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Abstract Fibronectin regulates many cellular processes,

including migration, proliferation, differentiation, and

survival. Previously, we showed that squamous cell carci-

noma (SCC) cell aggregates escape suspension-induced,

p53-mediated anoikis by engaging in fibronectin-mediated

survival signals through focal adhesion kinase (FAK). Here

we report that an altered matrix, consisting of a mutated,

nonfunctional high-affinity heparin-binding domain and the

V region of fibronectin (V+H–), induced anoikis in human

SCC cells; this response was blocked by inhibitors of

caspase-8 and caspase-3. Anoikis was mediated by down-

regulation of integrin alpha v in a panel of SCC cells and

was shown to be proteasome-dependent. Overexpression of

integrin alpha v or FAK inhibited the increase in caspase-3

activation and apoptosis, whereas suppression of alpha v or

FAK triggered a further significant increase in apoptosis,

indicating that the apoptosis was mediated by suppression

of integrin alpha v levels and dephosphorylation of FAK.

Treatment with V+H– decreased the phosphorylation of

extracellular signal-regulated kinase (ERK) 1 and 2, and

direct activation of ERK by constitutively active MEK1, an

ERK kinase, increased ERK1 and ERK2 phosphorylation

and inhibited the increase in apoptosis induced by V+H–.

ERK acted downstream from alpha v and FAK signals,

since alpha v and FAK overexpression inhibited both the

decrease in ERK phosphorylation and the increase in

anoikis triggered by V+H–. These findings provide evi-

dence that mutations in the high-affinity heparin-binding

domain in association with the V region of fibronectin, or

altered fibronectin matrices, induce anoikis in human SCC

cells by modulating integrin alpha v-mediated phosphory-

lation of FAK and ERK.
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Abbreviations

ECM Extracellular matrix

FAK Focal adhesion kinase

MAPK Mitogen-activated protein kinase

V+ V region of fibronectin

H+ Heparin-binding region of fibronectin

H– Mutated, nonfunctional heparin-binding region

of fibronectin

Introduction

Fibronectin, a large extracellular matrix (ECM) glycopro-

tein found in plasma and other body fluids, is composed of

homologous type I, type II, and type III repeating subunits.

These subunits form binding sites for other ECM proteins

and for cells that interact with fibronectin via integrin and

proteoglycan receptors. Multiple isoforms arise through

alternative splicing at numerous sites. Fibronectin partici-

pates in cell adhesion, migration, invasion, and survival by

activating integrin and proteoglycan receptors that engage

specific signaling networks.

Integrins are cell-surface receptors that mediate cell–cell

and cell–ECM interactions [1]. Several bind to fibronectin.

The classic alpha 5 beta 1 integrin [2] binds to fibronectin’s

central cell-binding domain, which has an arginine-

P. Kamarajan � Y. L. Kapila (&)

Department of Periodontics and Oral Medicine, University of

Michigan, School of Dentistry, 1011 N. University Ave,

Room 5223, Ann Arbor, MI 48109-1078, USA

e-mail: ykapila@umich.edu

123

Apoptosis (2007) 12:2221–2231

DOI 10.1007/s10495-007-0138-9



glycine-aspartic acid (RGD) sequence, a site recognized by

other beta integrins as well [3–5]. Integrins also recognize

the heparin-binding domain and alternatively spliced II-

ICS/V segment [6, 7].

Integrins regulate cell adhesion, migration, and survival

by activating complex signaling networks that involve

molecules such as focal adhesion kinase (FAK), a nonre-

ceptor protein tyrosine kinase and MAPK members, such

as ERK [8]. FAK localizes to sites of integrin clustering

through carboxyl-terminal domain-mediated interactions

with integrin-associated proteins such as paxillin and talin

[9]. In vitro, its amino-terminal domain binds to sequences

in the cytoplasmic domain of beta integrin subunits [10].

Elevation of the phosphotyrosine content of FAK increases

cell adhesion [11].

When ECM molecules are altered by inflammation [12],

during development or wound healing [13], or by meta-

static processes [14], cell adhesion to the ECM can be

disrupted, triggering apoptosis [15]. Under such conditions,

ECM proteins such as fibronectin undergo proteolytic

cleavage or alternative splicing. Cell-adhesive interactions

with the ECM can also be disrupted with blocking anti-

bodies or peptides or by culturing cells in suspension [16].

Recently, fibronectin fragments that are produced during

inflammatory processes by the activity of proteinases have

been implicated in apoptosis [17]. Our group has further

found that specific fibronectin proteins induce a specific

form of detachment-induced apoptosis, called anoikis [18].

Resistance to anoikis has been described in mammary

tumors, colon cancers, osteosarcomas, and lung cancer [19–

22]. However, little is known about its role in the progression

of human oral squamous cell carcinoma (SCC), the sixth

most common solid tumor. SCC accounts for 5.5% of all

malignancies [23] and 96% of oral cancers, and many

patients with these tumors die from metastatic disease [24].

Although some information has been reported regarding

integrin alpha v’s regulation of cell migration, proliferation,

and invasion in squamous cell carcinoma [25–28] and in

other cancer cell systems [29, 30], there are no published

reports on the role of integrin alpha v in the regulation of

anoikis signaling in SCC. Furthermore, there is no literature,

other than our own work on the molecular mechanisms

involving the ECM and integrin alpha v-mediated apoptosis

in SCC. Published reports indicate that integrin alpha 5 but

not alpha v regulate apoptosis induced by serum deprivation

through upregulation of Bcl2 in Chinese hamster ovary cells

[31] and colon cancer cells [32]. However, again integrin

alpha v was not implicated in this mechanism.

Previously, we showed that survival signals mediated by

fibronectin and integrin alpha v through FAK enable SCC

cell aggregates to escape suspension-induced, p53-

mediated anoikis [33]. Although many domains of fibronectin

have been implicated in mediating tumor cell functions, the

contributions of each domain and the relative importance

of each family of receptors to these processes are difficult

to assess. However, these evaluations are important since

they may suggest potential therapeutic interventions by

targeting the portions of the fibronectin molecule that play

the greatest role in tumor cell processes. These inquiries

are often best made using recombinant proteins that exhibit

altered function because of specific point mutations rather

than deletions of large protein segments, which may alter

protein function nonspecifically. In this study, we used an

altered fibronectin protein, that contained an alternatively

spliced V region and function-perturbing point mutations

in the high affinity heparin-binding region, (V+H–) [34] to

disrupt cell adhesion to the ECM and examine the potential

of the heparin-binding domain and the alternatively spliced

V region of fibronectin to regulate anoikis in SCC cells.

Through their roles in regulating cellular adhesion,

spreading, and migration, these regions are likely important

in cancer cell invasion, migration, metastasis, and survival

[35–39]. For the first time, we found that mutations in the

high-affinity heparin-binding domain in association with

the V region of fibronectin, or altered fibronectin matrices,

induce anoikis in human SCC cells by modulating integrin

alpha v-mediated phosphorylation of FAK and ERK.

Materials and methods

Cell lines and culture

The highly invasive human oral SCC cell line HSC-3 [40]

was kindly provided by Dr. Randy Kramer (University of

California, San Francisco). The human oral SCC cell lines,

UM-SCC-11A and UM-SCC-17B were gifts from Dr. Tom

Carey (University of Michigan, Michigan) [41]. Cells were

plated and maintained on uncoated cell culture dishes or

plates and incubated with Dulbecco’s modified Eagle’s

medium (Gibco) containing 10% fetal bovine serum, 1%

penicillin, and 1% streptomycin in a 5% CO2 atmosphere at

37�C. In experiments, however, cells were plated in serum

free conditions.

Plasmids and DNA constructs

The FAK construct (pRc/CMV-FAKHA) was provided by

Dr. Steven K. Hanks (Vanderbilt University). An HA-

tagged FAK mutant construct in which the tyrosine-397

phosphorylation site was substituted with phenylalanine

(Y397F-FAK) was provided by Dr. Ken Yamada (NIH). A

pCMV plasmid expressing constitutively active MEK1 was

provided by Dr. Kunliang Guan (University of Michigan).

A pcDNA1/NEO construct encoding integrin alpha v was
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provided by Dr. David Cheresh (Moores University of

California San Diego Cancer Center, La Jolla).

Recombinant fibronectin proteins

We tested two recombinant fibronectin proteins [34, 42]

that contained an alternatively spliced V region and either

an unmutated [V+H+] or a mutated, nonfunctional [V+H–]

high-affinity heparin-binding domain [43]. Both proteins

also contained the RGD cell-binding site and the alterna-

tively spliced EIIIA domain.

DAPI nuclear staining

Nuclear staining of DNA was used to assess the quality of

the nucleus in cells incubated with the recombinant fibro-

nectin proteins in serum-free conditions. Briefly, cells were

grown on 22-mm glass coverslips in six-well plates. After

treatment with fibronectin proteins, the cells were fixed

with ice-cold 100% methanol for 15 min, stained with a

fluorescent, groove-binding DNA probe, 40,6-diamidino-2-

phenylindole (DAPI, Sigma), for 10 min in darkness. Cells

were photographed at 400· magnification with a Nikon

Eclipse 50i photomicroscope equipped with a DAPI filter.

Flow cytometry

The percentage of apoptotic cells was determined by flow

cytometry [44]. Briefly, cells were grown in 12-well plates

and treated as indicated in serum-free conditions. In some

cases, cells were pre-treated with AC-IETD-CHO or AC-

DEVD-CHO (Bachem) for 1 h. Adherent cells were

detached by incubation with enzyme-free dissociation

buffer (Invitrogen), pelleted by centrifugation, and stained

with annexin V-FITC (BD Pharmingen) for analysis by

flow cytometry (FACSDiVA Cell Sorter, Becton

Dickinson).

Western blot analysis

For Western blot analysis, cells were grown in 12-well

plates, treated as indicated in serum-free conditions,

washed once with phosphate-buffered saline, and lysed in

RIPA lysis buffer containing protease inhibitors [50 mM

Tris/HCl, pH 7.4, 1% Nonidet P-40, 0.25% sodium

deoxycholate, 150 mM NaCl, 1 mM EGTA, 1 mM PMSF,

1% protease inhibitor cocktail (P8340, Sigma), 1 mM

Na3VO4, and 1 mM NaF] on ice for 30 min. Insoluble

material was removed by centrifugation at 12,000 · g for

10 min at 4�C. Lysates were adjusted for protein concen-

tration with the BCA protein assay kit (Bio Rad), resolved

by SDS-PAGE, and transferred to Immobilon-P mem-

branes (Millipore). Membranes were probed with

antibodies against integrins alpha 4 (H-210), alpha 5 (H-

104, Santa Cruz Biotechnology), alpha v (AB1930,

Chemicon), and active beta 1 (HUTS-4, chemicon), total

beta 1 (4B7R, Santa Cruz), phospho p42/44 ERK (Thr 202/

Tyr 204, No. 9101, Cell Signaling) or total p42/44 ERK

(No. 9102, Cell Signaling), FAK phosphorylated at Tyr-

397 (No. 07-012, Upstate Biotechnology) and Try-925 (No.

11766, Santa Cruz Biotechnology), total FAK (No. 05-182,

Upstate Biotechnology), or caspase-3 (N-19, Santa Cruz

Biotechnology) and developed with the ECL-Plus detec-

tion system (Pierce). To demonstrate equal protein loading,

membranes were stripped and reprobed with an anti-

beta-actin antibody (Santa Cruz Biotechnology). Lactacy-

stin was purchased from Roche. Intact plasma fibronectin

and all other reagents were from Sigma.

Transient transfection of cells

HSC-3 cells at 60–70% confluency in 12-well plates were

transiently transfected with cDNA for alpha v (1 and

1.5 lg), FAK (0.5–1.5 lg), or CA-MEK1 (0.5 lg) or with

control vector in 500 ll of serum-free medium containing

Lipofectamine Plus (Invitrogen) according to the manu-

facturer’s instructions. For gene suppression experiments,

500 or 1000 nM of phosphothioated FAK antisense oli-

gonucleotides (AS-FAK, 50-TTTCAACCAGATGGTCAT-

TC-30) or scrambled FAK oligonucleotides (Scr-FAK,

50-TTTTAATCATATTGTTATTC-30) (Oligos Etc.,) [33,

45–47] and 100 pM of alpha v small interfering RNA

(siRNA) (sequence, 50–30: sense, GCAUUGAUUUUACU-

AAAGCtt; antisense, GCUUUAGUAAAAUCAAUGCtg)

or negative controls (Ambion) were transfected into cells

using Oligofectamine or Lipofectamine according to the

manufacturer’s instructions (Invitrogen). After 6 h of

incubation at 37�C, the cells were maintained in normal

medium for 30 h. Transfection efficiency was assessed by

measuring the levels of alpha v, FAK, or phospho p42/44

(ERK) in transfected and control cells by Western blotting.

Statistical analysis

Values are expressed as means ± S.D. Intergroup differ-

ences were determined by two-way analysis of variance

(ANOVA) and Scheffe’s multiple-comparison test;

P \ 0.001 was considered statistically significant. All

experiments were repeated at least three times.
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Results

An altered fibronectin matrix induces anoikis in a

caspase-dependent manner

To assess the effects of an altered fibronectin matrix on

resistance to apoptosis (anoikis), we treated SCC cells with

recombinant fibronectin proteins. V+H– fibronectin signif-

icantly increased apoptosis (Fig. 1A), as shown by DAPI

staining. As shown by annexin V staining and flow

cytometry, the apoptotic effect was dose dependent

(Fig. 1B) and was suppressed by inhibitors of caspase-8

(death-receptor initiator caspase) and caspase-3 (execu-

tioner caspase) (Fig. 1C). To assess whether this

mechanism was generalizable to SCC, we tested an addi-

tional two different human SCC cells. V+H– significantly

increased apoptosis in 11A and 17B cells (Fig. 1D).

Anoikis is mediated by down regulation of integrin

alpha v and is proteasome-dependent

Next, we explored the role of integrins in V+H–-induced

anoikis of SCC cells, since integrins mediate fibronectin

signals and we have shown that SCC cells express these

receptors on their surface [48]. In the present study,

treatment with V+H– decreased the level of integrin alpha

v, but not of integrin alpha 4 or alpha 5, as assessed by

Western blotting; integrin levels were unchanged in con-

trols (Fig. 2A). Overexpression of integrin alpha v

inhibited the increase in apoptosis triggered by V+H–

(Fig. 2B). In contrast, suppression of integrin alpha v with

siRNA significantly increased apoptosis (Fig. 2C). To

examine whether downregulation of integrin alpha v is

generalizable in SCC, we tested an additional two human

SCC cells. V+H– significantly downregulated integrin alpha

v in 11A and 17B cells, suggesting that alpha v downreg-

ulation is an important and general mechanism in V+H–-

induced anoikis in SCC (Fig. 2D). To further examine

whether the V+H–-induced alpha v downregulation was due

to degradation through a proteasome pathway, we pre-

treated HSC and 11A cells with lactacystin, a specific

proteasome inhibitor, followed by treatment with V+H–.

Lactacystin significantly increased the accumulation of

alpha v and also prevented the downregulation of alpha v in

response to V+H– treatment in these cells (Fig. 2E). To

further explore the molecular mechanism involved in alpha

v degradation, we determined the levels of ubiquitinated

alpha v. We found that degradation of alpha v is through

ubiquitination (Fig. 2E, bottom panel). V+H–-treated cells

also had lower levels of active beta 1, but no changes in

total beta 1 integrin levels (Fig. 2F). We examined the
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Fig. 1 Apoptosis induced in HSC-3 cells by an altered fibronectin

matrix is caspase mediated. (A) Nuclear morphology of DAPI-stained

cells treated with V+H+ or V+H– (50 lg/ml) for 16 h. (B) Percentage

of apoptotic cells determined by flow cytometry after treatment with

V+H–, V+H+, intact plasma fibronectin, or medium for 16 h. Values

are mean ± S.D. of three independent experiments. *P \ 0.001 vs.

control. (C) Effects of caspase-3 and caspase-8 inhibition on

apoptosis. Cells were pretreated or not with Ac-IETD–CHO

(caspase-8 inhibitor, 25 lM) or AC-DEVD–CHO (caspase-3

inhibitor, 25 lM) for 1 h and exposed to V+H+ or V+H– (50 lg/ml)

for 16 h. Apoptosis was assessed by flow cytometry. Values are

mean ± S.D. of three independent experiments. *P \ 0.001 vs.

control; #P \ 0.001 vs. V+H– alone. (D) Percentage of apoptotic

cells determined by flow cytometry after treatment with V+H–, V+H+

or medium for 16 h in UM-SCC-11A and UM-SCC-17B cells. Values

are mean ± S.D. of three independent experiments. *P \ 0.001 vs.

control
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changes in beta 6 integrin levels by V+H– and found no

difference; therefore these data were not included.

Integrin-mediated downstream signaling by FAK

regulates V+H–-induced anoikis

To assess downstream signaling in V+H–-induced anoikis,

we investigated the role of FAK in SCC cells. In V+H–-

treated cells, FAK phosphorylation at Tyr-397 and Tyr-925

decreased (Fig. 3A). In control cells, however, it increased

steadily, likely because matrix deposition increased in

response to serum depletion. Under all conditions, total

FAK protein levels were unchanged. Overexpression of

FAK inhibited caspase-3 activation (Fig. 3B) and sup-

pressed apoptosis (Fig. 3C) triggered by V+H–. Caspase 3

activation was demonstrated by the presence of caspase-3

cleaved products in cell lysates analyzed by Western

blotting. In Fig. 3B and C, the presence of two bands in the

Western blots for total FAK protein detected after FAK

overexpression of a triple HA-tagged cDNA in SCC cells

represents the ability of the anti-FAK antibody to detect

both HA-tagged and endogenous FAK in these lysates. The

decrease in FAK phosphorylation was integrin mediated,
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Fig. 2 Induction of apoptosis by V+H– in HSC-3 cells is mediated by

integrin alpha v. (A) Immunoblots showing expression of alpha 4,

alpha 5, and alpha v in cells treated with V+H+ or V+H– (50 lg/ml), or

medium for 6, 12, or 18 h. (B) Percentage of apoptotic cells

determined by flow cytometry after treatment of control and alpha v-

transfected cells with V+H– or V+H+ (50 lg/ml) for 16 h. Values are

mean ± S.D. of three independent experiments. P \ 0.001 vs.

control; #P \ 0.001 vs. V+H– alone. Inset, Immunoblot showing

integrin alpha v expression in untransfected cells (control) and cells

transfected with empty vector (vector) or vector encoding alpha v (av;

1.0 and 1.5 lg/ml of DNA). (C) Percentage of apoptotic cells after

transfection with alpha v siRNA or negative control and treatment

with V+H– or V+H+ (25 lg/ml) for 16 h. Apoptosis was assessed by

flow cytometry. Values are mean ± S.D. of three independent

experiments. *P \ 0.001 vs. control; #P \ 0.001 vs. V+H– alone.

Inset, Immunoblots showing integrin alpha v expression in cells

transfected with control or alpha v siRNA. (D) Immunoblots showing

integrin alpha v expression in 11A and 17B cells treated with V+H– or

V+H+ (50 lg/ml) for 18 h. (E) Immunoblots showing integrin alpha v

expression in cells pretreated or not with lactacystin (5 lM), a

proteaosomal inhibitor (PI), for 1 h and exposed to V+H– (50 lg/ml)

for 12 h. (bottom panel), lysates were immunoprecipitated with

ubiquitin and immunoblotted with alpha v. (F) Immunoblots showing

active and total integrin beta 1 in cells treated with V+H– or V+H+

(50 lg/ml) for 5 h
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since overexpression of integrin alpha v inhibited the

V+H–-induced decrease in FAK phosphorylation (Fig. 3D).

None of the treatments affected total FAK levels.

Transient FAK suppression further augments apoptosis

induced by an altered fibronectin matrix. Suppressing FAK

with an antisense oligonucleotide increased V+H–-induced

apoptosis in dose-dependent fashion, as shown by flow

cytometry (Fig. 4A). Western blots confirmed the dose-

dependent suppression of total FAK protein levels (Fig. 4

A, B). FAK antisense and V+H– treatment appeared to have

more than an additive effect, since the total increase in

apoptosis was more than the sum of the effects of either

treatment alone, suggesting that V+H– potentiates other

FAK-related downstream signaling pathways that lead to

apoptosis. Treatment with control scrambled FAK or with

an antisense FAK oligonucleotide alone or with V+H+ did

not affect apoptosis. Similarly, transient suppression of

FAK induced a dose-dependent increase in caspase-3

activation by V+H– (Fig. 4B). The experiments represented

in Fig. 4B were performed after an additional 16 h of

treatment with the recombinant fibronectin proteins.

Therefore, it is expected that the robust inhibition of FAK

seen in Fig. 4A will be diminished to some degree in

Fig. 4B. It is obvious that cells treated with FAK AS

together with V+H– significantly suppress FAK levels

beyond that in cells treated with V+H– alone, underscoring

the effectiveness of the anti-sense treatment.

ERK1 and ERK2 dephosphorylation are downstream

signaling events in this cascade

To further examine the signaling networks in V+H–-

induced anoikis, we assessed ERK phosphorylation sig-

naling events. After treatment of cells with V+H–, ERK1

and ERK2 phosphorylation levels increased slightly at 3

and 5 h, however, the increase was significantly lower than

that of control V+H+ treated cells (Fig. 5A). To further

confirm the role of ERK in this pathway, we overexpressed

a constitutively active form of the ERK kinase MEK1.

ERK1 and ERK2 phosphorylation increased, inhibiting the

increase in apoptosis induced by V+H– (Fig. 5B). In both

experiments, total ERK1 and ERK2 protein levels were

unaffected.

Next, we sought to determine if ERK signaling was

downstream of FAK and alpha v signaling in V+H–-

induced anoikis. As expected, overexpression of FAK

increased ERK phosphorylation significantly (Fig. 5C).

Furthermore, overexpression of integrin alpha v, and FAK,

but not a FAK phosphorylation mutant (Y397F-FAK),
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Fig. 3 V+H–-induced apoptosis in HSC-3 cells is mediated by FAK

phosphorylation. (A) Immunoblots showing the levels of pFAK

(phosphorylated at Tyr 397 and Tyr 925) and FAK after treatment

with V+H– or V+H+ (50 lg/ml) for 1, 3, or 5 h. (B) Immunoblots

showing the activation of caspase-3 and FAK levels in cells after

transfection with FAK (0.5 or 1.0 lg/ml of DNA) or vector control

and treatment with V+H– or V+H+ (50 lg/ml) for 16 h. (C) Apoptosis

levels after transfection with FAK (1 lg/ml) or vector control and

treatment with V+H– or V+H+ (50 lg/ml) for 16 h. Apoptosis was

assessed by flow cytometry. Values are mean ± S.D. of three

independent experiments. *P \ 0.001 vs. control; #P \ 0.001 vs.

V+H– alone. Inset, Immunoblots showing the levels of FAK in cells

transfected with FAK or vector control. (D) Immunoblots showing the

levels of pFAK (phosphorylated at Tyr 397), FAK, and alpha v in

cells transfected with alpha v and treated with V+H– (50 lg/ml) for

5 h
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inhibited the decrease in ERK phosphorylation triggered by

V+H–, supporting their roles as upstream modulators of

ERK signaling in V+H–-mediated anoikis. The overex-

pression of FAK, the FAK mutant, and alpha v, did not

affect the total levels of ERK1 and ERK2 as confirmed by

Western blots (Fig. 5C–F). In addition, these blots con-

firmed the overexpression of FAK, mutant FAK, and alpha

v achieved with these constructs (Fig. 5C–F).
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Discussion

Several studies have shown that fibronectin/integrin sig-

naling promotes cell survival [49, 50]. In this study, we

showed that V+H–, a recombinant fibronectin protein con-

sisting of a mutated, nonfunctional high-affinity heparin-

binding domain and the V region, induced anoikis in dif-

ferent types of human SCC cells that was inhibited by

inhibitors of caspase-8 and caspase-3. These results indi-

cate that V+H– induces caspase-mediated anoikis by

disrupting cell adhesion. V+H– decreased the levels of

integrin alpha v and active beta 1 protein, but not integrin

alpha 4 or alpha 5. Overexpression of alpha v inhibited the

V+H–-induced increase in apoptosis, whereas suppression

of alpha v with siRNA led to a significant increase in

apoptosis. Further, V+H– induced the downregulation of

alpha v by a proteasome-dependent mechanism via ubiq-

uitination. This proteasome-mediated degradation of

integrins constitutes a relatively novel pathway for regu-

lating integrin expression; since our search of the literature

identified only one other such finding. This other study

showed regulation of integrin beta 4 levels by a protea-

some-dependent pathway [51]. These findings underscore

the importance of integrin alpha v in the survival of SCC

cells and in the anoikis induced by V+H–. Consistent with

these results, a neutralizing monoclonal antibody to alpha v

beta 6 strongly interferes with squamous tumor growth

in vivo and with migration and proliferation in vitro [25].

Moreover, in oral SCC cell lines, an anti-alpha v beta 6

antibody partially inhibits migration on fibronectin [26].

Further, the alpha v beta 3 integrin has been implicated in

the growth of lymphoid tumor cells [29] and melanoma,

and a neutralizing antibody to the alpha v subunit effec-

tively blocks the growth of melanoma cell lines in vivo

[30].

Although alpha 5 beta 1 is the key receptor for the

central cell binding domain of fibronectin its protein levels

were unchanged in our system as indicated in our data.

Furthermore, blocking antibody experiments indicated that

there are no additional effects mediated by alpha 5 beta 1 in

this mechanism. However, ectopic expression of alpha 5

beta 1 integrin, but not alpha v beta 1 integrin, suppresses

anoikis of fibronectin-bound Chinese hamster ovary cells

[31] and HT29 carcinoma cells under serum-free condi-

tions [32], indicating that specific ECM-bound integrins

suppress anoikis in specific cell types. Thus, cell–ECM

interactions mediated by integrin alpha v are important in

regulating SCC cell survival and in mediating anoikis

triggered by an altered fibronectin matrix, and may be

important in regulating cell-matrix-cell [33] interactions in

oral SCCs.

Integrin alpha v-associated downstream signaling via

FAK helps mediate V+H–-induced anoikis. The role of

FAK in apoptotic signaling mechanisms and cell adhesion

and spreading, has been demonstrated [52, 53]. Specifi-

cally, cell spreading onto a ligand substrate involves

integrin-induced FAK activation. In our V+H+-treated

cells, FAK was rapidly phosphorylated; however, after

treatment with V+H–, FAK phosphorylation at Tyr-397 and

Tyr-925 decreased as early as 1 h after treatment. Previ-

ously, we showed that decreases in FAK phosphorylation

precede the cell rounding noted in apoptotic fibroblasts at

very early time points [54]. In this study, overexpression of

integrin alpha v inhibited the decreases in FAK phos-

phorylation triggered by V+H–, suggesting that the

decreases in FAK phosphorylation in this apoptotic

mechanism are mediated by integrin alpha v. Similarly,

FAK has been reported to transduce integrin signals,

including those regulating survival and migration [1, 52,

55, 56]. In addition, we and others have shown that

detachment of epithelial cells from their substratum or

matrix led to lower integrin levels and a decrease in inte-

grin-mediated survival signaling, resulting in anoikis [15,

33].

A key step in the anoikis induced by V+H– in SCC cells

was the reduction in FAK phosphorylation triggered by the

altered fibronectin matrix. Overexpression of FAK rescued

the apoptotic cells, and suppression of FAK led to a dose-

dependent increase in apoptosis after treatment with V+H–.

Consistent with these findings, inhibition of FAK induces

apoptosis in breast cancer as well as other cells [57, 58],

while constitutively active FAK confers resistance to

anoikis in epithelial cells [59]. In a study of carcinoma

cells, apoptosis was accompanied by dephosphorylation of

FAK at Tyr-397, and overexpression of FAK rescued cel-

lular rounding mediated by the FAK-N-terminal domain

[60]. Additionally, suppression of FAK promoted anoikis

and suppressed metastasis in pancreatic carcinoma [61],

whereas overexpression correlated with tumor invasiveness

and metastasis [62] in esophageal SCC cells. In contrast, in

our study, a FAK antisense oligonucleotide alone had no

appreciable effect on anoikis. However, addition of V+H–

after antisense oligonucleotide treatment increased anoikis

significantly, suggesting that suppression of FAK increases

the sensitivity of SCC cells to V+H–-induced anoikis.

Furthermore, FAK overexpression in human tumors pro-

vides a survival signal function by binding to receptor-

interacting protein and inhibiting its interaction with the

death receptor complex [56]. Since a Fas antagonistic

antibody rescues V+H–-induced apoptosis, we cannot rule

out the possibility that a FAK–death receptor interaction or

mechanism may be involved in V+H–-induced apoptosis

(Kapila lab unpublished data).

Our findings suggest that V+H–-induced anoikis in SCC

cells is regulated by a caspase cascade. Treatment with

V+H– activated caspase-3, and the activation was
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significantly inhibited by overexpression of FAK. In con-

trast, suppression of FAK with siRNA further increased the

apoptotic effects of V+H–, suggesting that caspase-3 is an

executioner caspase that mediates V+H–-induced apoptosis.

FAK and caspase-3 are also involved in anoikis in breast

cancer [63] and COS cells [64]. Previously, we showed that

caspase-1 and caspase-3 are involved in V+H–-induced

anoikis in fibroblasts [42].

Integrin-mediated signaling through the ERK pathway

promotes cell survival in adherent epithelial cells [65]. We

found that V+H– treatment decreased phosphorylation of

ERK1 and ERK2, suggesting that ERK signaling contrib-

uted to V+H–-induced anoikis. Moreover, in control cells

treated with V+H+, ERK phosphorylation increased in a

time-dependent manner similar to FAK phosphorylation,

suggesting that ERK could be downstream of FAK phos-

phorylation. The decrease in ERK signaling resulted from

changes in upstream integrin alpha v levels and FAK

phosphorylation. It should be noted that although the total

protein for alpha v showed apparent degradation after 12 h

and pFAK and pERK changes occurred earlier, overex-

pression of alpha v clearly rescued the decreases in pFAK

and pERK. In addition, other facets of alpha v regulation

that occur earlier, such as its activation state, are likely also

critical to this mechanism. Furthermore, disruption of FAK

phosphorylation by expression of a mutant FAK did not

influence ERK activation even in the presence of V+H–.

These findings suggest that alpha v and FAK are upstream

modulators of ERK signaling in the anoikis induced by

V+H–. In agreement with these findings, activating ERK by

transfecting the cells with a constitutively active form of

MEK1, the kinase upstream of ERK, led to a reduction in

V+H–-induced anoikis, further supporting the central role

of ERK in this mechanism.

Upregulation of fibronectin and activation of ERK are

associated with tumorigenesis and tumor progression in

esophageal SCC [66]. Mounting evidence support the

importance of ERK and its signaling pathway in the pro-

liferation and invasion of oral SCC cells [66, 67]. In many

cell lines, integrin-dependent activation of MAPK requires

FAK signaling [68–70]. Furthermore, intrinsic FAK cata-

lytic activity and Y925 FAK phosphorylation have a novel

role in promoting a MAPK-associated angiogenic switch

during tumor progression [71]. Finally, in hepatic stellate

cell cultures, a neutralizing antibody to alpha v beta 3 or

alpha v siRNA inhibited both proliferation and activation

of ERK1/2 [72]. Taken together, these findings provide

evidence that mutations in the high-affinity heparin-

binding domain in association with the V region of fibro-

nectin (V+H–), or altered fibronectin matrices, modulate the

integrin alpha v-mediated phosphorylation of FAK and

ERK to induce anoikis in human SCC cells.

Conclusion

From our studies and those of others, fibronectin fragments

that are produced during inflammatory processes have been

implicated in apoptosis, functions not normally observed

with intact FN [17, 18]. Comparable fragments to the V+H–

protein have been found in periodontal disease and arthritis

and correlate with disease severity [12, 73]. Our lab is

currently focused on identifying the role of these regions of

fibronectin in human oral SCC in tissue specimens and this

work is in progress. There is already evidence suggesting

the importance of the heparin-binding domain and RGD

site in tumor pathogenesis [74]. In addition, an antibody to

the anti-anti-EDB domain of fibronectin has been shown to

inhibit cell growth and induce apoptosis in tumors [75].

These in vitro and in vivo studies help lay the ground work

for investigations leading toward new therapeutic approa-

ches for SCC. In summary, these data support the idea that

fibronectin fragments have distinct functions from those of

intact fibronectin, which may have profound implications

for wound-healing dynamics, inflammatory diseases and

cancer therapy.
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