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Abstract A new stochastic backscatter model is proposed for detached eddy simulations
that accelerates the development of resolved turbulence in free shear layers. As a result,
the model significantly reduces so-called grey areas in which resolved turbulence is lacking
after the computation has switched from a Reynolds-averaged Navier–Stokes simulation to
a large eddy simulation. The new stochastic model adds stochastic forcing to the momentum
equations with a rate of backscatter from the subgrid to the resolved scales that is consistent
with theory. The effectiveness of the stochastic model is enhanced by including spatial and
temporal correlations of the stochastic forcing for scales smaller than the cut-off scale. The
grey-area mitigation is demonstrated for two canonical test cases: the plane free shear layer
and the round jet.

Keywords Detached eddy simulation · Free shear layers · Subgrid-scale model ·
Stochastic backscatter model · Grey-area mitigation

1 Introduction

Detached Eddy Simulation (DES) has been conceived as a way to improve the accuracy of
the simulation of turbulent flows with significant flow separation, which are still beyond the
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grasp of Reynolds-Averaged Navier–Stokes (RANS) turbulence models, without the high
expense of a full Large Eddy Simulation (LES). In DES the attached boundary layers are
captured with RANS while the separated flow regions are captured with LES. These RANS
and LES regions are not specified a priori as in a zonal hybrid RANS–LES approach, but
are determined by comparing the turbulence length scale of the RANS model to the subgrid
length scale or filter width of LES. Thus, no a priori knowledge of the flow topology is
strictly required, which is one of the advantages of the method. Since its original proposal
by Spalart et al. [1], DES has seen much development, including improvements such as
Delayed DES [2] to shield the boundary layers captured with RANS from so-called shear-
stress depletion and Improved DDES [3, 4] to extend DES towards wall-modelled LES, as
well as several variants such as ZDES [5] and X-LES [6].

The success of a DES computation depends on the speed of development of resolved
turbulence in the separated flow regions captured with LES. In some cases, a substantial so-
called grey area exists immediately after flow separation, consisting of a stable free shear
layer containing no or little resolved turbulence even though the computation is in LES
mode [7, 8]. This grey-area problem is most pronounced in flows with little or no recircula-
tion of turbulence back to the separation onset where it could destabilize the shear layer. For
example, the prediction of the noise generated by turbulent jets using DES will fail due to
this problem, but it also limits the accuracy of other DES computations involving separated
thin shear layers. Therefore, tackling the grey-area issue is important if DES is to fulfil its
potential for extending the domain where accurate and affordable CFD computations can
be performed towards strongly separated flows and in particular towards to the borders of
the flight envelope for aeronautical applications.

One approach to overcome the grey area is to add synthetic turbulence at the RANS–LES
interface [9–11]. This is a natural approach in a zonal RANS–LES method, but fits less well
with the original non-zonal concept of DES where the location of the RANS–LES interface
is generally not known. Thus, there is a need to look for alternative approaches to mitigate
the grey-area issue.

Generally, two lines can be followed for non-zonal grey-area mitigation: reducing the
level of subgrid stresses in the initial free shear layer, allowing 3D instabilities to develop,
or inducing the development of 3D instabilities more directly by adding some form of
stochastic forcing.

In DES, the subgrid stresses are typically modelled by an eddy-viscosity subgrid-scale
(SGS) model and are therefore proportional to the product of the eddy viscosity and the
rate of strain. As shear layers are initially very thin, they contain high values of the mean
velocity gradient, and therefore of the rate of strain, which leads to high values of the subgrid
stresses. Any instability of the initial shear layer may then be damped by these high stresses,
thus delaying the development of resolved turbulence. A first approach to reduce these high
subgrid stresses consists of reducing the eddy viscosity by defining the subgrid length scale
as the cube root of the cell volume instead of the maximum of the mesh size (which is
standard in DES), making use of the slender cells typically present in initial free shear layers,
as proposed in the original ZDES [5]. Another approach that uses the slender cells, sensitizes
the subgrid length scale to the direction of the vorticity vector, essentially excluding the
mesh size in that direction from the definition of the filter width [10, 12, 13]. There is
something to be said, however, for more generic methods that are less dependent on the
specific shape of the grid cells. The subgrid stresses can also be significantly reduced in the
initial shear layer by removing the dependence on the high velocity gradients in the mean
flow through a High-Pass Filtered (HPF) SGS model [14]. A similar effect can be obtained
by using algebraic eddy-viscosity SGS models that deliver zero eddy viscosity in case of
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pure shear or nominally 2D flows such as the WALE and σ models [15, 16] as proposed by
Mockett et al. [17] . Finally, Shur et al. [13] recently proposed to use a kinematic measure,
based on the rate-of-strain tensor and the vorticity vector, to identify nominally 2D flows to
reduce the subgrid length scale. All these approaches have shown some success in mitigating
the grey-area issue, but room for improvement clearly remains. Here, the HPF model is used
as a baseline approach for reducing the level of subgrid stresses, as it is independent of the
shape of the grid cells and as the methods of Mockett et al. and of Shur et al. were not yet
available when this work was performed.

This paper focusses on inducing 3D instabilities through a stochastic SGS model. The
stochastic model is included in the X-LES method, which is a k–ω based DES method, but
it can be used in other DES methods as well. In earlier work, a simple stochastic eddy-
viscosity model had been proposed and tested [7]. This model had been formulated ad
hoc and consisted of multiplying the eddy-viscosity coefficient (in LES regions) with a
stochastic variable ξ2 (where ξ has a standard normal distribution).

Here, a new stochastic SGS model is proposed that has a more physical grounding. It
is based on the stochastic models of Leith [18] and Schumann [19]. These models include
energy backscatter from the subgrid scales to the resolved scales at a rate consistent with
theory such as EDQNM (see for example Lesieur [20]): for wave numbers κ smaller than
the cut-off wave number, the power spectrum of backscatter scales as κ4. As a consequence,
the backscatter will mainly affect the resolved scales close to the cut-off wave number. If the
stochastic forcing is formulated as the gradient of a stochastic variable that is uncorrelated
in space, as is the case in the Leith and Schumann models, then the correct scaling of the
backscatter rate is obtained. Note that the stochastic eddy-viscosity model, although formu-
lated ad hoc, also essentially consisted of the gradient of a stochastic variable and therefore
had the correctly scaled backscatter rate as well.

An additional reason for replacing the stochastic eddy-viscosity model is that it was
less effective when combined with the HPF SGS model that reduces the level of subgrid
stresses [14]. Reducing the subgrid stresses also reduced the stochastic forcing as it was part
of the same subgrid stress tensor. The new stochastic model adds an additional stochastic
forcing term, independent of the deterministic subgrid stress and therefore does not have
this disadvantage.

The new stochastic backscatter model is based on the model of Leith, but includes aspects
of the Schumann model as well as other modifications to combine it with the X-LES method
and to make it suitable for grey-area mitigation. The main advantage of the Leith model is
that the stochastic forcing is solenoidal and therefore does not function as a noise source.
To determine the velocity scale of the stochastic subgrid stresses, the Leith model uses the
magnitude of rate of strain and the filter width �. As the X-LES method employs a k-
equation SGS model, with k the subgrid kinetic energy, it is more natural to use

√
k as

velocity scale, as is also done by Schumann.
As the stochastic forcing represents the backscatter effect of the subgrid scales, which

are by definition not resolved on the computational grid, it is natural to define the stochas-
tic variables to be uncorrelated in space. Leith also defines them to be uncorrelated in time,
but Schumann introduces temporal correlation for time scales smaller than the subgrid time
scale or eddy turn-over time �/

√
k, using a Langevin-type stochastic differential equation.

Schumann’s main argument is that typically the numerical time step (based on a Courant
number of order one) will be significantly smaller than the subgrid time scale. Along the
same line, spatial correlation should be introduced when the mesh size is significantly
smaller than the subgrid length scale or filter width �, which is the case for the slender
grid cells typically used to capture shear layers. Furthermore, as noted by Schumann, only
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the subgrid scales close to the cut-off wave number contribute significantly to backscatter,
because backscatter decreases rapidly with increasing wave number of the subgrid scales
(as κ−6 in the inertial subrange). Thus, a backscatter model will be most effective if the
spectrum of the stochastic variables is not uniformly distributed (white noise), but is con-
centrated near the cut-off wave number (that is, if the stochastic variables are spatially
correlated over distances smaller than the filter width). In the new stochastic backscatter
model, spatial correlation is obtained by an additional, purely spatial, stochastic differential
equation that effectively applies implicit smoothing to a spatially uncorrelated stochastic
variable. At present, this implicit smoothing is defined by factoring in the three spatial
directions, which makes it very efficient on structured grids. To make the method applica-
ble to unstructured grids, a non-factored formulation would have to be defined, for which a
suggestion is made.

Although this is not the aim of the present work, stochastic forcing may also be used
to resolve the log-layer mismatch when using DES as a wall model in LES, as shown by
Piomelli et al. [21, 22]. Their formulation of the stochastic forcing, however, differs from the
present approach in that it is not based on the gradient of a spatially uncorrelated stochastic
variable, but rather on the stochastic variable itself, and therefore does not have the proper
scaling of the backscatter rate.

The baseline detached eddy simulation method employed here, X-LES, is briefly
described in Section 2, together with the high-pass filtered SGS model. Then, the stochas-
tic backscatter model is presented, both in continuous and discretized forms, in Section 3.
Finally, the effectiveness of the stochastic method in mitigating the grey-area issue is con-
sidered in Section 4 for two test cases: the plane free shear layer and the round jet. These
two cases suffer strongly from the grey-area problem, as there is no turbulence recirculat-
ing back to the onset of the shear layer that could diminish the grey area by destabilizing
the shear layer. In that sense, they form essential test cases for any method for grey-area
mitigation. The proposed method, however, is applicable to more complex test cases. First,
promising results have been obtained for a delta wing at high angle of attack [23, 24] and a
three-element airfoil [23, 25], with both computations displaying no significant grey areas
in the separating shear layers.

2 Detached Eddy Simulation: X-LES

In non-zonal DES methods such as X-LES [6], a single set of turbulence-model equations
is used to model both the Reynolds stresses in RANS mode and the subgrid-scale (SGS)
stresses in LES mode. An eddy-viscosity model is used for these stresses, which are then
given by the Boussinesq hypothesis:

τij = 2νt

(
Sij − 1

3∂kukδij

)
− 2

3kδij (1)

(using the summation convention), with νt the eddy viscosity, Sij = 1
2 (∂jui + ∂iuj ) the

rate-of-strain tensor, ui the velocity vector, k the turbulent or subgrid-scale kinetic energy,
and δij the Kronecker delta.

The X-LES method in particular is based on the TNT k–ω model [26]. The method
switches to LES when the RANS length scale, l = √

k/ω, exceeds the LES length scale
C1� (with C1 a model constant). The RANS length scale is then replaced by the LES length
scale in the expression for the eddy viscosity as well as in the expression for the dissipation
of turbulent kinetic energy ε:

νt = lb
√

k,
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and

ε = βk3/2

lb
,

with β = 0.09 and lb = min{l, C1�} . The filter width � is defined at each grid point as
the maximum of the mesh width in all directions. Note that effectively a k-equation SGS
model is used in LES mode (where lb = C1�), as ω drops out of the expressions for νt

and ε. In practical simulations, the shielding function fd as defined for Delayed DES must
be employed to protect the (attached) boundary layers from inadvertently switching to LES
(with fd varying between 0 inside attached boundary layers and 1 away from the wall; see
Spalart et al. [2] for the precise definition of fd ). The shielding function is included in
(delayed) X-LES by redefining the blended length scale as

lb = (1 − fd)l + fd min{l, C1�} = (1 − f̃d )l + f̃dC1�

with

f̃d =
{
0 if l ≤ C1� ,

fd if l > C1� .

The modified shielding function f̃d is identical to zero in the original RANS zones. It is
used as an indicator to effectively distinguish between RANS mode (f̃d → 0) and LES
mode (f̃d → 1), allowing to switch on specific modifications of the SGS model only in
LES mode.

As a first step to mitigate the grey-area issue, a high-pass filter (HPF) is applied to the
velocity field prior to computing the subgrid stresses [14]. Thus, the subgrid stresses essen-
tially depend on the gradient of the velocity fluctuations and not on the gradient of the mean
velocity field. As a result, the subgrid stresses are substantially reduced in thin free shear
layers which are characterized by high mean velocity gradients. The high pass filter consists
of subtracting the running time average of the velocity from the instantaneous velocity:

u′
i (x, t) = ui(x, t) − f̃d ūi (x, t),

with the running time average given by

ūi (x, t) = 1

t

∫ t

0
ui(x, s)ds.

The (subgrid) stresses given by Eq. 1 are then computed from the filtered velocity u′
i instead

of the instantaneous velocity ui . In LES mode (f̃d → 1), the filtered velocity equals the
velocity fluctuations, whereas in RANS mode (f̃d → 0) the filter is effectively switched
off. A similar HPF approach has been followed by Stolz [27] and by Lévêque et al. [28]
using a spatial filter instead of a temporal filter in order to improve the Smagorinsky model
for LES of wall-bounded flows. High-pass filters have also been used in the context of
the structure-function model [29]. It should be stressed that as the HPF approach already
effectively reduces the subgrid stresses in initial shear layers, there is no need to use the
alternative definitions of the filter width � that were mentioned in the introduction.

A limitation of the current HPF is that it does not filter out any low-frequency oscilla-
tions that are outside of the turbulence spectrum. For example, in the case of smooth-surface
separation, the shear layer may oscillate as a whole. This leads to a lower time-averaged
velocity gradient compared to a non-oscillating shear layer and therefore the filtering gives
a less strong reduction of the subgrid stresses. Nevertheless, also in these case the HPF
approach results in some grey-area mitigation and it has been applied to cases with smooth-
surface separation such as a bump in a square cylinder [30], a tandem cylinder [31], and
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a three-element airfoil [23]. A possible improvement would consist of using high-pass fil-
ters that filter out all frequencies below a certain cut-off frequency. For the objective of the
present work, however, the time-average based HPF suffices as a baseline to test the stochas-
tic backscatter model, in particular because in the essential test cases considered below, the
shear layers do not oscillate.

The model constant C1 has been calibrated to a value of 0.08 for decaying isotropic
homogeneous turbulence using a fourth-order numerical method. In particular, a fourth-
order low-dispersion symmetry-preserving finite-volume scheme [32, 33] is used for X-LES
computations. This method is based on the skew-symmetric form of convection, ensuring
the exact, discrete conservation of kinetic energy by convection, even for compressible flow.
Thus, numerical errors stemming from the discretized convection terms do not interfere
with the dissipation of kinetic energy by the subgrid stresses. Additionally, the numerical
dispersion of the method has been minimized, along the lines of the DRP scheme of Tam
and Webb [34], allowing accurate capturing of acoustic and vorticity waves with only eight
grid cells per wavelength.

3 Stochastic Backscatter Model

A new stochastic backscatter model is considered that is based on the models of Leith
[18] and Schumann [19]. These models include energy backscatter at the correct rate. The
subgrid stress tensor is redefined as

τij = 2νt

(
Sij − 1

3∂kukδij

)
− 2

3kδij − f̃dRij ,

with Rij a random stress tensor that is responsible for the backscatter. This tensor is not
modelled directly, but, following Leith, its divergence is modelled as the curl of a stochastic
vector potential,

∇ · R = ∇ × (CBkξ), (2)

with CB a model constant (CB = 1 by default) and ξ(x, t) a vector of three independent
stochastic variables with standard normal distribution: ξi = N(0, 1).

The additional stochastic term f = ∇ · R is effectively a random acceleration that is
added to the momentum equation. As it is solenoidal, it does not induce pressure fluctuations
and therefore will not function as a noise source. This can be understood from Lighthill’s
acoustic analogy [35], in which a wave equation for the density perturbation ρ′ relative to the
far-field density is obtained from the Navier–Stokes equations (without any approximation),
given by

∂2ρ′

∂t2
− c20

∂2ρ′

∂xi∂xi

= ∂2Tij

∂xi∂xj

− ∂fi

∂xi

,

with c0 the far-field speed of sound, Tij the Lighthill stress tensor, and f any acceleration
added to the right-hand side of the momentum equation. In this analogy, all aerodynamic
noise sources are contained in the terms on the right-hand side. When f is solenoidal, it
drops from the right-hand side of this equation and therefore it will not produce any acoustic
fluctuations.

Note that the magnitude of the backscatter term is proportional to the subgrid kinetic
energy k. In X-LES, a single equation is solved for k in the entire flow domain. Thus, the
value of k in an initial shear layer will be influenced by the value of k in the upstream,
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attached boundary layer. This boundary layer is typically in RANS mode and therefore k

will represent the total turbulent kinetic energy there. A high value of k will be convected
into the initial shear layer if the upstream boundary layer is turbulent, whereas k will be prac-
tically zero if the boundary layer is laminar. In the former case, the stochastic model may
destabilize the shear layer, whereas in the latter case the stochastic model will be effectively
switched off, allowing a natural laminar-to-turbulent transition of the shear layer.

Another consequence of the scaling with k is that when a fully developed shear layer is
well resolved by LES, implying low subgrid kinetic energy, then the backscatter term will
be relatively small. Hence, also only a relatively weak effect of the backscatter model is
expected there. Remember that the aim of the present work is in the first place to mitigate
the grey area and not to accurately model backscatter in a well-resolved LES. Nevertheless,
the backscatter model will also be active in such regions and therefore the theoretical con-
sistency of the backscatter model, as discussed in the introduction, is required so that the
backscatter model behaves appropriately there.

To ensure the backscatter model is switched off when in RANS mode, the tensor Rij is
multiplied with the shielding function f̃d . The shielding itself is not directly impacted by the
backscatter model. There may be an indirect effect, as the backscatter is intended to induce
fluctuations in the LES regions. If strong fluctuations are induced close to the effective
RANS–LES interface, diffusing to some extent into the RANS region, then the value of fd

may be influenced, as it depends on the magnitude of the velocity gradient (both directly
and indirectly through the eddy-viscosity coefficient). This influence can only be assessed
in practice. In the first computations for more complex test cases indicated at the end of the
introduction, no significant impact on the shielding was observed.

By construction, each stochastic variable ξi will be uncorrelated in space over distances
larger than the filter width � and uncorrelated in time over time intervals larger than the
subgrid time scale τ ∼ �/

√
k. When the filter width is defined as the maximum of the

mesh width in all directions, however, then the distance between grid points can be smaller
than the filter width. In particular, this is the case for grid cells with high aspect ratios as
typically found in initial shear layers. As motivated in the introduction, for distances smaller
than the filter width, the stochastic variables will be correlated. Similarly, temporal correla-
tion is introduced when the time step is smaller than the subgrid time scale τ , as is the case
for the Schumann model. These correlations are obtained by solving stochastic differential
equations for the stochastic variable ξ , as detailed below. Essentially, these stochastic dif-
ferential equations result in the following spatial and temporal correlations, which rapidly
decay for distances larger than the filter width and time intervals larger than the subgrid
time scale: 〈

ξi(x, t)ξj (y, s)
〉 = δij e

−d2/2e−|t−s|/τ , (3)

with d = |x − y| /b, b = √
C��, and τ = Cτ�/

√
k, and with 〈.〉 the expectation of

a stochastic variable. As stressed by Schumann, for the model to be Galilean invariant,
this correlation should be interpreted in Lagrangian sense, i.e., x and y are the time-
dependent coordinates of fluid particles. The default values for the model constants are
C� = 0.1 andCτ = 0.05. These default values, including the value ofCB given above, have
been calibrated in practice for the plain free shear layer considered in Section 4.2 below.
Subsequently, the same values have been used for the round jet.

The stochastic subgrid-scale models of Leith and Schumann include energy backscatter
at a rate that scales as κ4 for wave numbers κ smaller than the cut-off wave number. Intro-
ducing spatial correlation may possibly alter this backscatter rate. For the spatial correlation
of Eq. 3, this is not the case, as is shown in Appendix A.
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3.1 Continuous stochastic differential equations

To create a stochastic variable ξi with temporal and spatial correlation, a stochastic
Langevin-type differential equation is solved, given by

ξidt + τ

(
∂ξi

∂t
+ u · ∇ξi

)
dt = √

2τdWi, (4)

with dWi(x, t) the differential of a Wiener process Wi(x, t) with the properties

dWi(x, t) = N(0, dt)

and 〈
dWi(x, t)dWj(y, s)

〉 = δij e
−d2/2δ(t − s) dt ds. (5)

Loosely speaking, dWi is an infinitesimally small stochastic variable, with zero mean
and variance dt , that is correlated in space but uncorrelated in time. Using the continuity
equation, the Langevin equation can also be written in conservative form:

ρξi dt + τ

(
∂ρξi

∂t
+ ∇ · (ρuξi)

)
dt = √

2τρ dWi.

To create a stochastic differential dWi with the spatial correlation of Eq. 5, a purely
spatial stochastic differential equation is solved, given by

dx

(
I − b2

∂2

∂x2
1

)(
I − b2

∂2

∂x2
2

) (
I − b2

∂2

∂x2
3

)
dWi = 8b3/2 dVi, (6)

with I the identity operator and dx = dx1dx2dx3. The stochastic differential dVi(x, t) has
the properties

dVi(x, t) = N(0, dx dt)

and 〈
dVi(x, t)dVj (y, s)

〉 = δij δ(x − y)δ(t − s) dx dy dt ds, (7)

that is, it is completely uncorrelated both in space and time.
In practice, one will start with drawing values for the stochastic differential dVi inde-

pendently at each spatial location (i.e., grid point) and at each time instance. Then, the
stochastic differential dWi is determined by solving (6) and finally the stochastic variable
ξi is obtained by solving (4).

It is shown in Appendix B that the solution ξi of these stochastic differential equa-
tions essentially has the spatial and temporal correlation as defined in Eq. 3, interpreted in
Lagrangian sense.

Note that Eq. 6 can be seen as an approximation of the following equation using the
Laplacian operator:

dx

(
I − b2

(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

))
dWi = 8b3/2 dVi,

with an error of order O(b4) = O(�4). Although more expensive to solve, this equation
would be applicable to any type of grid, either structured or unstructured. Before using
this formulation, however, the spatial correlation of its solution would have to be verified,
similar to Appendix B, which is not a trivial matter.
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3.2 Discretized stochastic differential equations

The stochastic differential equations are discretized in space and time by the following algo-
rithm. First, a vector of three independent stochastic variables ζ n

i,j,k = N(0, 1) is defined
on a structured grid, with (i, j, k) the grid cell indices and n the time-step index. At each
time step, new values of the three components ζm of ζ n

i,j,k are drawn at each grid cell, inde-
pendently of the values of ζm at previous time steps and at other grid cells, so that they have
the property 〈

(ζm)ni,j,k(ζm′)n
′

i′,j ′,k′
〉
= δmm′δii′δjj ′δkk′δnn′ ,

that is, they are uncorrelated both in space and time. This stochastic variable constitutes the
discrete equivalent of the stochastic differential dVm, which is approximated by

dVm(xi,j,k, t
n) ≈ √

δix δj x δkx δt (ζm)ni,j,k,

with δt the time step and δix the mesh size in i-direction. For notational simplicity, the
subscript m for the three components of ζ n

i,j,k will be dropped in the remainder of this
section.

Next, at each time step, a spatially correlated stochastic variable ηn
i,j,k is obtained by

smoothing the stochastic variable ζ n
i,j,k in space. This is done by solving the following set

of implicit difference equations:

(I − βiδ
2
i )(I − βj δ

2
j )(I − βkδ

2
k )(λi,j,kη

n
i,j,k) = ζ n

i,j,k, (8)

with I the identity operator, βi = (b/δix)2 the smoothing coefficient in i-direction, λ a
suitable scaling coefficient defined below, and δ2i the second-order difference operator in
i-direction,

δ2i fi,j,k = fi+1,j,k − 2fi,j,k + fi−1,j,k.

The implicit smoothing requires solving a tridiagonal system per computational direction,
which can be done efficiently using the Thomas algorithm. At the boundaries, Dirichlet
boundary conditions (η = 0) are applied.

Equation 8 is in fact a discretization of the spatial stochastic differential (6) by central
differences, with the stochastic differential dW approximated by

dW(xi,j,k, t
n) ≈ √

δtηn
i,j,k,

implying that η essentially has the same spatial correlation as dW . Furthermore, it implies
that η should have zero mean and a variance equal to one, just like ζ . Thus, the implicit
smoothing operator should preserve both the mean value and the variance of ζ . The mean
of η satisfies (8) with zero right-hand side and homogeneous boundary conditions, and
therefore is equal to zero. Preserving the variance, independent of the mesh size, is ensured
by defining λ as

λi,j,k = (1 + 4βi)
3/4(1 + 4βj )

3/4(1 + 4βk)
3/4

(1 + 2βi)1/2(1 + 2βj )1/2(1 + 2βk)1/2
,

as is shown in Appendix C. Discretizing (6) and substituting the approximations for dV and
dW by ζ and η, it follows that Eq. 8 forms a consistent discretization if λ satisfies

λi,j,k → 8b3/2√
δix δj x δkx

= 8(βiβjβk)
1/4,

in the limit for zero mesh size (that is βi → ∞), which is indeed the case for the expression
given above.
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Note that strictly speaking, the discrete equation (8) is only a consistent discretization
of the continuous equation (6) if the grid lines are orthogonal or, alternatively, if the three
coordinates (x1, x2, and x3) are considered to be coordinates in the computational space
instead of the physical space. The latter interpretation means that the distance d in Eq. 3
should also be measured in computational space. This distance is still properly defined and
is of the same order as the distance in physical space. In fact, the distances in computational
and physical space between two points lying on the same grid line are equal. Thus, non-
orthogonality of the grid essentially does not influence the correlation between two points
on the same grid line, but only between two points that are on different grid lines. But even
for these points, the correlation as defined in Eq. 3 will still rapidly go to one for distances
smaller than the filter width and to zero for distances larger than the filter width. This is the
essential behaviour of the model and it is not altered by non-orthogonality. Nevertheless,
one should avoid grids that are very skewed as this may still introduce some grid depen-
dence in the computational results. Alternatively, the more generic Laplacian form discussed
above (end of Section 3.1) could be used in the future to become fully independent of grid
skewness.

Finally, a spatially and temporally correlated stochastic variable ξn
i,j,k is obtained from

the variable ηn
i,j,k by taking one time step for the Langevin-type equation (4) in conservative

form. This equation is discretized with a second-order central scheme in time (mid-point
rule):

(ρξ)ni,j,k + τ

δt

(
(ρξ)

n+1/2
i,j,k − (ρξ)

n−1/2
i,j,k

)
+ τ∇i,j,k · (

(ρu)nξn
) =

√
2τ

δt
ρn

i,j,kη
n
i,j,k, (9)

where ∇i,j,k represents the discretized gradient operator. The values of the conservative
variables (ρ, ρu, and ρξ ) at time tn are computed as

f n = 1
2 (f

n+1/2 + f n−1/2).

The convection term in the Langevin-type equation needs to be discretized in space.
For this, a central skew-symmetric finite-volume discretization is used, consistent with the
discretization of the flow equations [32]. The advantage of using central discretizations,
both in time and space, is that the variance of ξ will be conserved and equal to the variance
of η (that is, equal to one), as is demonstrated in Appendix D. If non-central discretizations
are used, then the variance is not conserved and the coefficient of the right-hand side of
Eq. 9 will have to be adapted to correct this effect.

The stochastic variable ξ as needed in Eq. 2 is a 3-component vector and therefore three
temporal Langevin equations need to be solved. This can be done simultaneously with the
main flow and turbulence-model equations. These three equations are solved in the complete
flow domain, with the right-hand side ηn

i,j,k = 0 when in RANS mode and at all external
boundaries.

To test the effect of introducing spatial and temporal correlations, three different variants
of the stochastic backscatter model will be considered: the basic backscatter model in which
ξ is completely uncorrelated both in space and time, that is, it is equal to ζ ; the backscatter
model including only spatial correlations through (8), that is, ξ is equal to η; and finally the
complete model including both spatial and temporal correlations through (8) and (9).

A final point in this section concerns the computational costs of the stochastic backscat-
ter model. For the basic, uncorrelated model, the additional costs are negligible. Introducing
the spatial and temporal correlations, however, does come at a price. For the spatial correla-
tions, Eq. 8 needs to be solved only once per time step and due to the factoring in the three
directions it can be solved efficiently with the Thomas algorithm. Thus, it only requires a
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few percent of additional computational effort. The temporal correlations are more expen-
sive, as three additional transport equations equations need to be solved, increasing the total
number of transport equations from seven to ten (an increase of 43%). Fortunately, the addi-
tional transport equations have a simpler structure than the basic flow equations (e.g., no
diffusion terms) and are therefore less expensive. In practice, an increase of at most 25% is
observed.

4 Results

4.1 Decaying isotropic homogeneous turbulence

Most DESmethods have been calibrated for the decay of isotropic homogeneous turbulence,
ensuring that the energy spectrum is captured with a −5/3 slope. Likewise, this has been
done for the baseline X-LES method, leading to a coefficient of C1 = 0.08 when using the
low-dissipation fourth-order discretization. As a first step, it needs to be assessed that the
stochastic backscatter model does not disrupt this calibration.

Computations have been performed on a 643 grid and have been based on the experi-
ment of Comte-Bellot and Corrsin [36]. In this experiment, the turbulence was generated
by a grid with mesh size M = 5.08 cm and with an onset velocity of U0 = 10m/s. The
Reynolds number based on these scales is Re0 = U0M/ν = 34, 000. In the computations,
a cubic box of size L = 11M is used with periodic boundary conditions. The initial solu-
tion consists of a random velocity field generated from the experimental energy spectrum
at time t+ = tU0/M = 42. The precise details of the computational set-up are given by
Rozema [33].

Two X-LES computations in LES mode are considered: without stochastic model (base-
line) and with the complete stochastic backscatter model (including both temporal and
spatial correlations). For this case, the decay of turbulence in time implies that temporal
high-pass filtering is not appropriate. Instead, filtering in one of the spatial directions could
be applied, which is actually equivalent to filtering in time in the experimental set-up, in
which the turbulence decay occurs in stream-wise direction and not in time. However, spa-
tial filtering would have no effect as the mean velocity gradient equals zero and therefore
no filtering is applied.

Figure 1 shows the computed energy spectra at the initial time t+ = 42 and at two sub-
sequent time levels t+ = 98 and t+ = 171. The spectra are compared to the experimental
data of Comte-Bellot and Corrsin as well as to the −5/3 Kolmogorov law for the last time
instance. These results clearly show that for this case, with the cut-off well within the iner-
tial range, the stochastic backscatter has little impact on the spectrum and does not lead to
a pile-up of energy near the cut-off as might be feared. Thus, it appears that the backscat-
ter model can be applied safely in well-resolved LES regions. Note that with the coefficient
calibrated to C1 = 0.08, the computations match the −5/3 slope at the last time instance,
whereas the experimental data shows a somewhat lower slope.

4.2 Plane free shear layer

As a first test case to demonstrate the effectiveness of the stochastic backscatter model in
mitigating the grey-area issue, the plane free shear layer from the experiment of Delville
[37] is considered. As shown previously [7, 10], standard detached eddy simulations fail for
this case, displaying an essentially 2D shear layer that is void of any resolved 3D turbulence
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Fig. 1 Energy spectrum at three
subsequent time instances
(t+ = 42, 98, and 171) for
decaying isotropic homogeneous
turbulence computed with
X-LES in LES mode on a 643

grid without (baseline) and with
the stochastic backscatter (SBS)
model (with E0
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even though the method is in LES mode. The simple stochastic eddy-viscosity model was
used with some success to trigger 3D instabilities in the shear layer, eventually leading
to full 3D turbulence downstream [7]. A further improvement was obtained by the high-
pass filter (HPF) subgrid-scale model, substantially reducing the subgrid stresses in the
initial shear layer, and as a result allowing instabilities to develop further upstream [14].
Subsequently, other authors have also used this case to test their approaches for grey-area
mitigation [10, 13, 17].

In the experiment of Delville [37], the free shear layer starts from the trailing edge of a
flat plate with free-stream velocities u1 = 41.54m/s and u2 = 22.40m/s at the different
sides of the flat plate and with fully developed turbulent boundary layers at the trailing
edge. The Reynolds number based on the momentum thickness at the high-speed side is
Reθ = 2900 at the trailing edge. The shear layer develops in a 0.3m × 0.3m square test
section of length 1.2m. A self-similar flow with fully developed turbulence is reached well
within the test section.

A computational domain is used with a length of 2.5m (x-direction), a height of 2m (y-
direction) and a width of 0.15m (z-direction). To obtain the correct velocity profiles at the
trailing edge of the flat plate, the same settings are employed as proposed by Deck [10]:
on the upper side the plate has a length of 820mm and transition is triggered at 708mm
upstream of the trailing edge, while on the lower side the plate has a length of 460mm and
transition is triggered at 388mm before the trailing edge.

A computational ‘test section’ is defined with a length of L = 1m after the trailing edge
and with a uniform grid in the x- and z-directions. Note that the grid deliberately has not
been stretched in x-direction towards the trailing edge. Thus, the grid is more representa-
tive of the situation when a priori one does not know the location where the shear layer
separates.

Most computations have been performed on a grid with 1.71 million cells and a mesh
size h = 3.125mm in x- and z-direction in the test section. The fourth-order, low-
dispersion, symmetry-preserving finite-volume method has been used together with the
second-order mid-point rule for the time integration. Time steps have been taken of size
δt = 8 · 10−4L/u1, implying a convective CFL number, based on the maximum velocity
u1, equal to CFL = u1δt/h = 1/4. Also a fine grid has been considered with half the
mesh size and 13.7 million cells and using also half the time step. For all computations, the
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a) HPF SGS model [14]

b) Stochastic eddy-viscosity HPF SGS model [7]

c) Stochastic backscatter HPF SGS model without spatial and temporal correlations

d) Stochastic backscatter HPF SGS model with spatial and temporal correlations

Fig. 2 Instantaneous iso-surfaces of Q = �2 − S2 = 500 u21/L
2, coloured with the vorticity magnitude �,

for the spatial shear layer computed with X-LES using different SGS models on the coarse grid (1.71 million
cells)
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total time computed was at least 11.2L/u1 (14,000 time steps on the coarse grid) and the
statistics have been gathered over the last 5.6L/u1.

Different stochastic models have been tested in combination with the HPF SGS model
on the coarse grid of 1.71 million cells. For consistency with the previous computational
results [7, 14], the X-LES coefficient is set to C1 = 0.05. A qualitative impression of the
effect of the different models on the grey area is given in Fig. 2 in terms of instantaneous
iso-surfaces of the Q-criterion. The left-hand side shows the complete ‘test section’ of 1m,
while the right-hand side shows a close-up of the initial shear layer. In the baseline com-
putation (subfigure a), which only employs the HPF SGS model [14], a substantial part of
the shear layer (about one quarter of the test region) essentially remains two dimensional,
displaying only a Kelvin–Helmholtz type instability. Nevertheless, this already formed a
significant improvement over standard X-LES or DES, which showed no 3D turbulence at
all [7, 10]. The stochastic eddy-viscosity model [7] (subfigure b) gives some improvement
over the baseline, with the onset of 3D instabilities shifting closer to the flat-plate trailing
edge. This effect is more pronounced for the stochastic backscatter model (subfigure c),
especially when the spatial and temporal correlations are introduced through the stochastic
differential equations (subfigure d). In the latter case, the 3D instabilities start immediately
after the trailing edge.

Resolving the 3D instabilities closer to the trailing edge has a clear impact on the initial
thickness and the growth rate of the shear layer as can be seen in Fig. 3. Both the initial thick-
ness and the growth rate further downstream improve for each successive step starting from
the baseline without any stochastic model and ending with the stochastic backscatter model
with both spatial and temporal correlations. For the latter model, the momentum thickness
lies close to the experiment beyond x = 0.2m, while the vorticity thickness matches the
experiment over the entire length of the shear layer. In the very initial shear layer, it appears
that there is a better comparison between the computations and the experiment for the vor-
ticity thickness than for the momentum thickness. The momentum thickness is an integral
quantity and therefore depends on the complete velocity profile of the shear layer, whereas
the vorticity thickness depends only on the maximum velocity gradient. Thus, although the

a) Momentum thickness b) Vorticity thickness
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Fig. 3 Thickness of the spatial shear layer computed with X-LES using different SGS models on the coarse
grid (1.71 million cells) (SEV = stochastic eddy-viscosity model; SBS = stochastic backscatter model;
SBS-spatial = SBS with spatial correlations; SBS-full = SBS with spatial and temporal correlations)
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maximum gradient may match the experiment in the very initial shear layer, this is appar-
ently not the case for the complete velocity profile (as is also confirmed in Fig. 4a below
for the velocity profile at x = 0.2m).

The reduced extent of the grey area, as well as its impact further down stream, is also
visible in the profiles of the mean velocity and the resolved stresses, presented in Fig. 4. The
lack of resolved turbulence in the baseline HPF result at the first station (x = 0.2m) leads
to a velocity profile with a local minimum, still showing an imprint of the two upstream
boundary layers, contrary to the experimental results. At the stations further downstream,
the baseline HPF computation strongly overpredicts the turbulence levels (both normal and
shear stresses), which causes the shear layer to grow too rapidly. The stochastic backscatter
model strongly improves the turbulence level at the first station and as a consequence the
local minimum in the velocity profile at that station is completely removed and also the
turbulence levels as well as the velocity profiles match the experiment more closely further
downstream. The peak level of the stresses is now overpredicted at the first station, but
approaches the experiment at the other stations, with exception of the normal stress at x =
0.95m (possibly an upstream effect of the grid coarsening starting at x = 1m). By including
the spatial and temporal correlations in the model, both the velocity profile and the stress
levels get closer to the experiment, in particular at the upper and lower tails of the profiles.
The main difference with the experiment that remains, is a higher mean velocity at the upper
side at the first station. This may be attributed to a lack of resolved turbulence coming from
the upper boundary layer (which is thicker than the lower one), which could probably only
be remedied by adding synthetic turbulence at the flat-plate trailing edge.

The power spectra of the velocity component u in x-direction are compared to the exper-
iment at two stations along the shear-layer centreline (x = 0.2m and x = 0.8m) in Fig. 5.
A very strong impact is seen at the first station (subfigure a). Without any stochastic model,
the energy level is much too low over the complete frequency range. Using the stochastic
eddy-viscosity model, the solution is still dominated by two-dimensional span-wise vor-
tices, giving a narrow band in the spectrum. This is clearly improved by the stochastic
backscatter model, again in particular when the correlations are included, giving a broader
spectrum and a result close to the experiment, until the cut-off frequency (corresponding to
the filter width) is reached. At the second station, where the shear layer is fully developed,
the impact of the stochastic models is much weaker, which is consistent with the results for
decaying isotropic homogeneous turbulence. The power spectrum lies close to the experi-
ment for all models, except for a small increase at the lowest frequencies when no stochastic
model is included (subfigure b). Since the integral of the power spectrum is equal to the
normal stress, this increase is in-line with the overprediction of the normal stresses that can
be seen in Fig. 4b. This is caused by the larger grey area in the initial shear layer when no
stochastic model is used, which influences the further development of the shear layer far
downstream.

To assess the grid sensitivity of the results, computations with the new stochastic
backscatter model have been performed on the two grid levels, using the X-LES coeffi-
cient as calibrated for decaying isotropic homogeneous turbulence (C1 = 0.08). On the
fine grid of 13.7 million cells, small-scale instabilities are captured in the initial shear layer
immediately downstream of the trailing edge (Fig. 6), showing that the effectiveness of the
stochastic backscatter model is maintained. The shear-layer thickness and the energy spec-
tra on the two grid levels are compared in Figs. 7 and 8, including also the coarse-grid result
with the old X-LES coefficient (C1 = 0.05) for completeness. Overall, the grid dependence
of the results (as well as the sensitivity to the coefficient) is clearly weaker than the varia-
tion in results of the different subgrid-scale models on the coarse grid as shown above. The
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a) Mean velocity (offset with 15, 30, and 45m/s at x = 0.4, 0.6, and 0.8 m, respectively)

b) Resolved normal stress (offset with 10, 20, and 30m2/ s2 at x = 0.4, 0.6, and 0.8 m, respectively)

c) Resolved shear stress (offset with − 5, − 10, and − 15m2/ s2 at x = 0.4, 0.6, and 0.8 m, respectively)
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Fig. 4 Profiles of mean velocity, resolved normal stress, and resolved shear stress of the spatial shear layer
computed with X-LES using different SGSmodels on the coarse grid of 1.71 million cells (y1/2 is the location
where the velocity u = (u1 + u2)/2) (abbreviations: see Fig. 3)
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a) x = 0.2m b) x = 0.8m
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Fig. 5 Power spectral densities (PSD) of the velocity component u in x-direction for the spatial shear layer
computed with X-LES using different SGS models (abbreviations: see Fig. 3)

strongest grid dependence is seen in the energy spectra for which the tail starts to drop at
higher frequencies on the fine grid due to the smaller filter width, as it should. Also, there
is some grid dependence in the momentum thickness: the growth rate of the shear layer is
consistent with experiment on the fine grid and on the coarse grid with the lower C1 value,
but it is somewhat overpredicted with the higher C1 value.

Finally, to illustrate how the backscatter model works, the distribution of the first com-
ponent of the stochastic vector ξ is shown in Fig. 9 for both grid levels. The variable is
multiplied with the sub-grid kinetic energy k, as that is how it appears in the stochastic forc-
ing term of Eq. 2. Visually, the spatial structures are dominated by scales ranging between
the filter width � = 3.125mm and a width of about 10mm on the coarse grid. These scales
are reduced by a factor two on the fine grid. Furthermore, the spatial structures are essen-
tially locally isotropic. Both the sizes and the isotropy of the structures are consistent with

Fig. 6 Instantaneous iso-surfaces of Q = 500 u21/L
2 for the spatial shear layer computed with X-LES

using the stochastic backscatter HPF SGS model with spatial and temporal correlations on the fine grid (13.7
million cells)
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a) Momentum thickness b) Vorticity thickness
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Fig. 7 Thickness of the spatial shear layer computed with X-LES using the stochastic backscatter HPF SGS
model with spatial and temporal correlations on different grid levels and with different values of the X-LES
coefficient C1

the spatial correlations as defined by Eq. 3. As a consequence, the stochastic forcing will
generate disturbances with similar isotropic scales. Without the spatial correlations, non-
isotropic structures would have resulted with scales of the order of the filter width in the
x-direction and of the order of the mesh width in the y-direction, which is much smaller
than the filter width at the centre of the initial shear layer. Then, the stochastic forcing also
would have generated disturbances of (much) smaller size in y-direction, which are less
effective in influencing the development of the initial shear layer.

a) x = 0.2m b) x = 0.8m

Frequency [Hz]

P
S

D
(u

) 
[m

2 /s
]

102 103 10410-5

10-4

10-3

10-2

10-1

-5/3 law
Experiment
Coarse grid; C1 = 0.05
Coarse grid; C1 = 0.08
Fine grid; C1 = 0.08

Frequency [Hz]

P
S

D
(u

) 
[m

2 /s
]

102 103 10410-5

10-4

10-3

10-2

10-1

-5/3 law
Experiment
Coarse grid; C1 = 0.05
Coarse grid; C1 = 0.08
Fine grid; C1 = 0.08

Fig. 8 Power spectral densities (PSD) of the velocity component u in x-direction for the spatial shear
layer computed with X-LES using the stochastic backscatter HPF SGS model with spatial and temporal
correlations on different grid levels and with different values of the X-LES coefficient C1
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a) Coarse grid (1.71 million cells)

b) Fine grid (13.7 million cells)

Fig. 9 Distribution of the stochastic variable ξ1 (multiplied with sub-grid kinetic energy k) in a plane y =
constant for the spatial shear layer computed with X-LES using the stochastic backscatter HPF SGS model
with spatial and temporal correlations on two grid levels

In conclusion, the stochastic backscatter model with spatial and temporal correlations is
capable of strongly reducing the grey area for this case and clearly outperforms the stochas-
tic eddy-viscosity model. It shows that a substantial improvement can be made for grey-area
mitigation methods that rely on reducing the subgrid stresses, such as the HPF model,
by adding stochastic forcing to enhance the development of instabilities. Potentially, the
stochastic backscatter model can also be added to and further improve the results of other
recent proposals, such as those of Mockett et al. [17] and Shur et al. [13]. In particular, the
results of Mockett et al. were comparable to those of the HPF model without stochastic forc-
ing on a practically identical coarse grid. Naturally, the results show some dependence on
the grid level and the X-LES coefficient, but without reducing its effectiveness in grey-area
mitigation.

4.3 Round jet at Mach 0.9

A second case that strongly suffers from the grey-area problem for standard detached eddy
simulations, as shown for example by Spalart [8], is the computation of a plain round jet.
Like for the plane shear layer, there is no recirculation of turbulent flow that could desta-
bilize the initial shear layer of the jet. Here, a cold, compressible jet is considered with a
Mach number of 0.9 and a Reynolds number ReD = 1.1 · 106 based on the nozzle diameter
D and the nozzle exit velocity Ujet. A range of experimental data is available for this case,
including Arakeri et al. [38], Bridges et al. [39], Lau et al. [40, 41], and Simonich et al. [42].

The definition of this test case follows the lines of Shur et al. [43]. A computational
domain is used that has a conical shape extending from 10D upstream of the nozzle exit to
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70D downstream, with the outer boundary growing from 15D to 30D. Three multi-block
structured grids are employed (labelled G1, G2, and G3) with respectively 1.5, 4.2, and 8.4
million grid cells. Grids G2 and G3 only differ in the number of cells in circumferential
direction (80 and 160). More details of the grids are given by Shur et al. [43]. The inte-
rior domain of the nozzle is not represented in the computational domain. Instead, profiles
of velocity, k, and ω are prescribed at the nozzle exit. These have been obtained from a
precursor SST k–ω RANS computation of the nozzle interior.

X-LES computations have been performed using the fourth-order low-dispersion sym-
metry-preserving scheme, explicit fourth-order Runge–Kutta time integration, and an X-
LES coefficient of C1 = 0.05. Time steps have been used of 0.002D/Ujet on all three
grids. The total time computed equalled 1100D/Ujet, with statistics gathered over the last
500D/Ujet.

Three different approaches have been tested: a baseline without any grey-area mitigation,
the HPF SGS model, and the HPF SGS model extended with the stochastic backscatter
model with spatial and temporal correlations. Without mitigation, the jet displays essentially
the same grey-area problem as the plane shear layer, but less severe, as can be seen in
Fig. 10a. Initially, the jet shear layer shows hardly any vortical structures, then it starts to
develop large-scale vortex rings which eventually develop into full 3D turbulence. The HPF
model (Fig. 10b) considerably accelerates this process, with the vortex rings starting close
to the nozzle and rapidly breaking up into small scale structures. Finally, the stochastic
backscatter model even further reduces the grey area, with the vortex rings breaking up
almost immediately at the nozzle lip.

The profiles of the mean velocity and the velocity fluctuations along the jet centreline
(r = 0) are compared to the different experimental results in Fig. 11. The baseline com-
putation clearly underpredicts the length of the potential core, even on the fine grid G3.
Furthermore, it shows a significant disturbance of the centreline velocity in the core. Using
the HPF model increases the length of the potential core on the fine grid, consistent with the
experimental results, but it still shows a small disturbance of the velocity in the core. Using
the stochastic backscatter model, the length of the potential core is not only consistent with
experiment on the finest grid, but it is also not much smaller on the coarser grids. The mean
centreline velocity lies within the experimental range on all grids downstream of the end of
the potential core. The velocity fluctuations also lie within the experimental range on the
fine grid. On the two coarse grids, although the peak of the velocity fluctuations is predicted
further upstream, it has clearly shifted closer to the experiments compared to the results
with only the HPF model. Furthermore, the disturbance in the core is fully removed, even
on the coarsest grid G1. Clearly, the weakest grid dependence is found with the stochastic
backscatter model.

The radial velocity profiles at four stations (Fig. 12) essentially show the same ten-
dency as the centreline profile. The best comparison to the experiment, and the weakest grid
dependence, is found with the stochastic backscatter model. Underprediction of the mean
centreline velocity for the baseline results is accompanied by a too strong thickening of the
jet as well as an overprediction of the velocity fluctuations at the first two stations and an
underprediction at the latter two. These effects are diminished with the HPF model and even
more so with the stochastic backscatter model, especially on the coarser grids G1 and G2.

The impact of the stochastic backscatter model is the strongest close to the nozzle lip, as
could already be seen from the instantaneous iso-surfaces of Q. It can also be seen from the
velocity profiles along the lip line r = R (Fig. 13), where substantial velocity fluctuations
are present immediately after the lip with the backscatter model, while they need some
distance (one or two nozzle diameters) to grow with the baseline and HPF models, ending in
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a) Baseline SGS model

b) HPF SGS model

c) Stochastic backscatter HPF SGS model with spatial and temporal correlations

Fig. 10 Instantaneous iso-surfaces of Q = �2 − S2 = 20 U2
jet/D

2, coloured with the vorticity magnitude
�, for the Mach 0.9 jet computed with X-LES using different SGS models on the fine grid G3
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a) Baseline SGS model

b) HPF SGS model

c) Stochastic backscatter HPF SGS model with spatial and temporal correlations
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Fig. 11 Mean velocity and velocity fluctuations (RMS value) along jet centreline computed with X-LES
using different SGS models and on different grids
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a) Baseline SGS model

b) HPF SGS model

c) Stochastic backscatter HPF SGS model with spatial and temporal correlations
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Fig. 12 Mean velocity and velocity fluctuations (RMS value) at four stations computed with X-LES
using different SGS models and on different grids (mean velocity offset with 0.5, 1, and 1.5 and velocity
fluctuations offset with 0.2, 0.4, and 0.6 at x = 8, 12, and 16D, respectively)
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Fig. 13 Mean velocity and velocity fluctuations (RMS value) along jet lip line computed with X-LES using
different SGS models on the fine grid G3

a sharp peak in the velocity fluctuations themselves as well as leading to a peak in the mean
velocity. The peak in the velocity fluctuations is substantially reduced with the backscatter
model, while the peak in the mean velocity is completely removed, leading to an overall
better comparison with the experiment.

5 Conclusions

A new method has been presented for accelerating the development of resolved turbulence
in free shear layers in the context of non-zonal detached eddy simulations. In standard DES,
this development may be unrealistically slow, in particular when there is no significant
recirculation of resolved turbulence back to the onset of flow separation, and a substantial
so-called grey area may be present in which significant resolved turbulence is lacking, even
though the computation is in LES mode. In order to induce the development of 3D insta-
bilities in the initial free shear layers, stochastic forcing is added in the form of a stochastic
backscatter model with spatial and temporal correlations for scales smaller than the subgrid
scales. This approach is combined with a high-pass filtered SGS model that reduces the
level of subgrid stresses in the initial shear layers.

The new method strongly reduces the grey area as has been demonstrated both for the
plane free shear layer and for the round jet, giving a clear improvement over computations
that only reduce the level of subgrid stresses through the HPF SGS model. For the free shear
layer in particular, 3D instabilities start immediately at the trailing edge, instead of being
delayed for one quarter of the test section. This leads to a broad energy spectrum, indicating
fully developed turbulence, already at 20% of the test section as well as a correct growth
rate downstream of that location. Furthermore, the new model is also effective on relatively
coarse grids, reducing the grid dependence compared to computations using only the HPF
SGS model. As the stochastic backscatter model gives improved results when added to
the HPF approach, it also has the potential to further improve the results of other recently
proposed methods [13, 17] that reduce the level of subgrid stresses and that give similar
results to the HPF approach.
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Finally, there are several directions open for future research. First of all, application to
more complex test case is on-going [23–25]. Second, for the jet case, the assessment of the
far-field noise is of interest. Although the backscatter model has been formulated analyti-
cally such that it should not generate noise artificially, this is not necessarily maintained by
the numerical discretization and therefore needs to be verified in practice. The last question
is whether the stochastic backscatter model will also be beneficial for wall-modelled LES.
This is not unlikely as others have used stochastic forcing to resolve the log-layer mismatch.
In wall-modelled LES the RANS–LES interface is located well within the boundary layer,
and it may be expected that close to this interface high values of the (subgrid) kinetic energy
k will diffuse from the RANS zone into the LES zone. Thus, the stochastic backscatter
model will then be active there (as it scales with k), possibly mitigating a potential lack of
resolved turbulence. Further research would be needed to evaluate this in practice, possibly
requiring reassessment of the model coefficients.
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Appendix A: Rate of Backscatter

The new stochastic backscatter model includes spatial correlation in the stochastic variables,
contrary to the models of Leith and Schumann. In this section, it is shown that this spatial
correlation does not alter the scaling of the rate of backscatter as κ4 for wave numbers κ → 0.

Consider a homogeneous stochastic forcing term fi(x, t) added to the right-hand side of
the momentum equation:

∂ui

∂t
+ . . . = fi(x, t),

with its spatial Fourier transform f̂i (κ, t) given by

f̂i (κ, t) =
∫

R3
fi(x, t)e−iκ ·xdx.

Let Cij (r, t) be the two-point correlation of fi ,

Cij (r, t) = 〈
fi(x, t)fj (x + r, t)

〉
,

which is independent of x due to homogeneity, and let R̂ij (κ, t) be the covariance of f̂i ,

R̂ij (κ, κ ′, t) =
〈
f̂i (κ, t)f̂j (κ

′, t)
〉
.

The two-point correlation and the covariance are related by

R̂ij (κ, κ ′, t) = ∫
R3

∫
R3

〈
fi(x, t)fj (x + r, t)

〉
eiκ ·xe−iκ ′·(x+r)dx d(x + r)

= ∫
R3 ei(κ−κ ′)·xdx

∫
R3 e−iκ ′·rCij (r, t)dr

= 2πδ(κ − κ ′)Ĉij (κ
′, t)

(10)

so that

Ĉij (κ, t) = 1

2π

∫

R3
R̂ij (κ, κ ′, t)dκ ′. (11)
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The rate of backscatter at a wave number κ is determined by the spectrum function
F̂ (κ, t) of fi [44]. Here, F̂ is defined analogous to the energy spectrum function E(κ) of
the velocity field as defined in Pope, section 6.5 [45]:

F̂ (κ, t) =
∮

Sκ

Ĉii (κ, t)dSκ

with Sκ the sphere around the origin with radius κ . The spectrum function F̂ should scale
as κ4 for wave numbers smaller than the cut-off wave number κc ≈ π/�.

If fi is directly defined as a spatially uncorrelated stochastic variable, then Cij =
Cδij�

3δ(r) (with C constant in case of homogeneity), implying Ĉij = C�3δij and
F̂ = 12πC�3κ2 (as δii = 3 and the surface of a sphere equals 4πκ2). Thus, such an
approach would give the wrong scaling of the power spectrum.

The correct scaling is obtained if fi is defined as the gradient of a spatially uncorrelated
stochastic variable ξi , formulated in case of the Leith model as

fi(x, t) = εijk

∂ξk

∂xj

,

with εijk the alternating symbol. In this case, the Fourier transform of the two-point cor-
relation Dij of ξi is given by D̂ij = D�3δij = 1

3 D̂kkδij and its covariance by Ŝij =
2
3πD̂kkδij δ(κ − κ ′), according to Eq. 10. One then finds that

R̂ii (κ, κ ′, t) = εijkεilm(−iκj )(iκ ′
l )Ŝkm(κ, κ ′, t)

= (δjlδkm − δjmδkl)κj κ
′
l
2
3πD̂iiδkmδ(κ − κ ′) = 4

3πD̂iiκ
2δ(κ − κ ′),

which implies upon substitution in Eq. 11 that

Ĉii = 2
3 D̂iiκ

2 = 2D�3κ2.

It follows that the power spectrum F̂ = 8πD�3κ4 has the correct scaling.
Finally, consider the case that ξi is spatially correlated according to

Dij = 〈
ξi(x, t)ξj (x + r, t)

〉 = Dδij e
−d2/2,

with d = |r|/b and b = √
C�� ≈ √

C�π/κc. Taking the Fourier transform of Dij gives

D̂ij = Dδij (2π)3/2b3e−(bκ)2/2,

so that
Ĉii = 2

3 D̂iiκ
2 = 2Dκ2(2π)3/2b3e−(bκ)2/2,

following the same derivation as above, and finally

F̂ = 8πDκ4(2π)3/2b3e−(bκ)2/2,

which again scales as κ4 for κ � κc.

Appendix B: Correlations of Solutions of the Stochastic Differential
Equations

Consider the Langevin-type equation (4) and the spatial stochastic differential equation (6).
In this appendix, it is shown that the solution of these equations has the desired spatial and
temporal correlation of Eq. 3, interpreted in Lagrangian sense, in case of a uniform flow.



Flow Turbulence Combust (2017) 99:119–150 145

Let G(x, t) be the Green’s function satisfying the equation

G + τ

(
∂G

∂t
+ u · ∇G

)
= δ(x)δ(t),

for a constant velocity u. Applying Fourier transformations of this equation both in space
and time results in the following expression for the Fourier transform Ĝ of G:

Ĝ(κ, ω) = 1

(2π)2

1

1 + iτω + iτu · κ
,

with κ the spatial wave number vector and ω the angular frequency. Applying inverse
Fourier transforms, first in time and then in space, gives

G(x, t) = 1

τ
H(t)e−t/τ δ(x − ut).

Using the Green’s function, a general solution of Eq. 4 for arbitrary dWi can be written as

ξi(x, t) = ∫
R3

∫ ∞
−∞ G(x − x′, t − t ′)

√
2τ dx′ dWi(x

′, t ′)
= ∫ ∞

−∞
√

2
τ
H(t − t ′)e(t ′−t)/τ dWi(x − u(t − t ′), t ′).

Given the spatio-temporal correlation of dWi defined by Eq. 5, the following spatio-
temporal correlation is found for ξi :

〈
ξi(x, t)ξj (y, s)

〉 = ∫ ∞
−∞

∫ ∞
−∞

2
τ
H(t − t ′)H(s − s′)e(t ′−t)/τ e(s′−s)/τ

〈
dWi(x − u(t − t ′), t ′) dWj(y − u(s − s′), s′)

〉

= ∫ ∞
−∞

∫ ∞
−∞ δij

2
τ
H(t − t ′)H(s − s′)e(t ′−t)/τ e(s′−s)/τ δ(t ′ − s′)

exp
(
− 1

2b2

∣∣x − y − u(t − s − t ′ + s′)
∣∣2) dt ′ ds′

= δij exp
(
− 1

2b2
|x − y − u(t − s)|2

) ∫ min(t,s)
−∞

2
τ
e(2t ′−t−s)/τdt ′

= δij exp
(
− 1

2b2
|x − y − u(t − s)|2

)
e−|t−s|/τ ,

which is indeed equivalent with Eq. 3 with x and y replaced by the Lagrangian coordinates
x − ut and y − us.

Next, let G(x) be the 1D Green’s function satisfying the equation

(
1 − b2

d2

dx2

)
G = δ(x),

which is given by

G(x) = 1

2b
e−|x|/b.

A general solution of Eq. 6 for arbitrary dVi can then be written as

dWi(x, t) =
∫

R3
G3(x − x′)8b3/2 dVi(x

′, t),
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with G3(x − x′) = G(x1 − x′
1)G(x2 − x′

2)G(x3 − x′
3). If dVi is completely uncorrelated

both in space and time, as defined by Eq. 7, then it follows that〈
dWi(x, t)dWj(y, s)

〉 = 64b3
∫
R3

∫
R3 G3(x − x′)G3(y − y′)

〈
dVi(x

′, t)dVj (y
′, s)

〉
= 64b3δij δ(t − s)

∫
R3 G3(x − x′)G3(y − x′)dx′

= b−3δij δ(t − s)
∏3

m=1

∫
R
e−|xm−x′

m|/be−|ym−x′
m|/bdx′

m

= δij δ(t − s)
∏3

m=1

(
1 + 1

b
|xm − ym|

)
e−|xm−ym|/b

= δij δ(t − s)
(
e−|x−y|2/(2b2) + O(|x − y|3)

)
.

For small distances, this is the spatio-temporal correlation of dWi as defined by Eq. 5 up to
third order in the distance. For large distances, this correlation rapidly decays, ensuring the
correct scaling of the rate of backscatter.

Appendix C: Preservation of the Variance in the Discretized Spatial
Stochastic Differential Equation

Consider the 1D stochastic differential equation

(1 − βδ2i )η
′
i = ζi,

with i the grid-cell index, β the smoothing coefficient, and δ2i the second-order difference
operator. The stochastic variable ζi = N(0, 1) is spatially uncorrelated,〈

ζiζj

〉 = δij .

We wish to determine the variance of the smoothed variable η′.
Let Gi be the discrete Green’s function satisfying the equation

(1 − βδ2i )Gi = δi0.

Then, the general solution of the 1D stochastic differential equation (assuming periodicity)
is given by

η′
i =

∑
j

Gi−j ζj ,

so that the variance of η′
i is given by〈

(η′
i )
2
〉
=

∑
j

∑
k

Gi−jGi−k

〈
ζj ζk

〉 =
∑
j

G2
i−j = N |G|2 ,

with N the number of grid cells and |G| the L2 norm of G.
Consider the discrete Fourier transform Ĝk of the Green’s function

Ĝk = 1

N

∑
i

Gie
−iθki

with θk = 2πk/N . Applying the Fourier transform to the equation for the Green’s function,
one finds

Ĝk = 1

N
(1 + 2β(1 − cos θk))

−1.

Thus, the variance of η′
i is given by〈

(η′
i )
2
〉
= N

∑
k

∣∣∣Ĝk

∣∣∣
2 = 1

N

∑
k

(1 + 2β(1 − cos θk))
−2.
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In the limit for zero mesh size (i.e., δθ = 2π/N → 0), this summation becomes an integral
over the wave number θ , so that

〈
(η′

i )
2
〉 = 1

2π

∫ 2π
0 (1 + 2β(1 − cos θ))−2dθ = 1

π

∫ π

0 (1 + 2β(1 − cos θ))−2dθ

= 1
π

2
1+4β

[
β sin θ

1+2β(1+cos θ)
+ 1+2β√

1+4β
arctan

(√
1 + 4β tan

(
1
2θ

))]π

0
= 1+2β

(1+4β)3/2

Finally, it follows that to obtain a stochastic variable with unit variance, η′
i should be scaled

as

ηi = (1 + 4β)3/4

(1 + 2β)1/2
η′

i .

In 3D, this scaling should be applied for each computational direction.

Appendix D: Preservation of the Variance in the Discretized
Langevin-Type Equation

Consider the Langevin-type equation in primitive form, discretized as

ξn + τ

δt

(
ξn+1/2 − ξn−1/2

)
+ τun · ∇ξn =

√
2τ

δt
ηn,

with ξn = 1
2 (ξ

n+1/2 + ξn−1/2).
First, no flow (u = 0) is considered, in which case

(
1 + δt

2τ

)
ξn+1/2 =

(
1 − δt

2τ

)
ξn−1/2 +

√
2δt

τ
ηn.

Given that
〈
(ηn)2

〉 = 1 and
〈
ηnξn−1/2

〉 = 0, and assuming that
〈
(ξn−1/2)2

〉 = 1, it follows
that (

1 + δt

2τ

)2 〈
(ξn+1/2)2

〉
=

(
1 − δt

2τ

)2

+ 2δt

τ
,

so that 〈
(ξn+1/2)2

〉
= 1.

Thus, if the initial variance of ξ equals one, then this variance is locally conserved by the
central time discretization.

Including the convective term, local conservation of the variance cannot be easily proven.
However, one can show global conservation up to third order in the time step. Let ξ be the
vector with the values of ξ at all grid points as its components. The Langevin-type equation,
discretized both in space and time, can then be written as

ξn + τ

δt

(
ξn+1/2 − ξn−1/2

)
+ τC(un)ξn =

√
2τ

δt
ηn,

with C the discretized convection operator. For a symmetry-preserving discretization, this
operator is skew-symmetric, that is, ξT Cξ = 0 for any ξ . Rewriting the equation as

(
I + δt

2τ
I + 1

2δtC

)
ξn+1/2 =

(
I − δt

2τ
I − 1

2δtC

)
ξn−1/2 +

√
2δt

τ
ηn,
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and taking the square of the L2-norm of the left-hand and right-hand sides, one finds
(
1 + δt

2τ

)2 ∣∣∣ξn+1/2
∣∣∣
2 + 1

4 (δt)
2
∣∣∣Cξn+1/2

∣∣∣
2 =

(
1 − δt

2τ

)2 ∣∣∣ξn−1/2
∣∣∣
2

+ 1
4 (δt)

2
∣∣∣Cξn−1/2

∣∣∣
2 + 2δt

τ

∣∣ηn
∣∣2 + (. . .)ξn−1/2 · ηn,

if C is skew-symmetric. This time, given that
〈∣∣(ηn)2

∣∣〉 = N and assuming that〈∣∣∣(ξn−1/2)2
∣∣∣
〉
= N , with N the total number of grid points, it follows that

(
1 + δt

2τ

)2 (〈∣∣∣ξn+1/2
∣∣∣
2
〉
− N

)
= 1

4 (δt)
2
(〈∣∣∣Cξn−1/2

∣∣∣
2
〉
−

〈∣∣∣Cξn+1/2
∣∣∣
2
〉)

.

This equation allows for the global conservation of the variance of ξ , that is,
〈∣∣∣(ξn+1/2)2

∣∣∣
〉
=

N , if either conservation of the variance of Cξ is also assumed or the right-hand side, which
is ofO((δt)3), is neglected. Note that if the discretization is not symmetry-preserving, then
a right-hand side ofO(δt) is found that leads to considerable dissipation of the total variance of ξ .
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