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Programmed cell death (PCD) occurs in animals and plants
under various stresses and during development. Recently,
vacuolar processing enzyme (VPE) was identified as an
executioner of plant PCD. VPE is a cysteine protease that
cleaves a peptide bond at the C-terminal side of asparagine
and aspartic acid. VPE exhibited enzymatic properties
similar to that of a caspase, which is a cysteine protease
that mediates the PCD pathway in animals, although there
is limited sequence identity between the two enzymes.
VPE and caspase-1 share several structural properties: the
catalytic dyads and three amino acids forming the substrate
pockets (Asp pocket) are conserved between VPE and
caspase-1. In contrast to such similarities, subcellular
localizations of these proteases are completely different
from each other. VPE is localized in the vacuoles, while
caspases are localized in the cytosol. VPE functions as a
key molecule of plant PCD through disrupting the vacuole
in pathogenesis and development. Cell death triggered by
vacuolar collapse is unique to plants and has not been
seen in animals. Plants might have evolved a VPE-mediated
vacuolar system as a cellular suicide strategy.
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Introduction

Programmed cell death (PCD) is a highly regulated cellular
suicide process for growth and survival in eukaryotes.
In plants, PCD occurs in development, such as during
xylogenesis, embryogenesis, aerenchyma formation, several
plant reproductive processes, seed development and leaf
senescence.1 In addition to its role in plant development,
cell suicide significantly contributes to defense from
environmental stresses including ozone and UV radiation,
and to the host defense against pathogen attack.2,3 Several
morphological similarities were found between animal cells
undergoing apoptosis and dying plant cells, including cell
shrinkage, chromatin condensation, and DNA and nuclear
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fragmentation.4,5 In animal cells, mitochondria integrate
cellular stress and regulate PCD.6 Similarly, a role for mi-
tochondria in plant PCD has been suggested.7–9 Therefore,
some regulatory mechanisms underlying PCD are thought
to be conserved in animals and plants, but the molecular
mechanism that regulates plant PCD remains unclear.

In animals, the process of controlled cell death is
well organized by caspases which are cysteine proteases
(aspartate-specific proteases).10 Caspases modify and
activate several proteins that have a role in maintaining
cell integrity. Extensive studies have provided evidence
that PCDs in plants and animals share components
that include caspase-like activity.7,10,11 For example,
caspase-like activities were detected in tobacco exposed to
virus,12 in Arabidopsis exposed to bacteria,13 in tomato after
chemical-induced apoptosis,14 in Arabidopsis after nitric
oxide-induced cell death15 and in embryonic suspension
cells from barley,16 and these caspase-like activities could be
inhibited with caspase inhibitors but not caspase-unrelated
protease inhibitors. Furthermore, the caspase inhibitors
have been shown to abolish these PCDs.12,14–16

However, with the publication of the Arabidopsis full
genome, it became evident that the Arabidopsis genome
has no bona fide caspase-encoding genes. This implied that
plant PCD relies on other proteases having caspase-like
activities. In oats (Avena sativa), serine proteases exhibit
caspase-like activities and the activities increased when
PCD was induced by the fungal toxin victorin.17 Homology
searches revealed the existence of several metacaspases
that contain the caspase-conserved domains, in plants and
fungi.18 Silencing of a metacaspase gene reduced caspase-
6-like activity and abolished developmental cell death in
Norway spruce.19 However, it was recently reported that
metacaspases are arginine/lysine-specific cysteine proteases
and do not cleave caspase-specific substrates.20,21 Activation
of caspase-like proteases triggered through either direct
or indirect proteolysis by metacaspases might mediate
plant PCD.

Recently, we reported that a vacuole-localized protease
called VPE exhibits caspase-1-like activity and regulates
cell death in both resistance and susceptible responses to
pathogen infection.22,23 The vacuole has an essential role in
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these types of plant PCD, although all plant PCD does not
necessarily involve the vacuole. Recent progress of plant
PCD has been admirably reviewed.3,24–26 This review will
focus on vacuole-mediated cell death, which is not seen in
animals.

Vacuolar-processing system

A variety of vacuolar proteins are synthesized on endoplasmic
reticulum as proprotein precursors in plant cells and then
are transported to vacuoles. These proproteins are prote-
olytically processed to produce the respective mature forms.
Vacuolar processing is mediated by VPE (Figure 1).27–29

VPE is a vacuolar cysteine protease responsible for matu-
ration and/or activation of various vacuolar proteins.30,31

VPE itself is synthesized as an inactive proprotein precursor
and then targeted to the vacuole. Within the vacuoles the
proprotein precursor of VPE is self-catalytically converted
into the active mature form and no other factor is necessary
for activating VPE molecules.32,33 Therefore, VPE is a key
enzyme in the vacuolar-processing system. The maturation
and activation of VPEs are well characterized.32,33 Arabidop-
sis has four VPE genes (αVPE, βVPE, γ VPE, and δVPE),
which are classified into three subfamilies by their homology
and expression pattern.34–39 The pleiotropic functions of
the VPE family are also covered in a recent review.34,40

An animal ortholog of VPE, asparaginyl endopeptidase
(AEP)/legumain, is responsible for processing and matura-
tion of three lysosomal hydrolytic enzymes, cathepsins B,
L and H.41 A similar VPE-dependent processing system
functions in mammal lysosomes and/or late endosomes,
which are comparable organelles to plant vacuoles.

Figure 1. A hypothetical model for vacuolar-processing system in
plants. A variety of vacuolar proteins are synthesized on endoplas-
mic reticulum as a proprotein precursor in plant cells and then are
transported to vacuoles. These proproteins are proteolytically pro-
cessed to produce the respective mature forms with VPE. VPE itself
is synthesized as an inactive proprotein precursor and then targets to
vacuoles, where the VPE precursor is self-catalytically converted into
the active mature form. No other factors are necessary for activating
VPE molecules. VPE functions as a key enzyme of the vacuolar-
processing system.
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VPE is a cysteine protease that exhibits
caspase-1 like activity in plants

Plants, which do not have an immune system, have devel-
oped their own strategies for defending against invading
pathogens. A typical plant defense strategy is the hypersensi-
tive response (HR), which involves a rapid and localized cell
death at the infected sites of host tissues.42,43 Hypersensitive
cell death is thought to prevent pathogens from growing
and spreading into healthy tissues. The molecular mech-
anism underlying execution of the HR is unknown. Many
studies have shown the involvement of proteases as central
executioners in hypersensitive cell death. During the HR,
cell death was suppressed by inhibition of cysteine proteases
either through the use of specific chemical inhibitors5,44 or
through overexpression of a protease inhibitor.45 Recently,
we and other groups showed that caspase-specific peptide in-
hibitors blocked hypersensitive cell death that was triggered
by infection of incompatible pathogens.22,46,47 Caspase-like
activity is involved in the hypersensitive cell death.

To detect the proteases that have caspase-like activity,
we developed a biotinylated-inhibitor blot analysis with
an irreversible caspase inhibitor (biotin-xVAD-fmk). Two
positive signals were detected on the blot of virus-infected
tobacco leaves and immunodepleted extracts with anti-VPE
antibody gave no signal on the blot. This result indicates
that the protease exhibiting caspase-1-like activity in plants
is VPE.22 VPE-deficient Nicotiana benthamiana plants,
which were generated by a virus-induced gene silencing
system, had reduced caspase-1-like activity in parallel with
the reduction of VPE activity.22 The Arabidopsis VPE-null
mutant, which lacks all four VPE genes (αvpe-3 βvpe-5
γ vpe-1 δvpe-1) from the genome, shows neither VPE activity
nor caspase-1 like activity.23 Arabidopsis γ VPE recognizes
both a VPE substrate with Km = 30.3 µM and a caspase-1
substrate with Km = 44.2 µM. These values are comparable
to those of mammalian caspase-1.23 Overall the results
indicate that VPE is a proteinase that exhibits caspase-1
like activity.

Plant VPEs and caspase-1 share several
structural properties

Despite the limited sequence identity, both VPE and
caspase-1 share several structural properties. Two residues
of the catalytic dyad in VPE (His and Cys, indicated
by red-colored H and C, respectively, in Figure 2A) are
comparable to His-237 and Cys-285 of the catalytic dyad
in human caspase-1.10,32 A similar correspondence was
found between human caspase-8 and Arabidopsis γ VPE.48

In addition, each of three crucial amino acids, Arg-179,
Arg-341 and Ser-347, which form the Asp pocket of
caspase-1,49 are conserved in VPEs (Figure 2A, indicated
by blue-colored R, R and S, respectively). This is the case
for all of the more than 20 VPEs that are currently in the
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databases. This result suggests that the substrate pocket of
VPE is similar to the Asp pocket of caspase-1.49

The VPEs of Arabidopsis33 and castor bean32,50 have
been shown to be synthesized as preproprotein precursors
that are co-translationally converted into a proprotein
precursor with an N-terminal propeptide and a C-terminal
propeptide (Figure 2B). The inactive proprotein precursor
is self-catalytically activated by sequential removal of the
C-terminal and N-terminal propeptides.32,33 Similarly,
caspase-1 is synthesized as an inactive precursor and then is

self-catalytically converted into the active mature enzyme.10

The caspase precursor has no C-terminal propeptide, but it
does have a linker peptide (Figure 2B).

VPEs and caspase-1 share several enzymatic properties,
although VPEs are not related to the caspase family. While
caspases are endopeptidases with a substrate specificity
toward aspartic acids,51,52 VPEs do exhibit activity toward
aspartic acids of some peptide substrates,53 although they
are originally regarded as an asparaginyl endopeptidase.32,54

VPE recognizes the aspartic acid of YVAD, a caspase-1

Figure 2. The essential amino acids for caspase-1-like activity are conserved in VPE homologs from various plants. (A) His-237 and
Cys-285 (red colored) form a catalytic dyad in human caspase-1 (hcaspase-1), while His-174 and Cys-216 (red colored) form a catalytic
dyad of NtVPE-1a. Three crucial amino acids, Arg-179, Arg-341, and Ser-347 (blue colored) form the substrate pocket of hcaspase-1. The
corresponding amino acids are conserved among plant VPEs. References to the published sequences are as follows: hcaspase-1,10 tobacco
VPEs (NtVPE-1a, NtVPE-1b, NtVPE-2 and NtVPE-3),22 Arabidopsis αVPE,37 Arabidopsis γVPE,36 black gram VmPE-1,65 citrus VPE,66 sweet
potato VPE (accession number, AF260827–1) and vetch VPE.54 (B) Both caspase-1 and plant VPEs are synthesized as proprotein precursors
and then converted into the respective mature form (yellow boxes) after removal of propeptides (open boxes) and linker peptides (green
boxes). The essential amino acids of hcaspase-1 and the corresponding amino acids of tobacco VPE (NtVPE-1a) are shown in yellow boxes.
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substrate, but not the aspartic acid of DEVD, a caspase-3
substrate, or ESED, the derivative of a VPE substrate.23

This suggests that VPE has an affinity for aspartic acid
when it is in the sequence YVAD but not necessarily for
other aspartic acid residues. The similarity of the substrate
specificity between VPE and caspase-1 is consistent with
similarities in other characteristics: similar substrate
pockets and similar active sites (Figure 2).

Both VPE10 and caspase-132,33 are subjected to
self-catalytic conversion/activation from their inactive
precursors. Caspase-1 in its active form is comprised of
two subunits of 20-kDa and 10-kDa, and the subunits are
derived from the single 45-kDa inactive precursor following
removal of an N-terminal propeptide and a linker peptide.10

Removal of the C-terminal propeptide of VPE, which pro-
duces a 40-kDa intermediate, is essential for VPE to activate
the enzyme.32,33 Further removal of the N-terminal propep-
tide to produce the 38-kDa mature enzyme is not required to
activate the enzyme. The C-terminal propeptide functions
as an auto-inhibitory domain that masks the catalytic site.33

VPE-mediated cell death is responsible
for both resistance and susceptible
responses to pathogen infection

Pathogen-induced host cell death has been observed not
only in resistance responses but also in susceptible responses.
When host plants are resistant to pathogens, the plants in-
duce hypersensitive cell death to avoid systemic infection
(resistance response of plants). In tobacco plants, tobacco mo-
saic virus (TMV) causes resistance response (HR) in cultivars
that carry the N resistance gene.55 The interaction between
the tobacco and TMV has often been used as a model system
for studying the HR. VPE deficient plants prevent the typ-
ical characteristics of TMV-induced cell death.22 Although
VPE deficiency does not interfere with the induction of de-
fense genes, virus proliferation is markedly increased in the
plants.22 These observations support the idea that the PCD
during the HR is really critical for removal of biotrophic
pathogens, the growth of which depends on the living host
tissues. The model system used in the above study induces
cell death synchronously in infected leaves by controlling the
N resistance gene. During natural infection, the death style
in infected cells might be attributed to vacuolar disrup-
tion that is mediated by VPE as discussed below. Electron
microscopic analysis observed that the cells adjacent to the
first-infected cells have the features of chromatin conden-
sation and intact vacuolar membrane,2 suggesting that the
adjacent cells subsequently die by a different mechanism.

On the other hand, when pathogens overcome host plant
defense, the plants are infected with pathogens and often
suffer from symptoms such as chlorosis and necrosis (sus-
ceptible response of plants). The necrotrophic pathogens are
able to grow by utilizing the dead tissues of plants. Some
necrotrophic pathogens secrete toxins to deliberately kill the
plant cells.56

Several fungal toxins, such as fumonisin B1 (FB1)57 and
victorin,58 induce PCD by inhibiting the host metabolism.
FB1 is a competitive inhibitor of ceramide synthase, which
is involved in sphingolipid biosynthesis59 and induces
plant PCD through a process of disruption of sphingolipid
biosynthesis, although the molecular mechanism is unclear.
A very recent report shows that FB1-induced cell death was
completely abolished in the Arabidopsis VPE-null mutant,
which lacks all four VPE genes.23 The γ vpe-1 single mutant
suppressed lesion formation, although the suppression was
not as strong as it was in the VPE-null mutant plant.23 In
contrast, three single mutants (αvpe-3, βvpe-5, and δvpe-1)
formed lesions like those on the wild-type plant. Other
VPEs might partially compensate for the deficiency of
γ VPE in γ vpe-1 leaves. Previously, in the case of processing
of seed storage proteins, αVPE and γ VPE were shown to
compensate for the lack of βVPE in the βvpe mutant.60

Toxin-induced cell death is a necrotrophic pathogen
strategy for infection, whereas hypersensitive cell death is
a plant defense strategy against pathogen attack. It ap-
pears that these processes are different from each other.
However, these findings suggest that both resistance and sus-
ceptible responses share the VPE-mediated vacuolar mech-
anism.

VPE functions as a key molecule in
cellular suicide strategy triggered by
vacuolar collapse

In spite of the structural and enzymatic similarities be-
tween VPE and caspase-1, their subcellular localizations
are different: caspase-1 is a cytosolic enzyme10 and VPE
is a vacuolar enzyme.61,62 In animals, dying cells are pack-
aged into apoptotic bodies and then engulfed by phagocytes
such as macrophages. In contrast, in plants, which do not
have phagocytes, cells surrounded by rigid cell walls must
degrade their materials by themselves. The system for de-
grading dying cells in plants is thought to be different from
that in animals. Because plant vacuoles contain hydrolytic
enzymes,63 vacuoles, like phagocytes, remove unwanted ma-
terials during PCD. Disintegration of the vacuolar mem-
brane has been proposed to be the crucial event in plant
PCD64 however the molecular mechanism responsible for
vacuolar collapse was not known.

An ultrastructural analysis and a viability assay with
protoplasts showed that disintegration of vacuolar mem-
branes occurred in virus-infected leaves before the cells
were dead.22 The disintegration of the vacuolar membranes
continued, resulting in complete vacuolar collapse in
association with plasmolysis and formation of cytoplasmic
aggregations within the cells, as shown in Figure 3. On
the contrary, VPE-deficient plants prevented the vacuolar
collapse followed by cell death after virus infection.22 This
observation suggests that VPE functions as a key molecule
in cell death triggered by vacuolar collapse. To our knowl-
edge, VPE is the first vacuolar component to be identified
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Figure 3. VPE processing system mediates a cellular suicide strategy in plants. In animals, dying cells are packaged into apoptotic bodies
and then engulfed by phagocytes. In contrast, because plants do not have phagocytes and the cells are surrounded by rigid cell walls, plant
cells must degrade their materials by themselves. VPE, which has caspase-1-like activity, is accumulated after perception of death signals such
as pathogen infection. VPE is involved in activation of the target proteins to provoke disintegration of the vacuolar membranes. Consequently,
the vacuolar hydrolytic enzymes leave the vacuole for the cytosol and degrade cellular components. Plants have evolved a death strategy that
is mediated by the VPE processing system, which is not seen in animals.

as a regulator of cell death. Plants have evolved a death
strategy that is mediated by a vacuolar system which is not
seen in animals (Figure 3).

Future perspective

VPE is involved not only in pathogen-induced PCD but
also in developmental cell death in plants. Recently, we
found that δVPE is expressed specifically and transiently
in two cell layers of seed coats at the early stage of seed
development of Arabidopsis and is involved in cell death of
the limited cell layers, the purpose of which is to form a seed
coat.35 Promoter-GUS analyses showed the up-regulation of
αVPE and γ VPE in dying cortex cells next to the emerging
lateral root61 and in dying circular-cells, clusters of anthers
that release mature pollen grains (unpublished data),
respectively. Both αVPE and γ VPE are also up-regulated in
senescing tissues.61 These results suggest the involvement
of VPE in various types of cell death in association with
development and senescence of plant organs. To unravel the
mechanism underlying VPE-mediated cell death in plants,
the molecular machinery triggering vacuolar collapse needs
to be clarified. Because VPE acts as a processing enzyme to
activate various vacuolar proteins, it might also convert the
inactive hydrolytic enzymes to the active forms, which then
degrade the vacuoles and initiate the proteolytic cascade
in plant PCD. Identification of the VPE-target proteins

and/or enzymes will give us valuable insights into plant
PCD.
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