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Abstract An efficient Cartesian cut-cell/level-set method based on a multiple grid
approach to simulate turbulent turbomachinery flows is presented. The finite-volume
approach in an unstructured hierarchical Cartesian setup with a sharp representation of the
complex moving boundaries embedded into the computational domain, which are described
by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Fur-
thermore, an efficient kinematic motion level-set interface method for the rotation of
embedded boundaries described by multiple level-set fields on a computational domain dis-
tributed over several processors is introduced. This method allows the simulation of multiple
boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the
efficiency of the numerical method and the quality of the computed findings the generic test
problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted
rotating axial fan with a stationary turbulence generating grid at the inflow are simulated.
The computational results of the axial fan show a good agreement with the experimental data.

Keywords Turbulent flow · Large-eddy simulation · Cartesian method · Level set ·
Rotating boundary · Axial fan

1 Introduction

Flows over multiple relatively rotating geometries are relevant in a wide range of turbo-
machinery applications. For boundary-fitted meshes, the computation of a rotating and
a stationary object in a single fixed grid system is difficult due to the large boundary
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displacements. Different approaches using boundary-fitted meshes exist to simulate rotating
boundaries [1], i.e, the single rotating frame (SRF) approach, where the stator is constrained
to be rotationally symmetric, the multiple reference frame (MRF) approach, which is lim-
ited to steady-state simulations, and the sliding mesh (SM) approach, which is the only
approach to obtain a time-accurate solution of the Navier-Stokes equations for complex
geometries. However, the sliding mesh technique suffers from non-conservativity at the
interface between rotor and stator when arbitrary mesh movement in considered. Conser-
vativity is only directly obtained by posing restrictions on the grid at the interface, i.e., the
azimuthal spacial step is related to multiples of the relative rotational speed between rotor
and stator [2].

To simulate multiple relatively moving boundaries within one single grid system,
boundary-fitted methods either require a mesh deformation, which can only be used for
small boundary displacements and reduces the quality of the mesh, or a remeshing of the
near-boundary grid, which is very difficult and costly for structured meshes. Although it
can be efficiently done for unstructured meshes using tetrahedral cells, which, however,
possess a higher numerical diffusion and therefore have a lower numerical accuracy com-
pared to Cartesian cells [3]. The embedded-boundary approach using unstructured Cartesian
meshes allows one to overcome all of the aforementioned problems and to simulate mul-
tiple relatively moving or rotating boundaries within one fixed grid system. There is no
need to remesh the near boundary mesh or to use interfaces which either suffer from non-
conservativity or stipulate restrictions on the geometry or the computational mesh. This
alternative approach is very efficient and maintains the high mesh quality.

Approaches based on non-boundary-fitted meshes, also known as immersed boundary
methods are subdivided by Mittal and Iaccarino [4] into two categories based on the for-
mulation of the boundary conditions on the walls that are not aligned with the mesh. The
first category contains continuous approaches such as the immersed boundary method intro-
duced by Peskin [5, 6] or Goldstein et al. [7]. In those methods, the no-slip wall boundary
condition is applied by adding forcing terms to the governing equations. The disadvantage
of the continuous approaches is that the forcing term which is used to satisfy the boundary
condition smears out the geometry. Therefore, the surface of the configuration is not repre-
sented by a sharp interface [8], which makes those methods non-conservative. The methods
of the second category are considered discrete approaches which can be subdivided into
indirect and direct approaches. The indirect methods are similar to the continuous category
in the sense that a forcing term is used. However, unlike in the first category the forcing
is applied to the discrete system of equations. The methods of LeVeque and Li [9] and of
Verzicco et al. [10] and Mohd-Yusof [11] belong to this category. In the direct approaches
of the second category, which are often referred to as Cartesian cut-cell methods [12–15]
no forcing terms are added. The cells that define the surface of the geometry are cut and
only the fluid fraction of the original cell volume is retained, which ensures a strict local
and global conservation of mass, momentum, and energy, which is an essential property for
the suppression of unphysical disturbances in moving boundary problems [16] and to obtain
accurate and stable results for large displacements of the embedded boundaries [17]. This
makes the Cartesian cut-cell method a very promising approach.

Different ways to describe and track moving embedded boundaries exist. A popular
approach is the use of a triangular representation of the geometry in STereoLithography
(STL) format which can be easily exported from CAD data [18]. A more efficient and
more robust method, however, is based on the level-set formulation where an implicit
surface representation by signed-distance functions is used [19]. For simple geometries
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analytical level-set functions can be used which do not require any propagation of the level-
set function. For complex geometries the level-set function can be initialized from the STL
geometry which, however, is very expensive [19]. Therefore, for moving boundaries, this
should only be done to initialize the signed-distance function at the initial time-step. To
evolve a level-set function in space, a time-accurate solution of a transport equation using
reinitialization to improve the shape conservation can be considered [20, 21]. However,
even when reinitialization is used, the geometry is never fully conserved such that the error
is accumulated and the difference to the initial geometry increases over time. Therefore, a
semi-Lagrangian level-set solver for translational boundary displacements was introduced
in [19], where the error, which is defined by the interpolation error, is reduced and remains
constant over time. Since this method fails for rotational displacements, it is extended to
rotating embedded boundaries in this study. That is, an efficient approach for the rota-
tion of the level-set function, which is initialized from CAD data, in a highly parallelized
environment is introduced.

The Cartesian cut-cell method for stationary geometries has already been successfully
used by Pogorelov et al. [22–24] to analyze the flow field in a ducted axial fan configuration
using the single rotating frame approach, which was possible due to the rotational symmetry
of the outer casing wall. The current axial fan configuration, however, contains a stationary
turbulence generating grid upstream of the rotating fan. To be able to accurately capture
the interaction of the turbulence generating grid with the fan blades, the moving boundary
formulation of the Cartesian cut-cell method from [25] is combined with the multiple level-
set approach from [19] and extended to rotating embedded boundaries.

The purpose of this study is to develop an efficient parallelized numerical methodol-
ogy based on the cut-cell/level-set approach on Cartesian hierarchical meshes which has the
capability to predict the unsteady turbulent flow field in three-dimensional turbomachin-
ery applications with complex relative rotating boundaries using high-fidelity turbulence
modeling such as large-eddy simulation (LES).

As of today only a few authors performed LES using the immersed boundary approach,
to simulate three-dimensional turbulent turbomachinery flows. You et al. [26–29] success-
fully applied the immersed boundary method with discrete forcing at the wall boundaries to
perform LES for the investigation of the tip-leakage flow of a linear cascade. They obtained
a good agreement of their numerical results with experimental data in terms of velocity,
Reynolds stresses, and energy spectra. However, their geometry was simple and station-
ary. Tyagi and Acharya [30] used a continuous immersed boundary approach to solve an
unsteady stator-rotor interaction problem for an incompressible fluid on a rather small com-
putational mesh with approx. 6× 105 cells and a pure translational relative motion between
rotor and stator. Furthermore, they used a simple two-dimensional geometry and due to the
small spanwise extension of the mesh of 10 percent blade chord and periodic boundary
conditions in the spanwise direction no three-dimensional flow phenomena were resolved.
Posa et al. [31] performed large-eddy simulations of the flow field in mixed-flow pumps
with moving geometries on a structured cylindrical mesh with approx. 28×106 grid points.
They used a discrete forcing approach proposed by Fadlun et al. [32], which is based on
interpolation near the boundaries and also suffers from non-conservativity.

The present paper introduces an accurate and efficient approach based on the conser-
vative cut-cell method for large scale simulations of rotor-stator interactions in turbulent
compressible turbomachinery flows with realistic rotating geometries. The application of
the method to the rotating ducted axial fan configuration and the good agreement of the
numerical results with the experimental data proves the quality of the numerical approach.
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Note, however, the main focus of this study is on the numerical methodology. The axial fan
test case only represents an application that demonstrates the applicability of this approach
to besides generic also industrially relevant problems.

The paper is structured as follows. First, the governing equations and the numerical
method are described. Second, the level-set approach for rotating surfaces is introduced and
applied to a generic rotor-stator test case. Then, it is shown that the method can be used to
determine the flow over a rotating ducted axial fan before conclusions are drawn.

2 Mathematical Model

2.1 Governing equations

We consider a viscous and compressible fluid flow in the three-dimensional domain �.
The non-dimensional conservation equations in a moving control volume V (t) ∈ �

bounded by the surface A(t) = ∂V (t) are given in arbitrary Lagrangian-Eulerian (ALE)
formulation [33]

d

dt

∫
V (t)

QdV +
∮

∂V (t)

H · ndA = 0, (1)

where Q = [ρ, ρu, ρE]T is the vector of the conservative variables, ρ the density, u the
velocity vector , and E = e + u2/2 the total specific energy containing the specific internal
energy e. Furthermore, let P denote the vector of primitive variables P = [ρ, u, p]T and the
quantity n the outward unit normal vector on dA.

The flux tensor H can be decomposed into an inviscid H
inv

and a viscous part H
vis

defined by

H
inv + H

vis =
⎛
⎝ ρ(u − u∂V)

ρu(u − u∂V) + pI
ρE(u − u∂V) + pu

⎞
⎠ + 1

Re0

⎛
⎝ 0

τ

τu + q

⎞
⎠ , (2)

where u∂V denotes the velocity of the control volume surface.
All variables are non-dimensionalized by fluid properties of the state at rest denoted by

the subscript “0”. The Reynolds number is obtained by Re0 = ρ0a0lref /η0 using the speed
of sound a0 = √

γp0/ρ0 with the ratio of specific heats γ = 1.4 and the characteristic
length lref . The stress tensor τ for a Newtonian fluid with zero bulk viscosity is expressed
by

τ = 2

3
η (∇ · u) I − η

(
∇u + (∇u)T

)
. (3)

According to Fourier’s law, the conductive heat flux reads

q = − λ

Pr (γ − 1)
∇T , (4)

where ∇T is the gradient of the static temperature, Pr = η0cp/λ0 = 0.72 is the Prandtl
number, and cp is the specific heat capacity at constant pressure. For a constant Prandtl
number, the thermal conductivity is λ(T ) = η(T ) and the dynamic viscosity η is calculated
using Sutherland’s Law [34]

η(T ) = T 3/2 1 + S

T + S
, (5)
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with S = 111K/293K for air at moderate temperatures. The fluid is assumed an ideal gas
such that the equation of state reads

e = p

ρ (γ − 1)
. (6)

2.2 Boundary conditions

At fixed or moving walls �(t), the no-slip boundary condition is imposed

u(x, t) = u�(x, t), x ∈ �(t), (7)

and the walls are considered adiabatic
∂T

∂n
= 0, x ∈ �(t). (8)

According to [35], a Robin-type boundary condition for the pressure is derived from
the momentum equation by projecting the pressure gradient normal to the surface and
neglecting the viscous terms

∂p

∂n
= −

(
ρ

du
dt

· n
)

, x ∈ �(t), (9)

where d/dt denotes the material derivative.

3 Numerical Method

The numerical method is based on a multiple grid approach and uses two hierarchical Carte-
sian grids, where one grid is used to solve the conservation equation (1) and a second grid
is used to track the moving geometries which are described by multiple level-set fields [19].
The computational meshes are generated by an efficient parallel mesh generator [36] and
are adapted during the solution procedure according to the location of the moving bound-
ary or local flow phenomena. The mesh for the fluid domain and the mesh for the level-set
field can differ due to different requirements for the resolution of the geometry and the local
flow field. However, they share the coarsest refinement level to ensure identical subdomain
boundaries after the decomposition across different processors such that the hierarchical
nature of the data structure allows a quick link and an efficient data exchange between the
meshes.

In the following, the numerical method for the fluid domain is discussed. The conser-
vation equation (1) is approximated on a hierarchical Cartesian grid with local refinements
and cut cells at the boundaries using a cell-centered finite-volume discretization. The reso-
lution of the Cartesian grid acts as an implicit filter and decomposes the turbulent structures
into a resolved part containing the dominant large eddies and the non-resolved sub-grid
scale part. That is, in the LES formulation, the sub-grid scales are implicitly modeled
based on the monotone integrated LES approach (MILES) [37], where appropriate dis-
cretization schemes are used to numerically dissipate the energy at the smallest scales. This
approach has been successfully validated by computing various complex turbulent flow
problems [38–41].

The cut-cell concept is used for a sharp representation of wall boundaries. That is, in
each time step all cells intersecting the moving boundary �, which is described by the zero
contour of the level-set function, are cut by computing their intersection points. Then, the
cell is divided into a fluid part and a solid part using a piecewise linear approximation of
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the geometry in between the cut points, where the solid part is discarded. Based on the
cutting points, the new volume V , surface areas A, and boundary-surface normals n of the
fluid part of the cell can be computed. Furthermore, the new cell center is obtained by
xc = 1

V

∫
V
xdṼ . For further details on the Cartesian cut-cell procedure for forced boundary

motion, the reader is referred to [25].
The surface fluxes are approximated by an upwind-biased scheme, where the primitive

variables at the cell surfaces are obtained by a second-order accurate monotonic upstream-
centered scheme for conservation laws (MUSCL). The left and right values at each surface
centroid xs = 1

A

∫
A
xdÃ, marked by the superscripts L and R, are extrapolated from the cell

centers of the two facing cells

PL/R
s = PL/R

c + ∇P |L/R
c ·(xs − xL/R

c ), (10)

where the cell-centered gradients ∇P |c of each primitive variable ξ ∈ P in cell c are
computed by a weighted least-squares reconstruction [42]

∇ξ |c=
∑
l∈Nc

Cl (ξl − ξc) (11)

using all direct neighbors of the cell denoted by Nc. The reconstruction constants are
obtained by solving a linear equation system

ACl = Wl
2dxl , (12)

with the distance vector dxl = xl − xc and the tensor A = ∑
l∈Nc

Wl
2dxldxl , where Wl

2

is the squared reconstruction weight of the neighboring cell l. Details on the weighting and
the solution of the linear equation system can be found in [25].

The inviscid flux vector Finv
i = H

inv · ei is computed by a modified version of Liou and
Steffen’s advection upstream splitting method (AUSM) [43] in a low dissipation version
suitable for LES proposed by Meinke et al. [39]

Finv
i = 1

2
[MLR

i (fL + fR) + |MLR
i |(fL − fR)] + pi , (13)

where i = 1, 2, 3, MLR
i = 1

2 [(ui/a)L + (ui/a)R], and

f = [ρa, ρau, ρa(E + p/ρ)]T . (14)

The term for the pressure is obtained by

pi =
[
pL

(
1

2
+ χ(ui/a)L

)
+ pR

(
1

2
− χ(ui/a)R

)] ⎛
⎝ 0

ei

0

⎞
⎠ , (15)

where the parameter χ determines the numerical dissipation of the scheme. It is set to 0.5
at surfaces between cells of different refinement levels and 1/96 everywhere else. For the

viscous flux vector Fvis
i = H

vis · ei , a central-difference scheme is used, where the gradi-
ents at the cell-surface centroids are computed using the recentering approach proposed by
Berger [44]. As shown in [16], the overall spatial accuracy of this approach is second order.
Further details on the basic numerical method can be found in [16, 25, 45].
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The temporal integration of the Navier-Stokes equations (1) is done by a new more effi-
cient explicit second-order accurate 5-stage Runge-Kutta scheme proposed by Schneiders
et al. [25], which is a modification of the scheme from Jameson and Mavriplis [46]

(QV )(0) = (QV )(n),

(QV )(1) = (QV )(0) − �t R(tn;Q(0)),

(QV )(k) = (QV )(0) − �t
[
(1 − αk−1) R(tn;Q(0)) + αk−1 R(tn+1;Q(k−1))

]
, k = 2, ..., 5,

(QV )(n+1) = (QV )(5). (16)

The superscript n denotes the time level t = n�t and R(t;Q) is the finite-volume
aproximation of the cell-surface flux integral at time level t , i.e,

R(t;Q) =
∮

∂V (t)

[Hinv
(Q) + H

vis
(Q)] · ndA + O(h2). (17)

Note that unlike in the Jameson and Mavriplis [46] method the residual operator R has
not to be recomputed in the intermediate Runge-Kutta stages. This makes the new method
extremely attractive when problems with moving boundaries are considered, where in
the standard formulation [46] the residual operator for each intermediate stage has to be
reconstructed.

In this study, the coefficients α = ( 14 ,
1
6 ,

3
8 ,

1
2 , 1)

T are used, which are optimized for
stability. The time step �t is computed via the Courant-Friedrichs-Lewy (CFL) stability
constraint

�t = CFL min
i=1,2,3

h

|ui | + a
, (18)

where h is the length of the smallest non-cut cell of the computational domain.
Using the aforementioned cut-cell approach arbitrarily small cells can be generated,

which lead to numerical instabilities. Therefore, a flux redistribution method developed by
Schneiders et al. [25], which ensures stability without reducing the time step to extremely
small values, is applied.

4 Kinematic Motion Level-set Interface Method

Asmentioned in Section 3, a second Cartesian mesh is used for the level-set field to track the
moving boundaries. A multiple level-set approach with a semi-Lagrangian level-set solver
for multiple translationally moving boundaries has been introduced in [19]. In the follow-
ing, this approach is extended to rotating boundaries such that arbitrary turbomachinery
flows can be computed. An efficient approach for the rotation of the embedded boundaries
described by a level-set field on a computational domain distributed across different proces-
sors is introduced. The approach is explained for an example with a simple geometry, i.e., a
rotating cylinder surrounded by an outer wall and subsequently, applied to the flow over a
ducted axial fan with an upstream installed turbulence generating grid.

To represent an arbitrary moving embedded boundary �(t) a signed-distance function
φ(x, t) defined as

�f (t) = {x|φ(x, t) > 0} ,

�(t) = {x|φ(x, t) = 0} ,

�s(t) = {x|φ(x, t) ≤ 0} (19)
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with the property |∇φ|=1 is used. The sign of φ(x, t) defines wether a point x ∈ � is located
inside the solid �s(t) or the fluid domain �f (t) at a time t . The interface location is given
by the zero contour of the level-set function �(t) = {x|φ(x, t) = 0} denoted by φ0. The
distance to each point x ∈ � can be evaluated by

dist (x, �(t)) = |φ(x, t)|. (20)

The use of a signed-distance function allows an easy evaluation of the normal vector n(x, t)
pointing into the solid

n(x, t) = − ∇φ(x, t)
|∇φ(x, t)| . (21)

Further details on the computation of intersection information required for the computation
of the cut cell geometry are discussed in [19].

There are different approaches for the evolution of a level-set function. For simple
geometries analytical level-set functions can be used which allows a straightforward eval-
uation of the embedded boundaries at any time t for arbitrary translational and rotational
motions. If the level-set function is initialized from CAD data, a time accurate solution of
the level-set transport equation

∂φ

∂t
+ f · ∇φ = 0, (22)

with the velocity vector f(x, t) can be determined using the reinitialization concept to
improve the shape conservation [20, 21]. However, despite high-order discretization meth-
ods and constraint reinitialization approaches numerical errors are accumulated when (22)
is solved such that the geometric conservation is not completely fulfilled, i.e., the geometry
slightly changes in time [19]. Therefore, a semi-Lagrangian level-set solver was introduced
in [19]. Using this approach the geometric error is just defined by the interpolation error
and remains constant over time. However, this semi-Lagrangian method was developed for
translational displacements only. Therefore, it is extended to rotational displacements in this
study.

The overall methodology is discussed for a simple rotor-stator test case, i.e., a ducted
rotating cylinder illustrated in Fig. 1, where the embedded boundary �1 denotes the outer
wall and �2 the inner rotating cylinder. The length and the diameter of the inner cylinder
are L/Do = 2/3 and Di/Do = 2/15, where Do denotes the diameter of the outer wall. The
origin of the coordinate system coincides with the centerlines of the outer and inner cylinder
which also define the x and y directions. Figure 2 shows the separate level-set fields of the
stationary outer cylinder φ1 (top left), the rotating inner cylinder φ2 (top right) initialized

Fig. 1 Inner cylinder and outer
cylinder wall given in
STereoLithography (STL)
format; �1 and �2 denote the
boundaries of the outer wall and
the inner cylinder

Di

1

L Do

2
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Fig. 2 Illustration of the x = 0, y-z plane, i.e., the cross section through the center of the cylinder; the
level-set function φ1 (top left) describes the embedded boundary �1 initialized from the STL geometry of
the outer wall; the level-set function φ2 describes the embedded boundary �2 (top right) initialized from the
STL geometry of the inner cylinder; the level-set function φ0 (bottom) is a combination of φ1 and φ2 and is
used for the generation of cut cells; the colors correspond to the value of the respective level-set function;
black solid lines denote the zero level-set contour φ0

from STL data, and a combined level-set field φ0 (bottom) according to [19]. The latter is
used for the computation of the cut cells. For a sharper representation of complex geometries
or tip gaps, the multi-cut cell technique introduced by Schneiders et al. [47] can be used,
where φ1 and φ2 are used for the computation of the cut cells, instead of φ0. This method
allows complex intersections of a single Cartesian cell with multiple surfaces. The positive
values of the level-set function φ0 denote the fluid part and the negative values the solid
part of the domain and black solid lines denote the zero level-set contour φ0. Furthermore,
Fig. 2 illustrates the Cartesian mesh used for the level-set field. The mesh is adaptively
refined along the embedded boundaries �1 and �2, where the maximum refinement level,
which defines the geometric accuracy, and the width of the refined band denoted by shadow
band in Fig. 2 (top left), can be specified. Since the level-set information is only required
close to the boundaries and to reduce the costs, the level-set field is defined in a thin band
denoted as solution band Fig. 2 (top left) located within the shadow band. The rest of the
domain is initialized by the maximum positive or negative level-set value. Both bands are
defined based on the zero level-set contour φ0. When one embedded boundary is propagated
in time, the solution band moves within the shadow band. Once the distance between the
outer boundaries of the shadow and solution band becomes smaller than 3h, with h being
the cell length inside the shadow band, the mesh is adapted to retain a fixed band of refined
cells along the embedded boundaries.

In the present formulation, the level-set field φ2 is to be propagated in time to rotate
the embedded boundary �2 about the x-axis. To prevent the accumulation of the geometric
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error in time, the level-set function is propagated by interpolating from the reference level-
set field initialized from the STL geometry such that the geometric error is just defined by
the interpolation error and remains constant over time. For any arbitrary prescribed motion
of the embedded boundary �2, the level-set function in the cell center x can be evaluated by

φ̃2(x, t0 + t) = φ2(xint ) (23)

at every time step using trilinear interpolation according to [19]. For linear translational
motion without acceleration xint = x− v(t − t0), where v is the translational velocity of the
embedded boundary.

For small displacements ||x − xint || ≤ 3h/2 only the direct neighbors of a cell have
to be searched to find the corresponding cell which contains the point xint . Then, φ̃2 is
evaluated by trilinear interpolation using the level-set values at the corner vertices φ2

v , which
are computed using the cell center values of the eight surrounding cells φ2

v = ∑8
k=1 φ2

k . For
parallel computations, one layer of halo and window cells is used to exchange data at the
sub-domain interfaces, i.e., the cell center value and the eight values at the corner vertices
are exchanged between the window and the halo cells, where window cells are internal cells
at the sub-domain boundaries and halo cells are a copy of the according window cells on
the neighboring domain.

Once the displacement becomes larger than 3h/2, the corresponding cell containing xint

has to be searched in the entire domain. This is very expensive, especially for parallel com-
putations where the domain is distributed on an arbitrary number of processors. To avoid
this, the entire level-set field within the solution band is shifted by exactly one cell in the
direction of motion

φ2
shif t (x) = φ2(x − xshif t ) (24)

each time the displacement becomes larger than half the cell length such that ||x − xint || ≤
h/2 at all times. Thus, the interpolation can be performed locally within the cell in which
the level-set field has to be evaluated without the need to search the corresponding cell in
the entire domain. Since the level-set field is shifted by exactly one cell, the level-set values
can be directly copied from the neighboring cells and no interpolation is required for this
step such that the accuracy of the reference level-set field φ2 is kept. Therefore, the level-set
function φ̃2 is evaluated by

φ̃2(x, t0 + t) = φ2
shif ted (xint ). (25)

This approach works fine for translational motion. However, due to the Cartesian mesh, for
rotational motion the reference level-set field φ2 cannot be shifted in the direction of motion
without a loss of accuracy to avoid the search of the corresponding cell containing xint ,
which for rotational motion without acceleration is defined as xint = Q(x − xref ) + xref .
The quantity xref denotes the center of rotation andQ denotes the rigid body rotation, which
for a rotation at a constant angular velocity ω about the x-axis reads

Q =
⎛
⎝ 1 0 0

0 cos(ω(t − t0)) sin(ω(t − t0))

0 −sin(ω(t − t0)) cos(ω(t − t0))

⎞
⎠ . (26)

Therefore, the reference level-set field initialized from the STL data remains unchanged
at all times. To keep the accuracy of the reference level-set field, the level-set mesh is not
adapted within the initial solution band. To rotate the embedded boundary the level-set func-
tion is evaluated according to Eq. 23 and the global cell ID of the cell containing xint and
its sub-domain ID are stored for each cell inside the solution band and are updated at each
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time step by checking whether the stored cell contains the point xint . This allows restarting
the solution procedure at any instant in time using an arbitrary number of processors. At a
time when the point xint leaves the corresponding cell, all direct neighbors are searched to
find the new corresponding cell and the stored global cell ID is updated. If x and xint are
located in the same sub-domain, no communication is required. However, if the new cor-
responding cell is a halo cell, the global cell ID of its corresponding window cell located
on the neighbor sub-domain and the ID of the sub-domain are stored. In the next time step,
the coordinates xint and the global cell ID of the stored window cell are sent directly to the
stored sub-domain. Then, it is checked whether the window cell still contains the point xint ,
otherwise its neighbors are searched. Subsequently, the level-set function φ2 is interpolated
based on values at the vertices of the identified corresponding cell and sent back to the
sub-domain which requested this information. This approach is applied to each cell located
inside the solution band and avoids a global search in all sub-domains which is very expen-
sive. After the interpolation, the level-set fields φ1 and φ2 are combined to the level-set field
φ0, which is then exchanged with the computational mesh used to solve the conservation
equations to compute the cut cells. Using this approach the inner cylinder can be rotated. It
is exemplarily shown in Fig. 3 for three angles of rotation, i.e., 0◦, 45◦, and 90◦.

To quantify the geometric error, three mesh resolutions inside the solution band are used,
i.e., h/Do = 0.0114, h/Do = 0.0228, and h/Do = 0.0456. For all cases, the zero level-set
contours φ0 are exported as triangular surface grids �LV S

h at each time step. The zero level-
set contour φ0 of the finest mesh, i.e., h/Do = 0.0114, at time step t0, which is reconstructed
from the level-set field initialized by the STL data, is denoted �

ref
h and used as reference.

To compute the error, we define the distance dist (xv, �
ref
h ) between a point xv belonging to

a surface �LV S
h , xv ∈ �LV S

h with the superscript LV S meaning level set, and the reference

surface �
ref
h

dist (xv, �
ref
h ) = min

xq∈�
ref
h

||xv − xq ||2, (27)

where || · ||2 denotes the Euclidian norm. Furthermore, we require xv ∈ �LV S
h to be a grid

vertex, while xq ∈ �
ref
h may be located on a triangle edge or surface. The mean distance

Fig. 3 Illustration of the x = 0, y-z plane, i.e., the cross section through at the center of the cylinder; the
level-set field φ0, which is a combination of the level-set field φ1 and the propagated level-set field φ2 for
three angles of rotation, i.e., 0◦, 45◦, and 90◦; the colors correspond to the value of the respective level-set
function; black solid lines denote the zero level-set contour φ0
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Fig. 4 L1-norm of the geometric
error eh over time for a rotation
of the inner cylinder by 90◦
about the x-axis for three grid
resolutions, i.e., h/Do = 0.0114,
h/Do = 0.0228, and
h/Do = 0.0456

based on the L1-norm of the distance field from �LV S
h to �

ref
h can be computed by

dist (�LV S
h , �

ref
h ) = 1

N�LV S
h

∑
xv∈�LV S

h

dist (xv, �
ref
h ), (28)

where N�LV S
h

is the number of grid vertices xv on �LV S
h . Therefore, we define the geometric

error eh at each time step as

eh = dist (�LV S
h , �

ref
h )

Do

, (29)

which is depicted in Fig. 4 over a quarter rotation of the inner cylinder about the x-axis for
three grid resolutions. The geometric error which is just defined by the interpolation error
remains almost constant during the rotation of the inner cylinder. Since �LV S

h of the finest

mesh at t0 is used as the reference surface grid �
ref
h and due to the Cartesian structure

of the level-set mesh, the geometric error is zero at 0◦ and 90◦ for h/Do = 0.0114. The
interpolation error decreases, as the mesh is refined. To quantify the convergence rate of the
geometric error, it is averaged over a quarter rotation

eavg = 2

π

∫ π/2

0
ehdθ. (30)

Figure 5 evidences the second-order convergence of the mean geometric error.
Note that the method is not restricted to rotational motions at a constant angular velocity

ω. It can be easily applied to arbitrary translational and rotational motions using xint =
Q(x − xref ) + xref − v(t − t0), with Q from Eq. 26, where the angular velocity ω(T ) and
the translational velocity v(t) can vary in time.

Fig. 5 L1-norm of the geometric
error averaged over a quarter
rotation eavg of the inner cylinder
about the x-axis for three grid
resolutions, i.e., h/Do = 0.0114,
h/Do = 0.0228, and
h/Do = 0.0456; the solid line
indicates a second-order slope
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5 Results

Having described the method to numerically simulate the rotating embedded boundaries
for a generic case, we now turn to the discussion of an industrially relevant flow problem
using the multiple grid Cartesian cut-cell/level-set method. The flow over a rotating ducted
axial fan with a stationary turbulence generating grid at the inflow is computed. The flow
configuration is a standardized fan test rig, which has been used for acoustic measurements
by, e.g., Sturm and Carolus [48]. The axial fan is a low pressure rotor-only fan and has
five twisted blades made up from standard NACA 0010-63 airfoil sections with a maximum
camber of 4% at midchord. The chord length of the blades varies between 67.7 mm and 90.5
mm. The trailing edge thickness is 0.6 mm and the diameter of the outer casing 300 mm.
The Reynolds number based on the relative velocity πDon and the diameter of the outer

wall is Re = ρπD2
on

η
= 9.36 × 105 and the Mach number is M = πDon

a
= 0.136, where

n=3000 rpm.
The geometry of the configuration visualized by the zero level-set contour φ0 and two

axial cross sections through the computational mesh are shown in Fig. 6. The mesh has
approx. 275 Mio. cells and is adapted according to the relative location of the turbulence
generating grid and the fan blades. The analysis is performed at a fixed operating point
defined by the flow rate coefficient � = 4V̇

π2D3
on

= 0.165 and the tip-gap width s/Do =
0.01. The ratio between the diameter of the outer casing wall and the inner diameter of the
hub is Do/Di = 20/9. The turbulence generating grid consists of perpendicular rods with a
quadratic cross section. The geometric quantities defining the turbulence grid a/Do = 0.05
and b/Do = 0.2 are shown in Fig. 6.

Due to a 90◦ periodicity of the turbulence generating grid geometry and 72◦ periodicity
of the fan blades geometry in the azimuthal direction, a periodic boundary condition, which
has been imposed in previous investigations of the axial fan flow [22, 23], where only one
out of five blades has been resolved, cannot be used for the current configuration. Therefore,
a 360◦ full-fan computation is conducted. The grid convergence study in [22] has shown that
approx. 1 billion cells are required to accurately resolve all flow phenomena around one fan

Fig. 6 Geometry of the axial fan configuration visualized by the zero level-set contour φ0 and axial cross
sections through the computational mesh for the fluid flow; simulation of the relative rotation between the
turbulence generating grid and the fan blades
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blade. When considering all five blades and a much larger axial extent of the computational
domain due to the turbulence generating grid located 1.25Do upstream of the fan blades,
which not only increases the number of cells, but also the number of time steps to obtain
a fully developed flow field, the computational costs for an accurate resolution of the flow
field are enormous. Therefore, this analysis is not aimed at resolving all the detailed flow
physics such as the vortical structures inside the tip-gap or the transition phenomena on the
suction side. The reason for this investigation is twofold. On the one hand, the applicability
of the kinematic motion level-set interface method to real turbomachinery flows is to be
demonstrated and on the other hand, the impact of the interaction of the turbulence grid and
the rotating fan on the flow field upstream of the rotating blades, i.e., the definition of the
inflow data, is to be shown.

In this study, the size of the finest cells at the wall is approx. �xi = 8.0 × 10−4Do, the
size of the coarsest cells off the wall is approx. �xi = 32.0 × 10−4Do, and the time step
is �tπn = 1.064 × 10−4. In total, six full rotations of the rotor are simulated. Data of the
last two rotations are used for the statistical analysis of the flow field. The computation has
been performed on 4608 CPUs and the total CPU time to simulate 6 full rotations is approx.
340 h.

In Fig. 7 the instantaneous vortical structures of the flow field are visualized by the con-
tours of the Q-criterion and colored by the relative Mach number in the frame of reference
of the fan blades. The maximum relative Mach number is located near the tip-gap region due
to the rotation of the blades. The grid generated vortical structures and the turbulent fluctu-
ations, which are generated by the flow separating from the rectangular rods, decay in the
axial direction due to turbulent mixing such that a more homogeneous turbulent flow field
develops. Several flow phenomena, i.e., passage vortices at the hub of the blades, which lead
to a turbulent transition of the boundary layer, and tip-gap vortices at the blade tips, which
are generated by the tip-leakage flow inside the tip gap and produce highly unsteady tur-
bulent wakes, are observed. Note that the details of those phenomena have been discussed
in [22, 23]. Turbulent transition on the suction side of the blades has been also observed
in [22] under the same operating conditions. This mechanism is not captured in the current
solution due to the underresolution of the near-wall flow.

Figure 8 shows the impact of the turbulence generating grid on the flow field over the
axial fan. The contours of the vorticity magnitude | �ω|/πn of the instantaneous flow field at

Fig. 7 Contours of the Q-criterion of the instantaneous flow field colored by the relative Mach number in
the frame of reference of the fan blades
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Fig. 8 Contours of the vorticity
magnitude | �ω|/πn of the
instantaneous flow field at
� = −45◦ for the 72◦
computation using periodic
boundary conditions in the
circumferential direction without
a turbulence generating grid
from [22] (top) and the current
360◦ computation with a
turbulence generating grid at the
inflow (bottom); the dashed line
denotes the axial location
x/Do = 0.0

� = −45◦ for the 72◦ computation using periodic boundary conditions in the circumfer-
ential direction without a turbulence generating grid on a mesh with approx. 50 Mio. cells
from [22] (top) are compared with the current 360◦ computation including a turbulence
generating grid at the inflow (bottom). Note that the off-wall mesh resolution is identical
in both cases. A major impact on the overall flow field upstream of the rotating blades is
evident, which also affects the flow field near the tip-gap region and downstream of the fan
blades. Without the turbulence generating grid, the inflow is free of vorticity fluctuations.
The main vortical structures are generated by the fan blades in the tip-gap regions by the

a

b c

Fig. 9 Radial distribution of the time-averaged axial velocity (a), turbulent kinetic energy (b) and pressure
fluctuations (c) inside the tip-gap; without a turbulence generating grid (—); with a turbulence generating
grid at the inflow (- - -)
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tip-gap vortices and their highly unsteady turbulent wakes, downstream of the blades by the
turbulent wakes generated at their trailing edges, and at the hub by the turbulent boundary
layer. With the turbulence generating grid, high vorticity is generated upstream of the fan,
which affects the flow field around the blades and increases the vorticity especially in the
tip-gap regions and the blade wake regions.

Figure 9a–c clearly show the strong impact of the turbulence generating grid on
the flow field inside the tip gap. Compared to the case without inflow turbulence,
which shows a positive axial velocity close to the blades tip surface Fig. 9a, due to
the separation bubble inside the tip gap, for the case with the grid generated turbu-
lence the separation bubble reattaches closer to the pressure side such that no positive
axial velocity is observed over the entire gap width. This effect is also reflected in the
radial distributions of the pressure fluctuations Fig. 9b and the turbulent kinetic energy
Fig. 9c, where the peaks close to the blade-tip surface disappears for the case with
inflow turbulence. However, as mentioned before, for a reliable quantitative analysis of
the impact of the turbulence generating grid on the tip-leakage flow dynamics and the
unsteady vortical flow features in the tip-gap region, a higher grid resolution is required
[22, 23].

The instantaneous contours of the axial Mach number Mx at � = −45◦ and at three
time steps, i.e, t0, t0 +�T , and t0 + 2�T with �T πn = π

15 which corresponds to 24◦ rota-
tion angle of the blades, in Fig. 10 show that the flow is accelerated due to the displacement
defined by the rods and deadwater regions are generated downstream of each rod, which
results in multiple free-shear layers that become unstable and strongly mix further down-
stream of the turbulence generating grid. This leads to an almost homogenous turbulent
flow that interacts with the blades. In addition, Fig. 11 illustrates instantaneous contours of
the axial Mach number Mx at x/Do = 0.617, i.e., this cross section cuts fan blades, and
the same three time steps. The dashed line denotes the location of the plane at � = −45◦
from Fig. 10 and the turbulence generating grid is indicated by the black solid lines. The

Fig. 10 Instantaneous contours
of the axial Mach number Mx at
� = −45◦ and at three time
steps, i.e, t0, t0 + �T , and
t0 + 2�T with �T πn = π

15
which corresponds to 24◦
rotation angle of the blades; the
dashed line denotes the axial
location x/Do = 0.0
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Fig. 11 Instantaneous contours of the axial Mach number Mx at x/Do = 0.617 and at three time steps, i.e,
t0, t0 + �T , and t0 + 2�T with �T πn = π

15 which corresponds to 24◦ of rotation; the black solid lines
indicate the relative position of the turbulence generating grid; the dashed line denotes the location of the
plane at � = −45◦ from Fig. 10

visualization of the flow field shows that the large-scale structures hardly change as a func-
tion of time and possess an azimuthal periodicity which is related to the five blades of the
fan.

The present computational results are compared to experimental data from [49] in Fig. 12

where the pressure coefficient � = �p/(π2

2 ρD2
on

2) is shown as a function of the flow

coefficient � = 4V̇
π2D3

on
with �p being the average pressure increase over the fan blades.

In addition, previous numerical results from [22, 23] are depicted. It is evident that a good
agreement between the LES and the experimental data is achieved. Furthermore, in Fig. 13
experimental and numerical data of the radial distributions of the time-averaged velocity
u/u∞ (left) and the velocity fluctuations urms/u∞ at x/Do = 0.0 are juxtaposed for the
present case. This comparison also evidences the good experimental-numerical agreement.

Fig. 12 Pressure coefficient � = �p

( π2
2 ρD2

on2)
versus flow rate coefficient � = 4V̇

π2D3
on
; experimental data for

s/Do = 0.01 and s/Do = 0.005 from [49] compared previous numerical results from [22, 23] without a
turbulence generating grid and to present numerical results considering a turbulence generating grid
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Fig. 13 Radial distributions of the time-averaged velocity u/u∞ (left) and the velocity fluctuations urms/u∞
at x/Do = 0.0; experimental data (•) [49] compared to present numerical results (—)

6 Concluding Remarks

A Cartesian cut-cell/level-set method in an unstructured hierarchical Cartesian setup based
on a multiple grid approach to simulate rotor-stator interactions in turbulent turbomachin-
ery flows has been presented. The sharp representation of the complex moving boundaries
being embedded in the computational domain are described by multiple level-sets. This
ensures a strict conservation of mass, momentum, and energy and allows the simulation of
multiple relatively rotating boundaries in a fixed frame of reference. An efficient kinematic
motion level-set interface method for the rotation of the embedded boundaries, which are
described by multiple level-set fields on a computational domain distributed across several
processors, has been introduced. Unlike the sliding interface concept the relative rotation of
the surfaces to each other can be arbitrary, i.e., the mesh does not have to satisfy constraints
being imposed by the predefined relative motion of the boundaries to ensure conservativity.

First, the kinematic motion level-set interface method has been developed by analyzing
the generic flow problem of a ducted rotating cylinder. Then, this method has been applied
to a large-scale application, i.e, a rotating ducted axial fan with a stationary turbulence gen-
erating grid at the inflow to demonstrate its efficiency and applicability to real industrial
turbomachinery flows. The results show the good agreement of the numerical and exper-
imental data and a dominant impact of the turbulence generating grid on the flow field
upstream of the fan which also affects the flow field near the tip-gap region and downstream
of the fan.
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39. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for

large-eddy simulation. Comput. Fluids 31(4–7), 695–718 (2002)
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