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Within a cell, the levels and activity of multiple pro- and
anti-apoptotic molecules act in concert to regulate com-
mitment to apoptosis. Whilst the balance between survival
and death can be tipped by the effects of single molecules,
cellular apoptosis control pathways very often incorporate
key transcription factors that co-ordinately regulate the
expression of multiple apoptosis control genes. C-terminal
binding proteins (CtBPs), which were originally identified
through their binding to the Adenovirus E1A oncoprotein,
have been described as such transcriptional regulators
of the apoptosis program. Specifically, CtBPs function as
transcriptional co-repressors, and have been demonstrated
to promote cell survival by suppressing the expression of
several pro-apoptotic genes. In this review we summarize
the evidence supporting a key role for CtBP proteins in
cell survival. We also describe the known mechanisms of
transcriptional control by CtBPs, and review the multiplicity
of intracellular signaling and transcriptional control path-
ways with which they are known to be involved. Finally we
consider these findings in the context of additional known
roles of CtBP molecules, and the potential implications that
this combined knowledge may have for our comprehension
of diseases of cell survival, notably cancer.
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Discovery of CtBPs: Cellular binding
partners of transforming viral
oncoproteins

Isolation of the cellular binding partners of the viral
transforming oncoproteins has, historically, proven to be a
fruitful approach for the identification of key cellular regu-
lators of proliferation and survival. E1A proteins of type 2/5
adenoviruses, in particular, associate with multiple cellular
proteins in order to reprogram cellular growth, survival and
differentiation pathways to facilitate viral gene expression
and replication.1,2 E1A proteins are encoded by two exons;
the first exon, which contains conserved regions that bind to
the cellular proteins Rb and p300/CBP, is sufficient for E1A
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to co-operate with activated ras in baby rat kidney (BRK)
cell co-transformation assays.3,4 E1A truncation mutants
lacking exon 2 are markedly more effective than wild type
E1A in these assays, although intriguingly, the loss of these
C-terminal sequences renders E1A unable to cooperate with
Adenovirus E1B in transformation assays, or immortalize
BRK cells in the absence of a co-operating oncogene.3,5–7

The region in exon 2 that conferred these effects was
subsequently mapped to a 14 amino acid sequence in
the C-terminus of the protein. CtBPs were identified as
the cellular proteins that interact with a PxDLS peptide
consensus within this sequence.8–10 Further viral oncopro-
teins, EBNA3A and EBNA3C, also contain variants of this
sequence and bind CtBPs, and EBNA3C requires CtBP-
binding for co-transformation with mutant ras.11,12 Reports
identifying the presence of a functional CtBP-binding con-
sensus sequence in the Drosophila transcriptional repressors,
Hairy, Knirps and Snail,13–15 were the first of many that have
defined a normal cellular function of CtBPs as transcriptional
co-repressors of DNA-binding transcription factors.16,17

CtBP structure and function

Gene and protein structure

In Drosophila there is a single dCtbp gene, whereas hu-
mans and mice have two CtBP-encoding genes, Ctbp1 and
Ctbp2. In humans these map to chromosomes 4p16 and
10q26.13 respectively; the chromosomal location that was
initially assigned to CtBP210 having been one of a num-
ber of CtBP pseudogenes. Transcripts from both Ctbp1 and
Ctbp2 are widely expressed in both adult tissue, and during
development.10,18–20 Ctbp1 is expressed in a greater number
of tissues and often at greater levels than Ctbp2.18,20 Interest-
ingly, Ctbp2 expression patterns differ between human and
mouse.10 In retinal cells, use of an alternative, tissue-specific
promoter in the first intron of the Ctbp2 gene leads to the
production of mRNA encoding the synaptic ribbon pro-
tein RIBEYE, which consists of a large, unique N-terminal
domain fused to all but the N-terminal 20 amino acids
of CtBP2.21,22 Similarly, the protein originally identified
as CtBP3/BARS in the rat,23 and which is also expressed
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in human cells,24 lacks the first 13 a.a. of CtBP1 and al-
most certainly represents an alternatively spliced transcript
of the Ctbp1 gene. For the purposes of this review, functions
so far ascribed solely to CtBP3/BARS will be considered
as potential characteristics of all CtBP proteins, whilst the
specialized role of RIBEYE will not be discussed further.

The proteins encoded by Ctbp1 and Ctbp2 share
78% amino acid identity and 83% similarity.10 They
appear to function interchangeably, although evidence
is emerging from analysis of mouse models and various
post-translational modifications that their activity is
differentially regulated.19,25 CtBPs are characterized by
a significant degree of homology between their central
domain and NAD+-dependent dehydrogenase enzymes
(Figure 1). However, whilst CtBPs possess weak in vitro
dehydrogenase activity, the significance of this remains
unclear.26,27 This domain does however have an important
role as a dimerization site, allowing the formation of homo-
and hetero-dimers between CtBP1 and CtBP2.20,26,28

Critically, dimerization is stimulated by the occupation
of a dinucleotide-binding site within the domain,26,27,29

the preferred ligand of which being NADH, which
binds to the site with >100 fold higher affinity than
NAD+.30,31

The three-dimensional structure of CtBPs comprises a
single globular domain formed by its N- and C-terminal
regions, linked to the core dimerization domain through two
flexible hinges.26,28 Within this globular domain, the CtBP
N-terminus contains a PxDLS peptide binding cleft, and the
C-terminus has been proposed to play a regulatory role.28,32

Notably, the conformational changes induced upon NADH
binding are propagated to the N-terminus, and promote

binding to E1A and other PxDLS containing proteins.26,28

Importantly, a CtBP dimer has the potential to form the core
of a complex containing two PxDLS-containing proteins.

CtBP functions in the nucleus and cytoplasm

Two distinct functions have been assigned to CtBP pro-
teins – a nuclear role in the regulation of transcription, and
a distinct function, thus far only directly ascribed to the
CtBP3/BARS isoform, in Golgi membrane maintenance.
The role in transcription was first indicated by studies on
E1A that showed when exon 1 of E1A is fused to a sequence-
specific DNA-binding domain it activated transcription,
and this activation is inhibited by the presence, in cis, of
the CtBP-binding region of exon 2.33 Subsequent fusion of
CtBP itself to a DNA-binding domain provided direct evi-
dence that CtBPs repress transcription.15,34,35 A large num-
ber of DNA-binding transcriptional repressors have now
been shown to recruit CtBPs, the majority, but not all,36

containing a consensus PxDLS sequence16,17,37. The best
characterized of these are the Snail, Slug, and ZEB/δEF1 fac-
tors, which together recruit CtBPs to repress the expression
of epithelial-specific genes in mesenchymal cells.13,18,38–42

These, and other CtBP-recruiting factors with potential roles
in the control of apoptosis, are discussed in more detail in
subsequent sections.

CtBPs employ a number of mechanisms to regulate
gene transcription, as summarized in Figure 2. The most
extensively characterized mechanism whereby it acts as
a transcriptional co-repressor is by the recruitment of
a co-repressor complex, which includes class I histone

Figure 1. Domain structure of CtBP proteins showing major functional domains and sites of post-translational modification. Numbers given
refer to amino acid positions for CtBP1 (and for CtBP2 in brackets).#The SUMOylation site for CtBP2 is not yet known. ∗The PDZ binding motif
is present in CtBP1 only.
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Figure 2. Proposed mechanisms of transcriptional repression by CtBP. (a) CtBP recruits histone deacetylases to DNA. Histone deacetylation
results in closed chromatin structure and lack of access for transcriptional enzymes. (b) Polycomb is recruited to histones by CtBP, which
prevents RNA polymerase activity on DNA. (c) CtBP inhibits histone acetylation (and subsequent transcriptional activation) by binding to HAT
coactivators such as p300, and inhibiting their activity.

deacetylases (HDACs) and histone methyltransferases
(HMTs), and resulting in the co-ordinated modification of
chromatin into a repressed state.43 CtBPs can also recruit
class II HDACs,44 as well as repress transcription without
HDAC involvement.35,45 An additional mechanism
whereby CtBPs appear to act as a co-repressor is by pro-
moting the recruitment of Polycomb proteins to DNA.20,46

These repress transcription through several mechanisms,
including by compacting chromatin.47 Finally, recent
research has also determined that CtBPs interact with
histone acetyltransferase (HAT) co-activators such as
p300, CBP and pCAF and prevents their interaction with
chromatin.48

Independently of its role in regulating transcription,
CtBP (in the form of CtBP3/BARS) was cloned as a pro-
tein involved in the disassembly of the Golgi complex.23

CtBP3/BARS is able to induce the breakdown of tubular
Golgi networks.49 It is responsible for driving the fission of
Golgi membranes during mitosis and also plays a role in en-
docytic and exocytic pathways.50–52 The distinct nuclear and
cytoplasmic functions of CtBPs may be defined by the con-
formational shift induced by occupation of the dinucleotide
binding site, with NADH driving CtBPs towards a nuclear
function, and acyl-CoA, which also binds CtBPs, promot-
ing the monomeric, cytoplasmic form.28,52 Ultimately, it
will require the use of specific CtBP mutants to dissect the

relative contributions of these distinct functions of CtBPs
in cell proliferation and survival.

CtBP functional knockouts reveal key
roles for CtBPs in differentiation, cell
cycle progression and the suppression
of apoptosis

Before considering the multiplicity of signaling pathways
and transcription control networks that CtBPs are involved
in, it is useful to review the effects of experimentally ab-
rogating CtBP expression or function on the phenotype
of the organism or the individual cell. Homozygous in-
activation of the dCtbp gene in Drosophila is lethal, with
embryos displaying severe defects in segmentation, con-
sistent with a role for dCtBP in the function of Hairy,
Knirps and Snail transcriptional repressors.13–15 In Xeno-
pus embryos, injection of mRNA encoding an xCtBP fusion
protein designed to activate, rather than repress, transcrip-
tion, resulted in similarly dramatic defects such as loss of
head and/or eyes and a shortened anterior-posterior axis.53

In murine development, homozygous deletion of Ctbp1 re-
sults in mice which develop normally, but are smaller than
heterozygotes.19 Ctbp2−/−embryos exhibited multiple de-
fects, including axial truncations and abnormal heart and
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Figure 3. Involvement of CtBP in tumorigenesis. Many of CtBP’s interacting proteins have established roles in oncogenic and pro-survival
pathways, thus also implicating CtBP.

brain development, and embryonic lethality occurred due to
defects in extra-embryonic vascularization. Crosses between
Ctbp1+/− and Ctbp2+/− revealed further developmental de-
fects, with Ctbp1−/−/Ctbp2−/− embryos showing the most
severe phenotype.

Murine embryonic fibroblasts (MEFs) from
Ctbp1−/−/Ctbp2−/− embryos have been established,
and immortalized with SV40 large T antigen. They have
defects in CtBP-sensitive gene transcription, but normal
Golgi apparatus.19 They are, however, hypersensitive to
apoptosis in response to diverse stimuli including loss of
cell-cell contact (anoikis), genotoxic chemotherapeutics,
staurosporine, and Fas ligand.54 Validated micro-array
analysis showed two classes of genes to be constitutively
up-regulated in these Ctbp null cells, and suppressed, by
CtBP1 re-expression: Those encoding epithelial-specific
proteins including E-cadherin and several keratins, and
pro-apoptotic proteins including PERP, PTEN, insulin-like
growth factor binding proteins, Bax, Noxa and Id-1.54

Together with separate evidence that siRNA-mediated
CtBP ‘knockdown’ in human tumor cell lines is sufficient
to induce apoptosis in the absence of any additional stress,55

these data confirm previous indirect evidence from studies
on E1A,39 that CtBPs function as global repressors of the
pro-apoptotic program.

The above studies attributed the effects of CtBP ablation
on cellular phenotype to the transcriptional function of
CtBPs. Interestingly, another group has independently
knocked down CtBP expression in rat cell lines. Rather
than apoptosis, they observed G2 arrest, which they
demonstrated to be consistent with the disruption of
Golgi architecture.50,52 Further clarification is undoubtedly
warranted.

CtBP regulates multiple transcription
factor networks with roles
in tumorigenesis and survival

Whilst the precise mechanisms that link CtBPs to the
suppression of pro-apoptotic gene expression programs re-
main essentially undefined, molecular studies have identified
physical and functional involvement of CtBPs with numer-
ous cellular transcription factors. Some of these interactions
that are likely to have particular relevance to cell survival
pathways and tumorigenesis are reviewed in the following
sections and summarized in Figure 3.

Repression of the epithelial phenotype

Negative regulation of the expression of epithelial-specific
genes, and particularly those encoding E-cadherin,
desmoglein-2, plakoglobin and various keratins, is perhaps
the most well-characterized function of CtBP proteins.
E-cadherin is a calcium-dependent membrane protein
required for the formation of adherens junctions, which are
essential for cell adhesion and intercellular interactions56. It
interacts with the actin cytoskeleton via catenins to mediate
cellular integrity, polarity and morphogenesis.41,57,58 Loss
of E-cadherin expression in epithelial cells is associated
with an event referred to as epithelial-mesenchymal trans-
formation (EMT). EMT is a major mechanism of vertebrate
embryological tissue remodeling, which involves a switch in
expression of epithelial- to mesenchymal cell specific genes,
resulting in a characteristic motile, migratory mesenchymal
phenotype.59 EMT and loss of E-cadherin expression
is also associated with disease progression, increased
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malignancy and poor prognosis in many epithelial tumors,
including those of the colon, stomach, lung, bladder,
oesophagus, prostate and breast.60–66 Along with increased
invasive properties, one of the key outcomes of EMT is a
marked reduction in a cell’s susceptibility to pro-apototic
stimuli such as loss of cell-cell contact, growth factor
withdrawal, and TNF-α.39,67

Activation of transcription from the E-cadherin promoter
is driven by ubiquitously expressed, and constitutively ac-
tive transcription factors. Its lack of expression in cells of
mesenchymal origin is due primarily to the interaction of
Snail, Slug and ZEB/δEF1 transcriptional repressors to E-
box elements within their promoters.41,68 These repressors
all contain PxDLS motifs which are required, at least in part,
for their repressor activity.15,18,42,69 Their expression and ac-
tivity is regulated throughout development, and is impor-
tant during carcinogenesis. Snail expression, for example,
is predictive of poor prognosis in breast and hepatocellu-
lar carcinoma.70–73 CtBPs can associate with the E-cadherin
promoter in cells with a non-epithelial phenotype,43 and
down-regulation of CtBP activity, either by the C-terminus
of E1A, or Ctbp gene disruption, results in changes in histone
modifications at the E-cadherin promoter, and de-repression
of E-cadherin transcription.39,43,54 Interestingly, the protein
pinin/DRS, which is known to promote the epithelial pheno-
type, binds CtBPs and relieves its repression of the E-cadherin
promoter.74

One model that has been proposed, but not yet experi-
mentally tested, is that the repression of pro-apoptotic genes
by CtBPs may be an indirect consequence of EMT. Another
factor to consider is the recruitment of CtBPs by Snail,
Slug or ZEB/δEF1 to the promoters of other genes, such as
BRCA2.42 It will be of interest to establish whether CtBPs
directly associate with the promoters of pro-apoptotic genes,
as well as determining the effects of inhibiting CtBP ex-
pression in epithelial cells where these repressors are not
expressed.

Wnt signaling

Some of the developmental defects observed following loss
of CtBP function are suggestive of defects in the Wnt signal-
ing pathway.53 Binding of Wnt to its cell surface receptors
results in the accumulation of free cytoplasmic β-catenin
followed by its translocation to the nucleus, where it acts as
a co-activator for TCF family transcription factors.75 Con-
stitutive activation of this pathway occurs in multiple hu-
man cancers, notably colorectal carcinoma where it is asso-
ciated with suppression of apoptosis.76 In Xenopus, xCtBP
was found to bind, and act as a co-repressor for xTCF-3,
which functions as a transcriptional repressor in the absence
of Wnt pathway activation.53 In mammalian cells, CtBPs
do not interact with TCFs, but rather bind the product of
the Adenomatous polyposis coli (APC) gene.77 This results in
CtBP-mediated suppression of Wnt signaling by seques-

tering complexes of APC and β-catenin away from TCF
transcription factors. In this context, therefore, CtBPs actu-
ally appear to play a role in promoting apoptosis and tumor
suppression.

Transforming growth factor-β (TGF-β) signaling
pathways

A common chromosomal translocation of a number of
myeloid malignancies, including acute myeloid leukaemia,
chronic myelogenous leukemia and myelodysplastic syn-
dromes, results in the production of a fusion protein
with AML1 and Evi-1, driven by the AML1 promoter.78

Under normal conditions, Evi-1 is barely detectable
in bone marrow and peripheral blood; however over-
expression of AML1/Evi-1 is associated with transforma-
tion of hematopoietic stem cells. Evi-1 is a transcrip-
tional repressor, and a negative regulator of (TGF-ß) sig-
naling. Evi-1 acts on TGF-ß-mediated regulation of cel-
lular proliferation and differentiation by repressing the
TGF-β activated transcription factor, Smad3. Effective in-
hibition of TGF-β signaling and promotion of cellular
transformation by both AML1/Evi-1 and Evi-1, is depen-
dent upon their recruitment of CtBPs, through a PxDLS
motif.78–82

TGF-β has a complex role in regulating apoptotic
pathways, and can activate either pro- or anti-apoptotic
pathways, depending on cell type.83 Whilst the interaction
with Evi-1 is consistent with an anti-apoptotic role for
CtBPs,84 CtBPs also interact with several other key
components of TGF-β signaling pathways that may also
control cell survival. TGIF interacts with a TGF-β activated
Smad complex to repress Smad-mediated transcription,
this repression involves the recruitment of CtBPs by a
PxDLS motif in TGIF.85 The importance of the TGIF-CtBP
interaction in human development is demonstrated by an
inherited point mutation in the PxDLS motif in TGIF,
which results in defects in craniofacial development.85

CtBPs also interact with the inhibitory Smad, Smad6,
which contributes to the repression of Id-1 gene
transcription.86 Id-1 is up-regulated in Ctbp1−/−/Ctbp2−/−
MEFs,54 and can either induce or suppress apoptosis,
depending on the cellular context.87,88 CtBPs are also
recruited to Smads indirectly through ZEB/δEF1 pro-
teins, particularly ZEB-2, repressing TGB-β induced
transcription.89

Growth factor receptor, and nuclear hormone
receptor signaling

Ets protein family members are key transcriptional activat-
ing factors that transmit signals from growth factor-induced
ras-signaling pathways to changes in gene expression, for ex-
ample through their binding to the serum response element
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(SRE) on the c-fos promoter. Net is a somewhat atypical
Ets family member in that, under certain conditions, it can
also function as a transcriptional repressor. Criqui-Filipe
et al.32 demonstrated that Net contains a CtBP binding
site, and in the absence of serum growth factors it recruits
CtBPs to actively repress transcription from SRE-dependent
promoters.

Ligand-activated nuclear hormone receptors play a key
role in regulating cell proliferation, differentiation, and sur-
vival in diverse tissue types. Typically, ligand binding to
its receptor results in the recruitment of transcriptional co-
activators to induce target gene expression. RIP140 is un-
usual in this respect, as it is recruited to most activated
nuclear hormone receptors, but acts as a transcriptional re-
pressor. It appears to be essential for suppressing nuclear
hormone receptor-induced transcription in certain tissues,
to allow key processes such as ovulation and adipogenesis.90

Recruitment of CtBPs by RIP140, which is regulated by
acetylation of a lysine residue adjacent to the PxDLS se-
quence on RIP140,36 plays an important role in the repressor
activity of RIP140.36,91

C-terminal binding protein interacting protein (CtIP)

CtIP was originally identified as a PxDLS-containing bind-
ing partner for CtBP.92 It is a large, 125 kDa nuclear pro-
tein that plays a complex role in transcriptional repression,
cell cycle control and DNA damage responses. CtIP acts
as a molecular bridge to recruit CtBPs to at least two
known transcriptional repressors: the G1 checkpoint reg-
ulator, Rb,45 and the hemo-lymphoid factor, Ikaros.93 In
both cases, the CtBP-CtIP complex is thought to co-operate
with these factors to co-repress target gene transcription.
Mice with heterozygous inactivation of the Ctip gene show
increased incidence of multiple tumor types, particularly
large lymphomas. This is consistent with a tumor suppres-
sor role for the protein, although the wild-type Ctip allele is
not lost in the cancers.94 However, homozygous Ctip gene
inactivation results in lethality very early in mouse embryo-
genesis, with cells arresting prior to S phase, and also show-
ing elevated levels of cell death. Experiments on cell lines
showed this G1 arrest to be Rb-dependent, and associated
with elevated levels of the cyclin dependent kinase inhibitor,
p21WAF1.94

Potentially some of these effects of CtIP loss may be
accounted for by its interaction with the BRCT domains
of the BRCA1 protein.95,96 BRCA1 is a well characterized
tumor-suppressor protein that plays a central role in DNA
damage response.97,98 It has been reported that BRCA1
recruits the CtIP-CtBP complex to repress transcription of
BRCA1 target genes such as gadd45 and WAF-1, and that
this association is disrupted following DNA damage,99,100

although some of these findings have subsequently been
disputed.101,102 BRCA1–CtIP complex formation is critical

for the DNA damage-induced G2/M checkpoint, though the
role of CtBPs in this is undetermined.103

Regulation of p53-dependent pro-apoptotic genes

P53 is a stress-activated transcription factor that plays a
central role in the regulation of cell proliferation, and the
induction of apoptosis.104 Many of the genes up-regulated
in Ctbp1−/−/Ctbp2−/− MEFs are known transcriptional tar-
gets of the pro-apoptotic transcription factor p53, however
CtBPs could repress their transcription independently of
p53 function.54 It seems likely that one consequence of re-
pression of a distinct subset of p53-target genes by CtBPs
would be to either dampen, or otherwise modify the cellular
response to p53 activation.

CtBPs also directly suppress p53-dependent transcrip-
tion through its interaction with the Hdm2 oncoprotein.105

Hdm2 is the major cellular regulator of p53 protein func-
tion, inhibiting the interaction of p53 with transcriptional
co-activators, and driving its export from the cytoplasm
and degradation by the proteosome.106 Hdm2 also recruits
CtBPs to p53, repressing p53-dependent promoters such
as bax.105 This provides an additional mechanism whereby
CtBPs suppress apoptosis in cells that retain a functional
p53 stress-response pathway.

Regulation of CtBP function by stress
and survival signaling pathways

In addition to interacting with the known components of
signaling pathways described above, it is becoming clear
that the activity of CtBPs themselves are regulated by post-
translational modification and protein-protein interactions
in response to a range of intracellular signals. In some cases,
the associated changes in CtBP activity have a direct effect
on cell survival.

Before the CtBP genes were even cloned, their protein
products were known to be phosphorylated in a cell-cycle
dependent manner,8 however the enzymes responsible, and
the effect on CtBP function has yet to be clarified. Phos-
phorylation of CtBP does, however, play a key role in the
induction of apoptosis in response to UV-irradiation acti-
vated stress-signaling. High doses of UV activate home-
odomain interacting protein kinase 2 (HIPK2), an enzyme
which has a known role in pro-apoptotic signaling through
its phosphorylation and activation of p53.107–109 HIPK2
phosphorylates CtBP1 at serine 422 (the site is conserved
in CtBP2), which results in the targeting of CtBP1 for
ubiquitin-dependent degradation by the proteosome.55,110

The subsequent decrease in CtBP protein levels is sufficient
to trigger apoptosis in p53 null cells, and either siRNA
‘knockdown’ of HIPK2, or over-expression of a serine 422
mutant of CtBP1 incapable of being phosphorylated, in-
hibits UV-induced apoptosis.
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CtBPs are also regulated at the level of their subcellu-
lar distribution, with nuclear localization being required
for transcriptional repressor activity. In most cell types ex-
amined, CtBP1 and CtBP2 are predominantly detectable
in the nucleus. To some extent, this nuclear localization is
a consequence of recruitment by PxDLS-containing tran-
scription factors such as Net.32 CtBP1 is also regulated at
this level through two mutually exclusive modifications.
SUMOylation at lysine 428 following interaction with the
SUMO E3 ligases Pc2, PIAS1, or PIASxβ promotes nu-
clear localization of CtBP1, whereas interactions of its C-
terminal PDZ domain with neuronal nitric oxide synthase
(nNOS), and potentially other proteins, promotes cytoplas-
mic localization.25,111,112 It is not yet clear whether CtBP2
localization and activity is similarly regulated, as the critical
SUMOylation consensus site is not conserved, even though
CtBP2 is also SUMOylated by Pc2.112 Regulation of these
interactions in response to cellular signaling has yet to be es-
tablished. Signaling pathways downstream of growth factor
tyrosine kinase receptors do, however, regulate CtBP sub-
cellular localization. The kinase Pak1, which is activated by
multiple growth factors including Heregulin and epidermal
growth factor, phosphorylates CtBP1 at serine 158. This
results in a transient exclusion of CtBP1 from the nucleus
following growth factor stimulation.113 This serine is con-
served in CtBP2, but it is not yet known whether CtBP2
is similarly regulated. This effect is intriguing, given that
these factors are associated with cell survival, rather than the
induction of apoptosis, and suggest that transient exclusion
of CtBPs from the nucleus may be required for certain re-
sponses to growth factor stimulation, and does not, in itself,
induce apoptosis.

Probably the most interesting mechanism of regulation
of CtBPs is the conformational change induced by occu-
pancy of the dinucleotide binding site. NADH binding
to CtBPs promotes both its dimerization and interaction
with PxDLS-containing transcriptional repressors, and
consequently promotes its ability to repress transcription
from a set of target promoters.29,31,44 Conversely, the
NADH unbound form preferentially binds to Hdm2,
which represses p53-dependent transcription,105 and also
to p300/CBP, with potentially broad ranging effects on
p300-dependent gene transcription.48 Levels of intracellular
NADH show dramatic changes at birth, in response to
ethanol, cellular hypoxia, and in metabolic disease such as
diabetes. Potentially, CtBPs may regulate broad-ranging
changes in gene expression patterns in response to these
alterations in cellular metabolism.

Future perspectives

CtBPs are clearly involved in numerous transcriptional
regulatory programs and intracellular signaling pathways
that regulate cell proliferation, differentiation and survival.
Given that loss of CtBP expression induces either apoptosis

or G2 arrest, one might predict that cellular levels of CtBPs
might be elevated in diseases of dysregulated proliferation
and survival, such as cancer. However the pleiotrophic nature
of CtBPs activities may complicate its role in carcinogen-
esis. Indeed, in one of the few published studies of CtBP
protein expression in human primary cancers, CtBP1 levels
were markedly reduced in malignant melanomas, compared
to primary melanocytes.114 This was found to be consistent
with a role for CtBPs in suppressing the expression of MIA, a
protein associated with malignant progression in this tumor
type,114,115 and highlights the need for further studies into
CtBP expression patterns in other tumor types.

In contrast, microarray analysis of follicular thyroid car-
cinomas found a mean 3.6 fold increase in Ctbp2 mRNA
levels in a defined subset of these tumors.116 Unfortunately,
the commercial qPCR assay used to validate these findings
recognises the unique exon 1 found in the ribeye transcript,
and therefore the role of CtBP2 in these tumors remains to
be confirmed. CtBPs are, however, ubiquitously expressed,
and are detectable in the majority of cancer cell lines that
have been examined. The finding that cells derived from
Ctbp1−/−/Ctbp2−/− embryos proliferate normally, whereas
siRNA-mediated knockdown of CtBPs in cancer cell lines
can induce apoptosis, could have a number of explanations,
one of which is that some of genetic changes associated with
cellular transformation render cells more dependent on the
suppression of pro-apoptotic genes by CtBPs. This would be
entirely consistent with the original observations that full
length E1A is required for cellular immortalization, whereas
exon 2, which functions at least in part by preventing the
interaction of CtBPs with cellular PxDLS containing tran-
scription factors,117 suppresses transformation in the pres-
ence of mutant ras.

In summary, CtBPs are clearly key regulators of both gene
transcription and organelle assembly. They have been impli-
cated in the context of a striking number of transcriptional
regulatory networks, and intracellular signaling pathways.
They play an essential pro-survival role in tumour-derived
cells, though, intriguingly the mechanistic basis of this crit-
ical function remains to be clarified. Further studies will
undoubtedly shed light on these multifaceted molecules.
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