthesized from ORFII is p30,

which is a post-transcriptional regulator of translation. p30

expression inhibits the translocation of Tax/Rex mRNA

from the nucleus to the cytoplasm, thereby inhibiting Tax

and Rex protein production [106]. While it remains to be

seen, the expression of p30 may alter the ability of Tax and

HTLV-1 to modulate programmed cell death. In cases

where high Tax expression is detrimental to the cell, it is

possible that the inhibition of Tax synthesis by p30

decreases the likelihood of apoptosis induction, thereby

facilitating virus latency. Alternatively, since p30 selec-

tively blocks mRNA nuclear export, p30 expression might

somehow inhibit the pro-survival mechanisms that Tax

uses, thereby sensitizing the cell to apoptosis. Microarray

analysis examining the effect of p30 on cellular gene

expression demonstrated that the expression of a number of

apoptosis-related genes was altered, including genes

encoding Mcl-1, A1, Bik, and caspases 2 and 4 [107].

Whether the regulation of any of these apoptotic genes is

involved in the modulation of apoptosis by HTLV-1

remains to be investigated.

ORFI: p12I and IL-2R signaling survival pathway

A hallmark of HTLV-1 transformed cells is the constitutive

activation of the Jak/STAT (Janus activating kinase/signal

transducer and activator of transcription) pathway [108,

109], which rids infected lymphocytes of their dependence

on IL-2 for proliferation and activation. Jak/STATs are

involved in a number of cell processes, from cytokine

signaling to the interferon response. Although various

members of the Jak/STAT family have the potential to

elicit both pro- and anti-apoptotic effects, one STAT,

STAT5, specifically has anti-apoptotic effects [110, 111].

This includes the up-regulation of anti-apoptotic Bcl-2

family members such as Bcl-xL and Bcl-2, as well as the

down-regulation of caspases 3 and 9 [110].

The HTLV-1 non-structural protein p12 from open

reading frame I is critical for establishing viral infection

in vivo [112, 113]. p12I enhances STAT5 activation by

binding the b and cc chains of the IL-2 receptor, resulting

in Jak1/Jak3 activation, STAT5a/b phosphorylation and

nuclear translocation of the STAT5 heterodimer (Fig. 2).

p12I increases STAT5 phosphorylation and STAT5 DNA

binding in the absence of IL-2 [114]. The STAT5 activa-

tion induced by p12I appears to up-regulate X-linked IAP

(XIAP), as the nucleoside analogue Roscovotine inhibits

STAT5 and results in a decrease in XIAP expression in

HTLV-1-infected cells [115].

HBZ: new player on the scene?

Recent research has characterized a novel protein tran-

scribed from the negative strand of the HTLV-1 genome,

HTLV-1 basic leucine-zipper factor, or HBZ [116]. This

protein interacts with transcription factors CREB and those

of the Jun family, and impairs the DNA binding ability of

c-Jun [117–119]. As a result, HBZ has the ability to repress

transcription of factors such as AP-1, Tax, and NF-jB.

Although HBZ appears to play a repressive role in

expression of certain cellular factors and viral genes,

whether HBZ also affects the ability of Tax and other viral

proteins to modulate the apoptotic cascade remains to be

investigated.

Treatment of HTLV-1: drug-induced apoptosis

To date, a successful therapy for HTLV-1 has remained

elusive in that many broad-range cancer therapies are

ineffective. A wide range of combinatorial anti-cancer

therapies have been used in clinical trials with limited

degrees of success [120]. Recently, a number of new

compounds and therapies have been shown to specifically

induce apoptosis in HTLV-1 and ATLL cells (see Table 1),

and many of these drugs target the aforementioned changes

in gene expression and protein function that are essential

for ATLL cell survival (Fig. 3).

Considering the importance of NF-jB in ATLL cell

survival, one group of drugs being examined targets the

NF-jB pathway. Bay 11-7082 and ACHP, inhibitors of

IjB phosphorylation, and the proteasome inhibitor borte-

zomib/PS-341 inhibit both HTLV-1 and Tax-mediated NF-
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jB activation and induce apoptosis in infected cells

[121–126]. Notably, cells treated with bortezomib/PS-341

in the presence of the caspase-inhibitor zVAD-fmk appear

to undergo necrosis instead of apoptosis, indicating that the

mechanism of death is still unclear [123]. The in vivo

efficacy of bortezomib, however, remains to be seen, as one

particular clinical trial demonstrated that one ATLL patient

did not respond to bortezomib treatment [127]. The purine

analogue Fludarabine also inhibits NF-jB activation

resulting in the induction of apoptosis in HTLV-1-infected

cells [128]. An HIV protease inhibitor, ritonavir, induces

apoptosis in HTLV-1-leukemic cells by inhibiting NF-jB

activity [129]. While ritonavir has not yet been tested for

ATLL, it has shown efficacy in the treatment of HIV-

related AIDS [130]. Altogether, the inhibition of NF-jB

signaling appears to be a very promising target for new and

developing HTLV-1-therapies. The role of NF-jB regula-

tion in ATLL is not unique, as multiple lymphomas, such

as Hodgkins disease, MALT lymphomas, and Kaposi’s

sarcoma are associated with the deregulation of NF-jB

activity [131].

Arsenic trioxide, alone or in combination with other pro-

apoptotic stimuli, has also been examined as a possible

treatment and induces apoptosis in HTLV-1-infected cells

lines [132–134]. While arsenic induces the generation of

hydrogen peroxide leading to cytochrome c release and

caspase activation [135], recent work has also suggested

that arsenic trioxide causes cell cycle arrest, NF-jB

repression, and the down-regulation of Tax [132–134, 136–

138]. Clinical use of arsenic, however, is problematic as

there are differences in sensitivity to As2O3, and arsenic

itself is toxic at high doses. Inclusion of polyunsaturated

fatty acids such as docosahexaenoic acid (DHA), which

increases ROS production and lipid peroxidation, and

Emodin significantly increases necrotic cell death in

HTLV-1-infected cells following treatment with As2O3

[139]. The use of combinatorial therapies with arsenic may

allow for lower doses of As2O3 to be used.

Other cell signaling pathways that are deregulated in

HTLV-1-infected cells have also been areas for drug

development. The purine analogue roscovitine inhibits

STAT5 activation and XIAP expression to induce apop-

tosis in MT-2 HTLV-1-infected cells [115]. Curcumin, a

natural pigment of the spice turmeric, has been used

extensively as an anticancer drug, and treatment of HTLV-

1-infected cells with curcumin induces apoptosis by tar-

geting the Akt-survival pathway or the Jak/STAT pathway

[140–143]. Results suggesting that a specific Jak-inhibitor,

AG-490, induces cell cycle arrest, however, are con-

troversial [141, 144]. The geldanamycin derivative

17-AAG inhibits the activity of heat shock protein 90

(Hsp90), and is able to induce apoptosis in primary ATLL

cells [145]. Although there is no clinical data for the use of

17-AAG in ATLL patients, 17-AAG has been successfully

tested in a phase I clinical trial for various other malig-

nancies [146].

ATLL cells are often characterized by the over-

expression of specific cell surface markers, and a number

of monoclonal antibodies have correspondingly been

developed with the intention of inducing cell death. One

early antibody therapy attempted was the use of anti-Fas

[147–149]. Despite early success, however, the efficacy of

anti-Fas in providing long-term remission was inadequate

for clinical use. Other monoclonal antibody therapies

directed at the overexpressed IL-2 receptor (CD25) have

shown a greater degree of promise [150–152]. Early clin-

ical trials with the antibody anti-Tac, which is directed

against the IL-2a receptor, demonstrated limited success,

although recent developments using a Yttrium-90-radi-

olabeled antibody has exhibited an increased activity

against ATLL cells [150, 151, 153–155]. Anti-IL-2Ra
antibody, in conjunction with bortezomib/PS-341 treatment

was able to elicit the complete remission in ATLL-tumour-

bearing mice [156], again demonstrating the efficacy of a

combinatorial therapy. A major positive for anti-Tac ther-

apy is the low level of side-effects, which is in stark

Fig. 3 Cellular pathways targeted by drugs which induce apoptosis in

HTLV-1-infected cells. Drugs used to induce apoptosis in HTLV-1

and ATLL cells in vitro have targeted various aspects of the NF-jB

pathway, such as inhibition of the proteasome, inhibition of the IKK

complex, and inhibition of nuclear translocation of NF-jB. Other

drugs have been used to target the cell cycle by stabilizing p53 or by

inducing cell cycle arrest. Inhibitors of gene transcription have

targeted STAT5 and the down-regulation of various anti-apoptotic

proteins. More recently, a number of monoclonal antibody therapies

have targeted cell surface proteins up-regulated in HTLV-1-infected

cells, such as the IL-2 receptor, transferrin receptor, and CD52
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contrast to standard chemotherapy reagents. More recently,

other monoclonal antibodies have been directed at CD52

and the transferrin receptor, both of which are also over-

expressed in HTLV-transformed cells [157–159].

Another class of pro-apoptotic drugs being investigated

to treat ATLL targets the cell cycle. Retinoic acids induce

apoptosis in HTLV-1-infected cells and ex vivo ATL cells

[160–162], primarily by inducing cell cycle arrest. One

retinoic acid, N-(4-hydroxyphenyl) retinamide, induced the

dramatic death of malignant ATL, and was associated with

elevated ceramide levels leading to cell cycle arrest and

Bax activation [163]. Although there are specific effects on

gene expression, these retinoids ultimately induce cell

death through the mitochondrial pathway which is regu-

lated by Bcl-2 [164]. A number of other retinoids have also

been documented to induce apoptosis in HTLV-1-infected

cells [165–169]. Perhaps the most-studied anti-retroviral

drug is zidovudine (AZT), which is used extensively to

treat HIV-1-infected individuals. Despite early reports

suggesting that zidovudine provided some level of anti-

cancer effect in ATL patients [170, 171], ATL cells do not

appear to exhibit a high degree of apoptosis in response to

zidovudine, even in combination with IFNa [172], and the

mechanism of inhibition is likely through telomere attrition

and reactivation of a p53-dependent senescent pathway

[79, 173, 174].

Considering the extensive work performed in pursuit of

new potential therapies, it is of note that certain members

of the multi-drug resistance (MDR) protein family are up-

regulated in HTLV-1-infected cells and ATLL patients

[175–177]. Adaptations such as these may dictate the

relative sensitivity to various drug therapies for ATLL

patients, and should be noted when promising new emer-

ging therapies are investigated.

Concluding remarks

Like many viruses, HTLV-1 modulates the apoptotic

pathway using multiple tactics, ranging from Tax-mediated

modulation of gene expression and the cell cycle, to STAT

activation by p12, to the regulation of the mitochondria by

p13. Future work will hopefully further expose the specific

mechanisms used by HTLV-1 to control cell death, and

these investigations will aid in our understanding of the

pathology of HTLV-1-infection and ensuing ATLL. Ther-

apeutic strategies aimed at inducing virus-infected cell

death must consider the fact that not all deaths are equal.

Necrotic cell death results in an inflammatory response,

while apoptosis, in contrast, is a tightly controlled process

that does not lead to inflammation. The ability of HTLV-

1-infected ATLL cells to resist apoptosis likely greatly

contributes to the development of ATLL. In contrast, the

pathogenesis of TSP/HAM is associated with high

inflammation and hyper-immune responses [12]. Taking

these findings into considerations, whether it is beneficial

to induce either apoptosis in TSP/HAM and necrotic cell

death in ATLL patients has not been addressed. The

development of new therapies to treat HTLV-1-infected

patients diagnosed with ATLL or TSP/HAM may hinge

upon the ability of new drugs or combinatorial therapies to

specifically induce death in HTLV-1-infected T cells

in vivo.
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