
Vol.:(0123456789)

Flow, Turbulence and Combustion (2020) 105:989–1015
https://doi.org/10.1007/s10494-020-00115-3

1 3

Numerical Simulations of Short‑ and Long‑Range Interaction 
Forces in Turbulent Particle‑Laden Gas Flows

Athanasios Boutsikakis1  · Pascal Fede1 · Annaïg Pedrono1 · Olivier Simonin1

Received: 18 October 2019 / Accepted: 17 February 2020 / Published online: 29 February 2020 
© Springer Nature B.V. 2020

Abstract
The main objective of this work is to study the effects of distance-dependent interactions 
in turbulent gas-particle flows using an Euler–Lagrange simulation approach. The turbu-
lent gas flow is accounted for via Direct Numerical Simulation to the Kolmogorov scale 
using a spectral method to solve the Navier–Stokes equations in a cubic computational 
domain with tri-periodic boundary conditions. This flow simulation is coupled (one-way) 
with a Lagrangian particle phase solver that performs particle trajectory tracking. Electro-
static forces can be calculated using two different approaches. Firstly, the direct method 
consists of a sum of all inter-particle interactions for all the particles of the computational 
domain and their periodic images. However, this purely Lagrangian approach is computa-
tionally costly for a large number of particles, therefore another approximative approach 
is considered. According to it, one can estimate the short-range interactions via a sum of 
inter-particle interactions within a cut-off distance and the long-range ones via a sum of 
particle interactions with clusters of particles that, from a distance greater than the cut-off, 
are “seen” as one pseudo-particle. This method is then adjusted in order to accommodate 
periodic boundary conditions, which are not trivial in the case of electrostatic interactions 
as periodicity entails an infinite number of periodic domain images that has to be truncated 
to a finite number. Simulations are then performed by varying the properties of the parti-
cles in terms of diameter, density (Stokes number) and charge (electrostatic Stokes num-
ber). Finally, a statistical analysis is performed in order to investigate how the dynamics of 
the turbulent gas-particle flow are affected by distance-dependent particle–particle interac-
tions, namely electrostatic forces.
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1 Introduction

Particulate flows are found in many practical applications from geophysical flows (pyro-
clastic flow, sediments transport, volcano ashes dispersion, ...) to industrial applica-
tions (pneumatic conveying, olefin polymerization, Fluid Catalytic Cracking of oil, silo 
discharge, ...). In these systems the inter-particle collisions or the particle-wall bounc-
ing may lead the particles to accumulate electric charges which modify the dynamic 
behavior of the particles. As for example in fluidized beds (Rokkam et al. 2010; Kole-
hmainen et al. 2016), charges may lead the particles to form agglomerates (Ciborowski 
and Wlodarski 1962) that can change the fluidization regime or to adhere on the walls 
(Hendrickson 2006). In case of pneumatic conveying (Joseph and Klinzing 1983) or 
solid entrainment (Baron et  al. 1987), charges may also alter granular flow dynamics. 
Effects of charges on particle dynamics have also been identified in geophysical flows 
especially for dust emission (Esposito et al. 2016) and for the saltating motion of grains 
(Schmidt et al. 1998; Zheng et al. 2006). Finally, electrostatic forces may be important 
in colloids, particularly regarding deposition (Li and Ahmadi 1993).

The present study is dedicated to the dispersion of inertial charged particles in tur-
bulent flows. Several literature studies have been dedicated to charged particles trans-
ported by homogeneous isotropic turbulence (Lu et al. 2010; Lu and Shaw 2015; Karnik 
and Shrimpton 2012; Yao and Capecelatro 2018; Di Renzo and Urzay 2018) or by tur-
bulent channel flow (Rambaud et al. 2002). These studies essentially focus on the modi-
fication of preferential concentration in the case of charged particles. Indeed, when solid 
non-charged particles are transported by a turbulent flow field, according to their iner-
tia, they may accumulate in low-vorticity regions of the turbulence (Squires and Eaton 
1991; Fessler et al. 1994). Such a mechanism leads to large local concentrations of par-
ticles that may modify the collision rate (Sundaram and Collins 1997; Reade and Col-
lins 2000) or the coalescence rate if droplets are considered instead of solid particles 
(Wunsch et  al. 2010). Furthermore, external forces may modify preferential concen-
tration, as for example, Fede and Simonin (2010) showed that inter-particle collisions 
enhance preferential concentration. In addition, Dejoan and Monchaux (2013) investi-
gated experimentally the effect of gravity on preferential concentration. Lu et al. (2010), 
Lu and Shaw (2015), Karnik and Shrimpton (2012), Yao and Capecelatro (2018) show 
that preferential concentration decreases when charges increase. However, they do not 
investigate how particle dispersion, in terms of agitation, is modified by electrostatic 
interactions. Basically, particles transported by stationary homogeneous isotropic turbu-
lence follow the Tchen–Hinze theory (Hinze 1972) that entails that the particle kinetic 
energy is directly linked to the fluid agitation (see for example Zaichik et al. 2003; Fede 
and Simonin 2006) via fluid–particle velocity covariance. However, Laviéville et  al. 
(1997) and later Fede et al. (2015) showed that when inter-particle collisions occur, par-
ticle agitation decreases even for elastic collisions. The way that electrostatic forces act 
on the particles is similar to collisions via the mechanism of Coulomb collisions typi-
cally found in cold plasma (Callen 2003).

In the present paper, DNS of stationary homogeneous isotropic turbulence are per-
formed and coupled with Lagrangian tracking of the particles. Details of the physi-
cal problem are given in Sect.  2 and the numerical methods deployed are described 
in Sect. 3 with focus on the algorithm that accounts for electrostatic forces. The main 
material properties and statistics of the turbulence and particles are both given in 
Sect. 4. In this section, the case without charge is briefly analyzed. The main part of the 
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paper is Sect. 5 where the effect of charges on the dispersion of inertial particles is ana-
lyzed. Conclusions are drawn in the last section of the paper.

2  Governing Equations for Charged Particles Transported 
by a Turbulent Fluid Flow

The studied configuration is a stationary homogeneous isotropic turbulent gas flow car-
rying mono-disperse inertial particles. The incompressible Navier–Stokes equations are 
solved by using a pseudo-spectral method. Periodic boundary conditions are applied on 
fluid and particle phase. Statistically steady flow is achieved by using the forcing scheme 
proposed by Eswaran and Pope (1988). The solid mass loading is sufficiently low for 
neglecting the turbulence modulation by the presence of particles.

The particles are considered as mono-disperse, with diameter dp , and inertial, with den-
sity 𝜌p ≫ 𝜌f  . According to Maxey and Riley (1983) and Gatignol (1983), for the case of a 
large particle-to-fluid density ratio and for a particle diameter that is smaller than the Kol-
mogorov length scale, the force acting on the particles is only the drag force �� . In addi-
tion, if the particles are charged, then electrostatic force �e may also be significant. Particle 
motion is governed by

where �p is the particle position and �p the particle velocity. In Eq. (2), the fluid–particle 
drag force is calculated by

where �p is the particle relaxation time given by Schiller and Naumann (1935)

with �f  the kinematic fluid viscosity, and Rep = dp‖�p − �f@p‖∕�f  the particle Reynolds 
number. In Eq. (3), �f@p is the undisturbed fluid velocity at the particle position. The parti-
cle positions and velocities are time-advanced by a second order Adams-Bashforth scheme.

Coulomb’s law allows to calculate the electrostatic force �q→p acting on p due to q as 
following

where � is Coulomb’s constant (with � = 1∕
(
4��0

)
 where �0 is the vacuum permittivity), 

Qp is the electric charge of particle p and �qp = �p − �q is the distance vector between parti-
cles p and q pointing to p as depicted in Fig. 1.

(1)
d�p

dt
=�p

(2)mp

d�p

dt
=�e + �d

(3)�d = −
�p − �f@p

�p
mp

(4)�p =
�pdp

2

18�f �f

1

1 + 0.15Rep
0.687

(5)�q→p = �
QqQp

‖�qp‖3
�qp
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In a system of Np charged particles, each particle p interacts with all Np − 1 particles in 
the computational domain, thus the total electrostatic force exerted on p is

Next section is dedicated to the numerical methods for computing electrostatic force �e.

3  Numerical Methods for the Computation of Electrostatic Forces

3.1  Direct Dipole Summation

This method consists in calculating the total electrostatic force on a particle p by directly 
summing all the Np − 1 terms that correspond to the electrostatic interactions of the par-
ticle with all particles but itself as seen by Eq. (6). However, one could use Newton’s 3rd 
law for such a dipole that gives �p→q = −�q→p in order to perform one operation per dipole 
thus divide the computational cost by two resulting in Np

(
Np − 1

)
∕2 ∼ Np

2 operations 
which is forbiddingly expensive.

3.1.1  Quasi‑periodic Boundary Conditions

Periodic boundary conditions for the particle phase correspond to an infinite domain. 
Therefore, to compute the electrostatic forces it is necessary to take into account the con-
tributions of all particles, including those not really represented/computed in the computa-
tional domain.

Let a cubic computational computational domain � of length L (see Fig.  2). Conse-
quently, consider a super-domain (due to periodic BCs) of (finite) length 

(
2Nper + 1

)
L , 

where Nper is the number of domain images per direction. If d is the number of (periodic) 
physical dimensions, then the number of periodic domain images including the original 
domain is Nim =

(
2Nper + 1

)d . In theory, periodic boundary conditions are exactly repre-
sented for Nper → ∞ , however in practice Nper will be considered finite based on a con-
vergence criterion [see Eq. (8)] which entails an approximation error, thus these BCs are 
considered as quasi-periodic.

Therefore, each particle in � has Nim − 1 periodic images, and the electrostatic force act-
ing on a particle p due to a particle q is the sum of all Nim interactions due to q and its images. 

(6)
�e =

Np∑
q = 1

q ≠ p

�q→p .

Fig. 1  Notations in electrostatic 
interaction of a dipole of iso-
charged particles
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Hence, in the case of tri-periodic BCs, in order to calculate the total electrostatic force exerted 
on p, one should perform the sum of Eq. (6) over all NpNim particles in the super-domain.

However, the computational domain (and its periodic images) is cubic, so a particle that is 
away from the domain center would be subjected to a force that always points outwards of the 
domain due to an anisotropic long-range electrostatic force distribution (see Fig. 2). In fact, 
this force would be proportional to the offset of the particle from the center of the computa-
tional domain. As a result, all particles would accelerate towards the domain borders and due 
to periodicity reenter from the opposite side, where they would re-accelerate outwards, which 
would eventually result in an oscillation of the particles around the borders. This behavior is 
not physical and in order to avoid it, each particle p interacts with the particles (images) that 
are located within a sphere (�p, �c) , where ‖�c‖ = NperL , in order to ensure an isotropic long-
range electrostatic force distribution.

In practice, if the positions of Np particles in the domain � are known, then for the calcula-
tion of �ep

 only Np − 1 distance vectors �qp are needed for Np − 1 particles q in � . Then, for 
each particle q, the Nim distance vectors between p and the images of particle q (including 
itself) can be simply calculated as a translation of the original distance vector 
�̃qp = �qp + mLx� + nLy� + lLz� with m, n, l = −Nper,Nper . Apparently, for m = n = l = 0 the 
distance vector is the original one. As more periodic images are taken into consideration, one 
particle that lies in the computational domain interacts with more particles Nim ∝ Nper

3 that 
are placed in an increasingly greater distance ‖�̃qp‖ ∝ Nper . One can deduce that

which implies the particle electric potential energy diverges quadratically for tri-periodic 
boundary conditions as shown by Fig. 3.

(7)
Uep = 𝜆Qp

Np�
q = 1

q ≠ p

Qq

Nper�
m, n, l = −Nper

‖�̃qp‖ ≤ NperL

1

‖�̃qp‖ ∝ Nper
2 .

Fig. 2  The computational 
domain of interest is marked with 
bold contours and hatched in 
gray lines and its periodic images 
in white font. Two particles are 
put in the domain for simplic-
ity and for each one, a spheri-
cal periodic volume of radius 
‖�c‖ = NperL is centered at their 
respective positions
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As far as the total electrostatic force on a particle is concerned, the same dynamics are 
in place due to periodicity, however it should be noted that �e ∝ 1∕‖�qp‖2 ∝ 1∕Nper

2 . In 
addition, although the number of electrostatic interactions scales with Nper

3 , the electrostatic 
force converges for Nper → ∞ due to its vectorial nature and the symmetry of periodicity. 
In fact, Fig. 4 shows that electrostatic forces converge very quickly for Nper ≥ 2 , hence for 
the simulations carried out in this work, the domain is replicated two times towards each 
direction. Theoretically, from the point of view of a particle in the computational domain, as 
more particle images are taken into account around it, there is a cut-off distance after which 
the long-range electrostatic forces that are exerted on it tend to cancel out as Nper → ∞ . This 

Fig. 3  Average particle electric potential energy with respect to the number of periodic domain images. 
Quadratic divergence observed as Nper → ∞

Fig. 4  Average norm of the electrostatic force with respect to the number of periodic domain images. Con-
vergence is observed for Nper ≥ 2
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is due to an isotropic long-range force distribution around it, resulting in the convergence of 
its total electrostatic force to a finite value. From Eq. (6), one can deduce that

For periodic BCs, the computational cost of the direct method scales with the number of 
periodic images as NpNim

⏟⏟⏟
particles + images

(
Np − 1

)
∕2 ∼ NimNp

2.

3.2  Pseudo‑particle Method

Let the domain be discretized in Nf  cells per dimension (see Fig. 5). For each particle p, its 
neighborhood Vp of size �xv =

(
2Nv + 1

)
�x is defined as the ensemble of 

(
2Nv + 1

)3 cells 
around it. The number of cells for which the neighborhood spans towards every direction 
x, y, z (excluding the cell that contains the particle) is Nv , as illustrated by Fig. 5. Each cell 
Ωk contains Nk ∼ Np∕N

3
f
 particles and forms a pseudo-particle, which is a cluster of parti-

cles “viewed” from distance as one particle of equivalent charge Qk
eq

 and position �k
eq

 . The 
concept of pseudo-particles, inspired by Barnes and Hut (1986), is defined in Eqs. (9)–(11).

with

 

(8)
�e = 𝜆Qp

Np�
q = 1

q ≠ p

Qq

Nper�
m, n, l = −Nper

‖�̃qp‖ ≤ NperL

̂̃�qp

‖�̃qp‖2
∝

Nper�
m = −Nper

‖�̃qp‖ ≤ NperL

���
(m) = �e.

(9)Qk
eq
=

Nk∑
p=1

�k
p
Qp

(10)�k
eq
=

1

Qk
eq

Nk∑
p=1

�k
p
Qp�p

(11)�k
p
=

{
1 particle p is in cell k

0 otherwise

Fig. 5  Computational domain 
of length L is discretized in Nf  
cells per dimension. For each 
particle p, its neighborhood Vp 
(red) is defined as the ensemble 
of 
(
2Nv + 1

)3 cells around it. 
Pseudo-particles are represented 
as gray circles outside of Vp
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Therefore, each particle interacts directly with all particles in neighborhood Vp (short-range 
interaction), as well as with the pseudo-particles that are outside of Vp (long-range interaction). 
The electrostatic force �k→p acting on particle p due to pseudo-particle k is calculated by treat-
ing k as another particle, meaning that in Eq. (5) Qq is replaced by Qk

eq
 and �q by �k

eq
.

Hence, the total electrostatic force on particle p is calculated by performing direct summa-
tions in Vp and pseudo-particle summations outside of Vp.

3.2.1  Quasi‑periodic Boundary Conditions

Let the number of pseudo-particles plus their periodic images be NimNf
3 . Apparently, Nv 

must satisfy the inequality Nv ≤ [
Nf

(
2Nper + 1

)
− 1

]
∕2 in order to fit in 

(
2Nper + 1

)
L , as 

shown by Fig.  6. As a result, the computational cost with periodic BCs becomes 

Np

⎡
⎢⎢⎢⎢⎣

�
2Nv + 1

�3
Np∕N

3
f
− 1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
inside Vp

+NimNf
3 −

�
2Nv + 1

�3
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

outside Vp

⎤⎥⎥⎥⎥⎦
.

3.3  Error and Performance Analysis

An error and performance analysis of the proposed algorithm is presented in Fig. 7. As the 
error analysis is concerned, the direct method is considered to be of high fidelity as it allows 
for an exact calculation of the electrostatic forces and hence the results obtained with this 
method constitute a reference for simulations using other approximative methods such as the 
pseudo-particle method. Therefore, the relative error of total electrostatic force estimation for 
particle p at t = 0 is defined as �0

p
=
�
‖�0

e
��dir − �0

e
��pseudo‖

�
∕‖�0

e
��dir‖.

It is obvious that the latter is performing better than the former as it approximates the long-
range interactions via pseudo-particles. It should also be noted that the calculated order of 
complexity ∼ Np

1.3 is considerably better than the expected theoretical one ∼ Np
1.5.

4  Numerical Simulation Setup and Flow Statistics

4.1  Numerical Schemes and Parameters

The numerical solver is fully parallelized for both the fluid and the particles. For the DNS 
the FFT are performed by the library P3DFFT (Pekurovsky 2012). In the present numerical 

(12)

�e =

N3
f∑

k = 1

k ∈ Vp

Nk∑
q = 1

q ≠ p

�q→p

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

short range(
2Nv + 1

)3
Np∕N

3
f
− 1 terms

+

N3
f∑

k = 1

k ∉ Vp

�k→p

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

long range

Nf
3 −

(
2Nv + 1

)3
terms
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simulations the number of grid points for the DNS is Nx = Ny = Nz = 256 and the turbu-
lent Reynolds number, based on the integral length scale ReLf =

√
2∕3q2

f
Lf∕�f  , is about 

100. According to �K�F
max

= 2.92 (where �K is the Kolmogorov length scale and �max the 
highest solved wavenumber) the small turbulent scales are well resolved. As two-way cou-
pling is neglected, the fluid velocity seen by the particles, �f@p , is computed by 3rd order 
polynomial interpolation of the fluid velocity field. According to the previous analysis and 
adjusting the parameters for optimal parallelization, the electrostatic forces have been com-
puted with Nf = 8 , Nv = 1 and Nper = 2.

4.2  Fluid and Particle Material Properties

The fluid material properties and main turbulence statistics are gathered in Table 1. In this 
table, the fluid kinetic energy is defined by q2

f
= 1∕2⟨u�

f ,i
u�
f ,i
⟩f  where ⟨ . ⟩f  denotes an Eule-

rian average on the grid used for the fluid phase.
In this work, all particles are considered to bear equal positive charges. Practically, par-

ticles are charged via the phenomenon of triboelectrification (Grosshans and Papalexandris 
2017) which occurs when particles collide with walls and other particles. In the simulated 
periodic particulate flow, it is assumed that particles have had sufficient time to redistribute 
their charges among them via collisions. However, collisions and triboelectrification are 
neglected in this study because of the small solid volume fraction.

In fact, numerical simulations have been performed with Np = 10, 000 particles corre-
sponding to a solid volume fraction �p = 2.64 × 10−6 . In addition, all particles have been 
considered of the same diameter so that �K∕dp = 4.56 but they differ by density. Since par-
ticle diameter is smaller than the Kolmogorov scale, particles are numerically treated under 
the point-particle approximation. As such, the particle charge Qp is considered to be con-
centrated in one point (particle’s center of mass) defined as Qp = �dp

2 × �q , where �q the 
particle surface charge density.

Fig. 6  Domain of interest � 
(solid black), periodic domain 
images (dashed black) with 
Nper = 2 and spherical periodic 
volume (dashed red) with radius 
‖�c‖ = 2L . Neighborhood Vp 
(solid red) with Nv = 1 could 
span over several images of �
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(a)

(b)

Fig. 7  Error distribution (a) and performance (b) of periodic direct and pseudo-particle algorithm for 
Nv = 1 and Nper = 2
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Several particle charges have been considered, all given in terms of a reference charge 
Q0 = 1 × 10−9 C . It should be noted here, that according to Hamamoto et al. (1992) there is 
a saturation limit of surface charge density for small spheres, which can be translated (via 
dp ) to a corresponding limit for point-particle charges. For the configuration presented in 
this work, this value can be estimated to be approximately 4 × 10−9 C, which is of the same 
order of magnitude of the charges used in all simulations.

In Table 2, particle Stokes number based on the Stokes drag and the Kolmogorov time 
scale is given. However, as we consider non-linear drag force (see Eq.  (3)), the particle 
relaxation time scale is introduced as �F

fp
=
�⟨1∕�p⟩p

�−1 where ⟨ . ⟩p denotes a Lagrangian 
average on the particle distribution.

Therefore, the Stokes number is defined as �F
fp
∕� t

f@p
 where � t

f@p
 is the Lagrangian inte-

gral time scale of the fluid seen by the inertial particles. Such a timescale is defined from 
the Lagrangian auto-correlation function of the fluid velocity seen:

where q2
f@p

= 1∕2⟨u�
f@p,i

u�
f@p,i

⟩p the kinetic energy of the fluid seen by the particles. The 
Lagrangian fluid integral time scale is defined by

(13)Rt
f@p

(�) =
⟨u�

f@p,i
(t0)u

�
f@p,i

(t0 + �)⟩p
2q2

f@p
(t0)

Table 1  Properties of the fluid 
and of the examined HIT

Parameters Value Units

Computational domain length, 
Lx = Ly = Lz = L

2� m

Fluid kinematic viscosity, �f 1 × 10−3 m2∕s

Fluid density, �f 1.0 kg∕m3

Fluid kinetic energy, qf 2 3.16 × 10−2 m2∕s2

Eddy lifetime, Te = Lf ∕
√

2∕3q2
f

4.49 s

Fluid longitudinal integral length scale, Lf ∕L 1.04 × 10−1 –
Fluid integral time scale, � t

f
∕Te 6.97 × 10−1 –

Reynolds number, ReLf 99.39 –
Kolmogorov length scale, �K∕Lf 3.50 × 10−2 –
Kolmogorov time scale, �K∕Te 1.16 × 10−1 –
�K�

F
max

2.92 –

Table 2  Material 
properties of particles with 
�St
p
= �pd

2

p
∕
(
18�f �f

)
 the Stokes 

particle time scale

Class �St
p
∕�K �F

fp
∕� t

f
�F
fp
∕� t

f@p

1 53.34 7.68 6.65
2 26.67 3.87 3.50
3 13.34 1.95 1.83
4 7.33 1.09 1.11
5 4.00 0.60 0.52
6 2.00 0.31 0.25
7 1.07 0.17 0.10
8 0.53 0.09 0.06
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When motionless particles are considered, Eqs. (13) & (14) allow to compute the Eulerian 
time scale, �E , and for fluid elements the Lagrangian fluid integral time scale, � t

f
 . For the 

following statistical analysis we also define the particle kinetic energy, q2
p
= 1∕2⟨u�

p,i
u�
p,i
⟩p 

and the fluid–particle velocity covariance as qfp = ⟨u�
f ,i
u�
p,i
⟩p . Furthermore, statistical 

moments have been calculated over a sufficiently long duration 
Tstat = 10 ×max{� t

f@p
, �F

fp
, �el} in order to achieve statistical convergence, which is calcu-

lated as a multiple of the maximum characteristic time scales of all the physical mecha-
nisms involved.

4.3  Coulomb Collisions and Characteristic Time of Electrostatic Interactions

In order to analyze the effects of the charges one should define a characteristic time scale of 
electrostatic interactions. This time scale is the duration of particle velocity decorrelation 
under the sole presence of electrostatic interactions. The mechanism of this velocity decor-
relation is the Coulomb collision, which is a binary elastic collision between two charged 
particles interacting through their own electric field. In order to understand a Coulomb 
collision of two particles, we can imagine that they undergo an elastic collision with an 
effective Coulomb diameter dC

pq
 as depicted by Fig. 8. These interactions are well resolved 

in the DNS carried out in this work and not modeled.The effective Coulomb diameter dC
pq

 is 
a notion typically found in cold plasma (Callen 2003) and in this case it is defined as

where �pq is the relative approach velocity of the particles defined as �pq = �p − �q and 

the Lagrangian average of its norm is approximated by ⟨‖�pq‖⟩p =
�

16∕� × 2∕3 × q2
p
 . 

Additionally, mpq is the reduced mass of a pair of particles p and q calculated as 
mpq = mpmq∕

(
mp + mq

)
 . If the kinetic energy of the particles is very large with respect to 

the electric potential energy, the deviation from the initial trajectories of the colliding parti-
cles is small. Therefore, dC

pq
≤ dp and particles would undergo a hard sphere collision, 

however this is not treated in our simulations, as explained in Sect. 4.2. This length scale is 

(14)� t
f@p

= ∫
∞

0

Rt
f@p

(�)d� .

(15)dC
pq

=
1

�⟨‖�pq‖⟩p

�
QpQq

mpq�0

Fig. 8  Schematic of a Coulomb 
collision of two iso-charged 
particles and notion of Coulomb 
diameter. Particle diameter dp 
is depicted with a solid black 
circle, while (fictitious) effective 
Coulomb diameter with a dashed 
black circle
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also used to determine the size of the neighborhood �xv as it should be 𝜙 ≫ 1 times bigger 
than the effective Coulomb diameter dC

pq
 . Therefore, one can deduce the number of cells Nv 

in the neighborhood of short-range interactions as described in Sect. 3.
The Coulomb collision frequency is written as �c = npQc⟨‖�pq‖⟩p , therefore the charac-

teristic time scale of Coulomb collisions is �c = 1∕�c . An estimation of this characteristic time 
scale can be obtained via a simple dimensional analysis using particle flow properties that 
yields

In order for �el to be a good candidate for the characteristic time scale of electrostatic inter-
actions, it should be of the same order of magnitude as �c . This is confirmed in Table 3 that 
shows time and length scales for the case where Qp = 8Q0.

Having defined such a time scale, one could also define an electrostatic Stokes number 
as �F

fp
∕�el—in analogy with the particles Stokes number—that is directly proportional to the 

charge. It can be noticed that such a definition of the electrostatic Stokes number is substan-
tially different from those found in literature. Indeed, on one hand Alipchenkov et al. (2004) 
uses the Coulomb number defined as the ratio of the potential energy of Coulomb inter-par-
ticle interaction to the kinetic energy at small scales of the turbulence. On the other hand, 0 
defined an electric settling velocity representing the terminal velocity of a particle due to the 
influence of a given electric field.

Finally, one could attempt to link the two aforementioned Stokes numbers and describe 
their dependence on fluid–particle-electrostatics properties. In order to perform an elementary 
dimensional analysis one can make two crude hypotheses: �F

fp
≃ �St

p
 and � t

f@p
≃ � t

f
 that allow 

to rewrite the electrostatic Stokes number in terms of the particle Stokes number as

Figure  9 shows that the relation between the two Stokes numbers is quadratic and that 
Eq. (16) fits well DNS data. It is evident that in order to perform simulations with adequate 
resolution of the Coulomb collisions, the time step of the simulation should be appropriate. 

�el ∝
1

Qp

√
mp

�np
.

(16)
�F
fp

�el
=

2Qp

�dp
2

√√√√��p�
t
f

2�f �f
×

√√√√ �F
fp

� t
f@p

.

Table 3  Characteristic scales of Coulomb interactions for Qp = 8Q
0

Class �F
fp
∕�el dC

pq
 (m) �c (Hz) dC

pq
∕dp �l∕dC

pq
× 10

−3 �el∕�c �el∕�t

1 3.20 0.286 0.30 57.25 2.04 2.28 1502
2 2.28 0.303 0.45 60.61 2.58 2.41 1062
3 1.63 0.334 0.71 66.80 3.00 2.66 752
4 1.22 0.379 1.08 75.76 3.14 3.02 558
5 0.92 0.449 1.74 89.86 3.03 3.58 412
6 0.66 0.573 3.14 114.66 2.63 4.55 290
7 0.49 0.741 5.55 148.23 2.15 5.88 212
8 0.34 1.011 10.70 202.11 1.64 8.04 150
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In fact, the mean free path of the particles �l = ⟨‖�pq‖⟩p�t should be at least � times 
smaller than the Coulomb effective diameter dC

pq
 . That allows to calculate a maximum time 

step that ensures the resolution of electrostatic interactions as �t ≤ �dC
pq
∕⟨‖�pq‖⟩p . Conse-

quently, the time step should be kept below a given limit �tmax = 3�∕32q2
p
×
√

QpQq∕�0mpq.

5  Analysis of Charged Particle‑Laden Turbulent Gas Flows

Simulations of charged particle-laden turbulent gas flow have been performed using the 
pseudo-particle method described in Sect. 3 for particles of various inertia levels and dif-
ferent electric charges in order to investigate how electrostatic interactions affect particle 
dynamics.

Figure  10 shows the comparison between particle agitation and theoretical particle 
agitation as predicted by the Tchen–Hinze (Hinze 1972), and extended by Simonin et al. 
(1993). The theoretical relations of the extension of Tchen–Hinze theory are

Figure  10 shows the particle agitation and the fluid–particle velocity covariance with 
respect to the Stokes number in case without charge. Numerical simulations are in agree-
ment with Eq. 17. As expected, small discrepancies are observed for particles with small 
relaxation time scale but this is due to from the assumption of an exponential auto-correla-
tion function for the fluid velocity measured along the particle trajectory that is too crude. 

(17)2q2
p
= qfp = 2q2

f@p

� t
f@p

� t
f@p

+ �F
fp

.

Fig. 9  Electrostatic Stokes number with respect to the Stokes number. The symbols are the numerical simu-
lation and the dashed lines the Eq. (16)
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Work by Zaichik et  al. (2003) showed that the Tchen–Hinze theory can be extended by 
using a two-exponential correlation proposed by Sawford (1991).

5.1  Effect of Electrostatic Interactions on Particle Agitation

In order to examine the effect of particle–particle electrostatic interactions on particle agi-
tation, we shall reproduce Tchen–Hinze Eq. (17) for various electric charges. As seen by 
Fig. 11, the effect of electrostatic interactions on particle agitation is not straightforward. 
Particles with large inertia, are not particularly affected by electrostatic interactions, those 
with moderate inertia exhibit an increase in agitation, while on the contrary the lightest 
particles undergo a significant decrease in their levels of agitation.

In order to understand this behavior, one should consider the equation of particle agi-
tation in the framework of the kinetic theory under the effect of electrostatic forces that 
yields

The four terms of Eq. (18) are shown by Fig. 12 and the balance of the equation is verified 
in the transient regime for Qp = 8Q0 corresponding to an electrostatic Stokes number of 
�F
fp
∕�el = 1.63 . In case of stationary flow the Eq. (18) becomes

(18)
�

�t
q2
p
=

qfp

�F
fp

−
2q2

p

�F
fp

+
⟨�e�

�
p
⟩p

mp

.

(19)q2
p
=

1

2
qfp +

1

2
�F
fp

⟨�e�
�
p
⟩p

mp

.

Fig. 10  Particle agitation with respect to the inverse of the Stokes number. The dashed line corresponds to 
the Tchen–Hinze theory given given by Eq. (17)
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The additional term �F
fp
⟨�e�

�
p
⟩p∕mp represents the particle-induced electric potential energy 

which is equal to the time derivative of the work of electrostatic forces. This means that 
particle agitation depends on fluid–particle velocity covariance (i.e. the particle–turbu-
lence interaction) and particle-induced electric potential energy. Physically, this implies 
that particle agitation is modified by both the drag and the electrostatic forces. As shown 
by Fig.  13, increasing particle charge, term �F

fp
⟨�e�

�
p
⟩∕mp becomes somewhat important 

Fig. 11  Effect of electric charges on particle agitation. The black dashed line corresponds to the Tchen–
Hinze theory given by Eq. (17) and the red markers to the case without charge

Fig. 12  Balance of Eq. (18) in transient regime for �F
fp
∕�el = 1.63 ( Qp = 8Q

0
)
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especially for heavy particles. Furthermore, it is always positive so it acts as production of 
particle agitation. However, it only accounts for a ∼ [0, 0.5]% increase of particle agitation, 
hence it is responsible for a very small part of its increase ∼ [15, 25]% observed in Fig. 11 
for particles of moderate inertia.

The physical meaning of this term could be better understood by considering Coulomb col-
lisions. Table 3 shows that heavy particles exhibit minimum effective diameters and collision 
frequency. Therefore, their Coulomb collisions are more binary than those of light particles, 
which implies that the Coulomb collisions of the former have the tendency to modify the par-
ticles trajectories more abruptly. Finally, the small effect on particle agitation can be attributed 
to the elasticity of Coulomb collisions as electrostatic forces are conservative.

Figure  14 shows that qfp is the most important term of Eq.  (19), in that it accounts for 
most of the variation of particle agitation. Indeed, the observed variation of particle agitation 
to fluid–particle velocity covariance is of the order of magnitude ∼ 0.5% of that of particle-
induced electric potential energy to particle agitation seen by Fig. 13.

5.2  Effect of Electrostatic Interactions on Fluid–Particle Velocity Covariance

It is shown in Sect. 5.1 that the key to understanding the behavior of particle agitation in such 
a flow, is to understand fluid–particle velocity covariance qfp , which is a measure of fluid–par-
ticle correlation. Figure 11 shows that particles with large inertia, are not particularly affected 
by electrostatic interactions, those with moderate inertia exhibit an increase both in qfp ≃ 2q2

p
 

and in � t
f@p

 , while on the contrary the lightest particles undergo a significant decrease in their 
levels of fluid–particle velocity covariance.

In the kinetic theory framework, under the effect of electrostatic forces, the transport equa-
tion of the fluid–particle velocity covariance may be derived from the joint-fluid-particle pdf 
equation (Simonin 1996) such as

Fig. 13  Evolution of �F
fp
⟨�e�

�
p
⟩p∕mp with respect to particle inertia and electric charges
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The first term of the right hand side corresponds to the turbulent fluid dissipation and it is 
written in terms of the acceleration of the fluid seen by the particles ��

f@p
 . In literature (Zai-

chik et al. 2003), it is usually modeled as −qfp∕� tf@p
 which is not accurate in the case of 

light particles as shown by Fig. 15.
Figure 16 depicts all five terms of Eq. (20) and the power equilibrium is verified in 

the transient regime for �F
fp
∕�el = 0.92.

Furthermore, for stationary flows Eq. (20) becomes

where term �F
fp
⟨�e�

�
f@p

⟩p∕mp represents the turbulence-induced electric potential energy. In 
order to explain the behavior observed in Fig. 11 by qfp , one needs to examine the three 
terms of the right hand side of Eq. (21).

Increasing particle charge, term �F
fp
⟨�e�

�
f@p

⟩p∕mp becomes very important, especially 
for light particles as shown by Fig. 17. More specifically, this term is most important for 
particles of moderate-to-low inertia, � t

f
∕�F

fp
∈ [1, 10] . Therefore, in presence of electric 

charges the fluid–particle correlation competes with the repulsive electrostatic forces, 
which tend to constantly decorrelate the particle velocities from the fluid velocity field. 
This leads to a decorrelation of fluid–particle velocity, hence the negative sign of this 
term that serves as a destruction term of fluid–particle velocity covariance.

(20)
�

�t
qfp = ⟨��

f@p
��
p
⟩p −

qfp

�F
fp

+
2q2

f@p

�F
fp

+
⟨�e�

�
f@p

⟩p
mp

.

(21)qfp = �F
fp
⟨��

f@p
��
p
⟩p + 2q2

f@p
+ �F

fp

⟨�ep
��
f@p

⟩p
mp

Fig. 14  Ratio between the particle kinetic energy and the fluid–particle velocity covariance with respect to 
particle inertia
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However, it does not account for the increase of fluid–particle velocity covariance in 
the case of moderate inertia particles, �F

fp
∕� t

f
∼ 1 as shown by Fig. 11. This increase can 

be due to the first term of Eq. (21), thus due to a modification of �F
fp
⟨��

f@p
��
p
⟩p.

Indeed, Fig.  18 shows that term �F
fp
⟨��

f@p
��
p
⟩p is modified by electrostatic forces. In 

particular, this term increases for an increasing electric charge that leads to an increase 

Fig. 15  Comparison between DNS results (black-filled symbols) and the standard model (open symbols) for 
term ⟨��

f@p
��
p
⟩p with respect to � t

f
∕�F

fp

Fig. 16  Variation of fluid–particle velocity covariance and terms of Eq.  (20) in transient regime for 
�F
fp
∕�el = 0.92 ( Qp = 8Q

0
)
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of fluid–particle velocity covariance especially for particles of moderate inertia, 
�F
fp
∕� t

f
∼ 1.

In order to better understand this, one could introduce a new characteristic time scale 
�a
fp
= −qfp∕⟨��f@p

��
p
⟩p that describes the dissipation rate of fluid–particle covariance by 

⟨��
f@p

��
p
⟩p . In Fig. 19, it is evident that this time scale increases for increasing electric 

charges, which essentially means that qfp dissipates in lower rates, resulting to its 
increase.

At this point, it would be interesting to examine the effect of electrostatic interactions on 
fluid acceleration seen at the position of particles ⟨��

�@�

2⟩p . In Fig. 20, it is apparent that for 
increasing electrostatic forces there is a small decrease of ⟨��

�@�

2⟩p for particles of moder-
ate inertia and a considerable increase for light particles, but for both cases the variance of 
fluid acceleration measured at the particles’ position tends to the value of the fluid acceler-
ation variance measured along fluid elements. This implies that particles tend to be distrib-
uted more homogeneously. Lastly, it would be also interesting to examine the behavior of 
q2
f@p

.
As far as the second term of Eq.  (20) is concerned, in Fig.  21, it is shown that an 

increase in electric charge implies an increase in the fluid agitation from the point of view 
of the particles. More specifically, q2

f@p
 has the tendency to flatten to the value of q2

f
 for 

heavy particles, �F
fp
→ ∞ and to increase even further for moderate and light particles.

In order to explain this behavior, we first have to examine the levels of q2
f@p

 in the case 
of no electric charge. Indeed, inertial and light particles “see” the same fluid agitation, as 
the former are rather carried by large turbulent structures and the latter behave close to 
fluid elements. However, particles of moderate inertia get trapped in regions of low vorti-
city and therefore “see” slightly lower levels of fluid agitation.

Under the influence of electric charges, inertial particles are not as affected, while mod-
erate particles are less prone to preferential concentration, thus they “see” a fluid agitation 

Fig. 17  Evolution of �F
fp
⟨�e�

�
f@p

⟩p∕mp with respect to particle inertia and charges
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close to q2
f
 . However, less inertial particles exhibit an increase in their “seen” fluid agita-

tion, which needs to be further investigated.
Finally, Fig. 22 provides an overview of what has been discussed. It shows that for a 

given level of particle inertia, increasing particle charge leads to an increase of fluid–parti-
cle velocity covariance due to an increase of �F

fp
⟨��

f@p
��
p
⟩p (see Fig.  18) and q2

f@p
 (see 

Fig. 18  Effect of electric charges on acceleration term �F
fp
⟨��

f@p
��
p
⟩p with respect to particle inertia. The red 

markers correspond to the case without charge

Fig. 19  Effect of electric charges on time scale �a
fp

 with respect to particle inertia. The red markers corre-
spond to the case without charge
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Fig. 21) which are the first two (production) terms of Eq. (21). This occurs up to a satura-
tion limit where qfp starts to decrease as the third (destruction) term of Eq.  (21), 
�F
fp
⟨�e�

�
f@p

⟩p∕mp becomes more important (see Fig. 17). Increasing particle inertia, actu-
ally moves that saturation limit to lower electrostatic response time scales �el → 0 , thus 
higher electric charges.

Fig. 20  Effect of electric charges on fluid acceleration at the particles position ⟨��
�@�

2⟩p with respect to par-
ticle inertia

Fig. 21  Effect of electric charges on fluid agitation seen by the particles with respect to particle inertia
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5.3  Effect of Electrostatic Interactions on Preferential Concentration

In case of iso-charged particles, the effects of electrostatic forces on the preferential con-
centration are not extensively documented, however one could reflect on the nature of elec-
trostatic interactions by observing snapshots of the particle flow in the stationary regime. 
In Fig. 23 it is observed that such electrostatic interactions tend to homogenize the particle 
distribution due to the repulsive nature of the electrostatic forces. This leads to a mitigation 
and eventually an elimination of preferential concentration especially for light particles as 
shown by Fig. 23i.

Electrostatic forces are conservative forces, thus a system of charged particles under 
their influence will start evolving with an initial electric potential energy, part of which will 
gradually transform to kinetic energy. However, in the presence of a turbulent fluid flow, 
the physics of the charged particle-laden turbulent gas flow are slightly more complex, so 
in order to gain some more insight we should consider three main mechanisms that govern 
it.

Firstly, according to the minimum potential energy principle, that is valid for conserva-
tive forces such as the electrostatic, the system of particles tends to an equilibrium of mini-
mum electric potential energy which implies that the particles will try to separate them-
selves as much as possible. On the other hand, it has been mentioned in Sect. 2, that in 
turbulent particle-laden gas flows there are certain regions in the flow (high strain rate, low 
vorticity) that favor particle concentration resulting in a local increase of electric poten-
tial energy and thus in further production of kinetic energy. Lastly, the additional produc-
tion by electrostatic effects tends to increase the average stationary level of q2

p
 . This kinetic 

energy production is exactly compensated, in stationary flow, by an additional dissipation 
due to the drag force of the fluid which dissipates it in heat by viscous effect.

Fig. 22  Fluid–particle covariance normalized by the value without charge with respect to the electrostatic 
Stokes number. Stokes numbers �F

fp
∕� t

f@p
 correspond to the value without charge
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6  Conclusions and Perspectives

This study shows that the computational cost of the Np-body problem is prohibitively 
high ∼ Np

2 . However, separating the interactions in short- and long-range can be a via-
ble solution. Such a method, is the pseudo-particle method that is more efficient ∼ Np

1.5 
and with an acceptable error. Furthermore, in case of tri-periodic BCs, since electro-
static forces depend on the distance of particle images, electrostatic periodicity entails 
an additional cost which scales with the cube of the number of periodic images per 
direction. However, it is shown that in order to recreate accurately enough the periodic 
BCs, two periodic domain images per direction are enough so as to respect the isotropy 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 23  Snapshots of a charged particle-laden turbulent gas flow for various levels of inertia and electric 
charges for �x = Lf
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of the system at large-scales. In order to ensure such periodic isotropy, every particle 
has to interact with particles within a sphere centered at its position.

Furthermore, a simulation of particle-laden turbulent gas flow without electric 
charges has been carried out. This requires the setup of a case of resolved stationary HIT 
and the calibration of the particle phase according to a desired range of Stokes number, 
which yields several particle classes based on different densities. This calibration occurs 
by performing a statistical analysis of the flow, by using velocity auto-correlation func-
tions that allow to estimate characteristic time scales of the fluid and particle flow. This 
statistical analysis enables to recreate Tchen–Hinze theory concerning particle agitation 
which serves as verification of a successful particle-laden turbulent gas flow simulation.

In addition, we attempt to explain the particle–particle electrostatic interactions via the 
concept of Coulomb collisions borrowed from cold plasma theory. Hence, a time scale of 
electrostatic interactions is proposed, whose order of magnitude has been compared to the 
characteristic time of Coulomb collisions. This time scale allows to define an electrostatic 
Stokes number in analogy to the classic particle Stokes number. Then, we calibrate the 
electrostatics of the charged particle-laden turbulent gas flow simulation by selecting the 
electric charge according to a desired range of electrostatic Stokes numbers.

Following, several charged particle-laden turbulent gas flows have been simulated with 
different particle charges in order to investigate the effects of electrostatic interactions on 
particle agitation. A statistical analysis of these flows has been carried out so as to acquire 
an insight of the behavioral dynamics of these flows. This statistical analysis, along with 
a theoretical analysis enables to rewrite the transient equations of important statistical 
moments and effectively derive the modified Tchen–Hinze theory for the stationary regime 
in the presence of electrostatic forces.

Essentially, it is shown that particle agitation depends almost solely on fluid–particle 
velocity covariance which is a measure of fluid–particle velocity correlation. More spe-
cifically, particle–particle electrostatic forces lead to fluid–particle velocity decorrela-
tion which is particularly prominent for very light particles. Furthermore, a qualitative 
analysis shows that electrostatic interactions of iso-charged particles mitigate preferential 
concentration.

Finally, these two last observations imply that particles, under the influence of electro-
static forces, “see” a slightly different flow which entails a change in the Lagrangian inte-
gral time scale � t

f@p
 as seen in Fig. 11. Therefore, in the future, more work needs to be car-

ried out towards the investigation of the effect of electrostatic interactions on the 
auto-correlation functions of fluid velocity “seen” by inertial particles as well as auto-cor-
relation functions of particle velocity. This study could allow us to further investigate parti-
cle dispersion, preferential concentration as well as modeling the electrostatic-related terms 
in the modified Tchen–Hinze equation.
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