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Abstract Particle-laden or droplet-laden turbulent flows occur in many industrial applica-
tions and in natural phenomena. Knowledge about the properties of these flows can help
to improve the design of unit operations in industry and to predict for instance the occur-
rence of rain showers. This knowledge can be obtained from experimental research and
from numerical simulations. In this paper a review is given of numerical simulation meth-
ods for particle-laden flows. There are various simulation methods possible. They range
from methods in which all details, including the flow around each particle, are resolved, via
point-particle methods, in which for each particle an equation of motion is solved, to Eule-
rian methods in which equations for particle concentration and velocity are solved. This
review puts the emphasis on the intermediate class of methods, the Euler-Lagrange meth-
ods in which the continuous phase is described by an Eulerian approach and the dispersed
phase in a Lagrangian way with equations of motion for each individual particle.

Keywords Particle-laden flow - DNS - LES

1 Introduction: Overview of Simulation Methods

Particle-laden and droplet-laden turbulent flows are ubiquitous in nature and in industrial
applications. Well-known examples are clouds, which consist of a large number of small
water droplets, transport and sedimentation of sand particles in rivers and seas, separation
of small particles from an air flow in industrial cyclones and evaporating milk droplets in

P4 J. G. M. Kuerten
j-g.mkuerten@tue.nl

Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513,
5600 MB, Eindhoven, The Netherlands

2 Faculty EEMCS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10494-016-9765-y-x&domain=pdf
http://orcid.org/0000-0003-1419-6721
mailto:j.g.m.kuerten@tue.nl

690 Flow Turbulence Combust (2016) 97:689-713

spray dryers. Particle-laden turbulent flows are studied both experimentally and by means
of numerical simulation. In this review only numerical simulation methods will be dis-
cussed. Many different numerical approaches exist, which can be applied depending on the
application.

1.1 Particle-resolved DNS

In the most detailed method the flow around each particle is resolved and the motion of a
particle follows from the external forces and the hydrodynamic force exerted by the sur-
rounding fluid. In case of droplets or bubbles, which can deform, the deformation also
follows from the force exerted by the fluid. Since the flow around a particle needs to be
resolved, this simulation method is only possible if the spacing of the computational grid
is small compared to the size of a particle. This restricts the application of this method
to particles that are large compared to the smallest scales of the turbulent flow and/or rel-
atively small numbers of particles. Various numerical methods have been developed for
particle-resolved direct numerical simulation.

In one of them a body-fitted spherical grid around the particles is used, sometimes
embedded in a Cartesian grid for the whole computational domain. This method has been
used to calculate the force on a single, fixed particle in decaying homogeneous isotropic
turbulence [7, 24]. Very recently this method has been applied to analyze homogeneous
isotropic turbulent flow around an array of 64 fixed spherical particles [111] with a size
equal to twice the Kolmogorov length and a particle volume fraction of 0.001. Extension of
this method to moving particles is not straightforward due to collisions that occur and lead
to overlap of the spherical grid of one particle with another particle.

For bubbles moving in a turbulent flow front-tracking methods have been devel-
oped which allow the simulation of hundreds of bubbles [58, 105]. Larger numbers
of particles in a turbulent flow have been reached by means of the immersed bound-
ary method [107], where a Cartesian grid is used throughout the computational domain.
There are various ways to approximate the boundary conditions on the surface of the
particles, which does not coincide with grid lines. Picano et al. [78] recently applied
this method to simulate 10,000 moving spherical particles in turbulent channel flow and
studied the attenuation of turbulence caused by the particles. Also the lattice Boltmann
method has been applied to the simulation of particle-laden turbulent flow [25]. This
is another example where the grid is Cartesian and not aligned with the shape of the
particles.

The last example mentioned here of a particle-resolved simulation method is Physalis
[101, 121], in which a local analytical solution for the flow around each particle is used. This
method has been applied to the simulation of hundreds of spherical particles in decaying
homogeneous turbulence.

1.2 Lagrangian point-particle methods

All of the above methods are restricted to rather small numbers of particles, which are not
small compared to the Kolmogorov scale. A standard approach which can be used for sim-
ulations of millions of small particles is the point-particle approach. If the particle size is
smaller than the Kolmogorov scale, the particle can be considered as a point particle and
Lagrangian simulations, in which equations for each particle are solved, can be performed.
This is the oldest type of Lagrangian simulation of particle-laden turbulent flow. An impor-
tant quantity in this approach is the particle relaxation time, the time it takes a particle to
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adjust to the local, instantaneous flow. For very small values of the particle relaxation time,
the particle velocity is in good approximation equal to the local, instantaneous fluid veloc-
ity. In this case particles behave as tracers. For larger values of the particle relaxation time,
particles cannot follow the flow exactly and apart from a kinematic equation for the particle
position, also an equation of motion for the particle velocity based on Newton’s second law
of motion has to be solved.

Lagrangian methods can have different level of detail of description of the motion of the
fluid. If, apart from the detailed flow around each particle, all scales of fluid motion up to the
Kolmogorov scale are solved, we speak of point-particle direct numerical simulation (DNS).
Just as for single-phase flow, also a filtered fluid velocity can be applied, leading to point-
particle large-eddy simulation (LES). In that case the fluid velocity at the particle position
is not exactly known, but only a filtered fluid velocity is available. In some applications the
unresolved scales of the fluid velocity have a significant effect on the particle motion and,
apart from a subgrid model in the equations governing the fluid, a subgrid model in the
particle equations of motion is required.

Also, just as for single-phase flow, a statistical description of the fluid flow can be
employed based on the Reynolds-averaged Navier-Stokes equation (RANS). This greatly
reduces the computational efforts in case of statistically steady turbulent flows, since the
mean flow quantities need to be calculated only once. Solution of the particle equations
of motion can be done in a post-processing step. However, in such a simulation an addi-
tional model for the effects of the turbulence on the particles is required [73]. Without such
a model the particles are not affected by turbulence and all particles starting at the same
location would follow the same path. In order to take into account the effects of the tur-
bulence on the particle motion, a stochastic turbulent dispersion model is required, which
uses information from the RANS solution, for instance the Reynolds stress or the turbu-
lence kinetic energy [23, 44]. Other types of stochastic dispersion models are based on a
probability density function method [81, 102].

Lagrangian methods can also be distinguished according to the level of coupling between
particles and fluid. If the particle volume fraction is sufficiently low, the particles do
not influence the flow. This is the so-called one-way coupling regime. For higher par-
ticle volume fractions, the presence of the particles changes the properties of the flow
and two-way coupling needs to be taken into account. For even higher volume fractions
collisions between particles influence the simulation results. This is sometimes named
four-way coupling. For homogeneous isotropic turbulence the limits of validity of the one-
way and two-way coupling regimes have been suggested by Elghobashi [34], as shown
in Fig. 1. In principle, all levels of coupling between particles and fluid can be applied
to the three different levels of detail of the description of the turbulence, DNS, LES and
RANS.

In several applications more physical phenomena play a role, such as heat exchange
between the continuous and dispersed phase and mass transfer between the two phases
by evaporation of droplets and condensation of vapor or by chemical reactions. Such
extensions require additional equations, for instance for particle temperature and droplet
mass.

1.3 Eulerian methods
The Lagrangian point-particle approach has also been applied to particles that are not small

compared to the Kolmogorov scale, in spite of its questionable validity in this case. Theo-
retically, the only possible approach for simulations with a large number of larger particles,
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or even larger numbers of small particles, is an Euler-Euler approach. In this approach parti-
cles are not described individually, but by concentration and velocity fields. Apart from the
equations for the fluid phase, also partial differential equations for particle concentration
and velocity have to be solved. The interaction between the particles and the fluid needs
to be taken into account in the two momentum equations [28, 38]. If particles of different
sizes, which interact differently with the flow, are present, a set of equations for each size
class needs to be solved. The Euler-Euler approach is often used in the simulation of bubble
columns and fluidized beds.

Eulerian methods have been developed for both direct numerical simulation and large-
eddy simulation. An Euler-Euler LES method has been proposed by Moreau et al. [74],
where the algebraic-closure-based moment method has been used to derive the LES
model. Euler-Euler DNS has recently been applied by Masi et al. [67], who used a sim-
ilar idea to make Euler-Euler DNS suitable for turbulence with mean shear and particles
with larger Stokes numbers. The algebraic-closure-based moment method is based on the
mesoscopic Eulerian formalism [38], in which the particle velocity field is partitioned
in two contributions. One contribution is the mesoscopic Eulerian particle velocity field
and the second represents the random uncorrelated motion of the particles. Modeling this
second contribution is crucial for an effective Eulerian model, especially in the dilute
regime.

In the following sections of this review paper the attention will be restricted to point-
particle methods, in particular to point-particle DNS in Section 2 and to point-particle
LES in Section 3. A number of other review papers have been published on numerical
simulation of two-phase flow, which deal with other approaches. A few examples are the
overview of both experimental and numerical approaches for turbulent dispersed multiphase
flows by Balachandar and Eaton [8], the overview of particle-resolved DNS by Tenneti and
Subramaniam [103] and the review about Lagrangian properties of particles in turbulent
flow by Toschi and Bodenschatz [104]. The reviews about numerical simulation of gas-
solid fluidized beds by Van der Hoef et al. [46] and by Deen et al. [30] describe a variety of
the approaches mentioned above that can be applied to the various scales that play a role in
this type of flow. A historical overview of much of the research on particle-laden flow, both
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experimental and numerical, with an emphasis on the research carried out in Stanford has
been given by Eaton [32].

2 DNS with Point-Particle Approach
2.1 Particle equation of motion

The basis for almost all applications of point-particle DNS is the Maxey-Riley equation
[68], which is the equation of motion of a spherical particle in a viscous fluid. Only in case
passive particles are considered an equation of motion is not used. If x; is the position of
particle i and v; its velocity, the kinematic equation reads
dx;(t)

T Vvi. (1)
For passive particles v; = u(x;(t), t), where u(x, ¢) is the fluid velocity. Inertial particles
satisfy equation of motion

dvi(t)

mi—— =3 F, ©)
where m; is the mass of particle i and the right-hand side consists of all forces acting on the
particle.

The Maxey-Riley equation can be written as

dvi(r)
mi
dt

The terms on the right-hand side are respectively the buoyancy force, the force by the undis-
turbed velocity field, the added mass force, the drag force and the Basset history force.
Maxey and Riley derived expressions for all these forces, which are valid in the limit of
low Reynolds number, but they took into account the effects of finite particle size by the
Faxén correction terms. Another requirement for the Maxey-Riley equation to be valid is
that the particle is small compared to the Kolmogorov length. Details can be found in [68].
Apart from the forces given in (3), in several cases also the lift force is taken into account.
Moreover, often correlations for the drag force valid for higher Reynolds numbers are used.
Here only the more frequently used forms of the forces will be specified. Some authors
considered the Faxén corrections for finite-sized particles. For example Homann and Bec
[47] showed that the effect of these correction terms is significant for larger particles, but
negligible if the particle diameter is equal to the Kolmogorov size or smaller.

The buoyancy force can be written as

Fp = (i —pp)Vig 4

with g the gravitational acceleration, p; and p are the mass densities of particle i and of
the fluid and V; is the particle volume. The second term on the right-hand side of (3) is the
force by the undisturbed velocity field,

=Fp +FpGg +Fay +Fp + Fpig. 3)

Fp = m ;o 5)
" Dt
where
Dt ot

is the material derivative, which is evaluated at the particle position. This force is often
called pressure gradient force, since in an earlier derivation of the particle equation of
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motion, the viscous contribution to this term was neglected. Maxey and Riley [68], however,

showed that both the pressure gradient and the viscous force should be included.
Without finite-size effects the added mass force can be written as

Du; dv;(t)

Dt dt )’

1
Fay = o7V ( (6)

2

Note that the first term between the parentheses has the same shape as the pressure gradient
force, while the second term has the same shape as the left-hand side of (3).
In most papers the drag force in (3) is taken equal to

(u(x; (1), 1) —v;)
mi—‘l,"

Fp = (1 4 0.15Re-%87). 7

In this equation t; is the particle relaxation time, given by

- d?
g = PG @®)
18
and Re; is the particle Reynolds number, given by
d4 -(t s 1) —vV;
RC,’:pf ila(x;(2), 1) Vl|’ 9)

uw

where  is the dynamic viscosity of the fluid and d; is the particle diameter. In the expression

for the drag force also finite size effects have been disregarded and the Schiller-Naumann

correlation valid for particle Reynolds numbers between 0 and 1000 has been applied [27].
Finally, the last term in (3) is the history force, which can be written as

14 (i (7) — vi(1))

o dr, (10)

Fpist = §(71)0‘;%)1/2011-2/
2 0
if again the effects of finite particle size are ignored.

In several studies also the lift force has been included. There are two mechanisms for lift
force, i.e. a force perpendicular to the relative velocity between fluid and particle. One is
caused by a shear in the fluid velocity, the shear-induced or Saffman lift force [6], and the
other is caused by particle rotation, the slip-rotation lift force or Magnus force [86].

2.2 Relevance of various forces

The relevance of the forces mentioned in the previous section in various applications has
been discussed in a number of papers. In [4] it has been observed that for small and heavy
particles, where heavy means that p; > py, the pressure gradient force, added mass force
and Basset history force are small compared to the drag force. For light particles, in par-
ticular for bubbles in a liquid or for neutrally buoyant particles, these three forces become
important. It has for example been shown that the history force cannot be neglected in case
of neutrally buoyant particles [1] and that more forces need to be taken into account if
pi/py < 100 [35]. Also the lift force is more relevant for light particles than for heavy
particles. A second reason why the history force is often not taken into account is the high
computational and memory costs for calculating the integral over the history of the particle.
Recently, however, a method has been developed to overcome this problem [45].

In many applications, in particular for solid particles or droplets in a turbulent gas flow,
the mass density ratio is so large that only the drag force and gravity force need to be taken
into account. This approach has been followed in many papers for various flows.
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2.3 One-way coupling

To the best of my knowledge the oldest paper on point-particle DNS, is by Riley and
Patterson and dates as far back as 1974 [85]. They inserted both passive particles and iner-
tial spherical particles in decaying homogeneous, isotropic turbulence. Due to the modest
computational resources at that time the Reynolds number was quite low, Re; < 35, and
only 323 grid points and 432 particles were used. The equation of motion for the iner-
tial particles contained only the linear drag force. The paper focussed on Eulerian and
Lagrangian temporal velocity autocorrelation functions. For short times the Lagrangian
autocorrelation is larger than the Eulerian and the opposite is true for larger times. More-
over, the Lagrangian velocity correlation increases with increasing particle relaxation
time.

Yeung and Pope [119] and Balanchandar and Maxey [9] studied the accuracy of various
methods for the interpolation of the fluid velocity to the particle positions in DNS of forced
and decaying homogeneous isotropic turbulence. They studied methods ranging from linear
interpolation to high-order Lagrangian and Hermitian interpolation methods and interpo-
lations based on splines. The accuracy of the interpolation is not only determined by the
interpolation method, but also by the resolution of the DNS. In general third-order accurate
interpolation is required to predict Lagrangian velocity statistics with sufficient accuracy
[119].

McLaughlin [69] has probably been the first to perform one-way coupled point-particle
DNS of turbulent channel flow. He considered this flow at a bulk Reynolds number based
on half the channel height of 2000 and studied the deposition of aerosol particles. Because
of the high mass density ratio he considered only the drag force and the Saffman lift
force, which turned out to be important in the viscous sublayer and hence for the depo-
sition and accumulation of particles. Bernard et al. [12] studied the motion of passive
particles in DNS of turbulent channel flow in order to analyze the origin of the Reynolds
stress.

Kontomaris et al. [49] studied the dispersion of passive particles in DNS of turbulent
channel flow at a Reynolds number of 9048 based on twice the channel height and the bulk
velocity. They applied a Fourier-Chebyshev pseudo-spectral method with a rather coarse
resolution compared to later work. They focussed on the accuracy of various methods for
the interpolation of the fluid velocity to the particle positions.

One-way coupled point-particle DNS has been reported in many papers, and for various
kinds of flow, e.g., channel flow [65], non-rotating [61, 79] and rotating pipe flow [36]
and homogeneous isotropic turbulence, both forced [97, 98] and decaying [35]. Elghobashi
and Truesdell [35] simulated inertial particles moving in decaying homogeneous isotropic
turbulence with initially Re, = 25 and taking all terms in the particle equation of motion
according to Maxey and Riley [68] into account. The mean-square particle displacement
agreed well with measurement results, although the Reynolds number in the experiment was
higher by a factor of three.

In particle-laden wall-bounded turbulent flows preferential concentration of particles
plays an important role. In homogeneous isotropic turbulence preferential concentration
results in non-uniform local particle concentration, but the average particle concentration in
time is uniform. In inhomogeneous turbulent flows, particles tend to move to regions with
lower turbulence kinetic energy. This is called turbophoresis [84] and results in larger par-
ticle concentrations near the walls in channel and pipe flow [64, 120]. In [65] results of a
benchmark problem for particle-laden turbulent channel flow at a frictional Reynolds num-
ber of 150 are reported. The benchmark includes results of a number of research groups
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with their own numerical method. Although the differences between the results are in gen-
eral small, in some quantities, especially in the enhanced mean particle concentration close
to the wall, for which turbophoresis is the main mechanism, non-negligible differences have
been observed.

2.4 Two-way coupling

One-way coupling is only applicable in dilute flows, where the (local) particle volume
fraction is below 107 [33, 34]. For larger particle volume fractions the effects of the
particles on the turbulence can no longer be disregarded and the reaction force of the
particles on the flow needs to be taken into account. This requires the solution of two
problems. The first is that all expressions for the hydrodynamic forces on a particle men-
tioned above require the knowledge of the undisturbed fluid velocity at the position of
the particle. If the effect of the particles on the fluid is taken into account, this undis-
turbed velocity is not directly known. Boivin et al. discussed this issue [16] and argued that
the difference between the undisturbed and disturbed fluid velocity is small if the particle
diameter is small compared to the grid size. Since in DNS the grid size is almost always
larger than the Kolmogorov length and the particle diameter has to be small compared to
the Kolmogorov length for the point-particle approach to be applicable, this condition is
satisfied.

The second problem is that the two-way coupling term, i.e., the force exerted by a particle
on the fluid is localized at the position of the particle, and can thus be represented by a Dirac
delta-function. Especially in case of a relatively small number of particles, this results in a
rather erratic distribution of this force over the computational domain. Therefore, usually
the two-way coupling term is distributed over a number of neighboring grid points by means
of a projection operator or allocated to the grid cell in which the particle is located. The
latter approach is for instance used in [97], which is an example of a particle-source-in-cell
method. It has, however, been shown that a projection method results in a smaller loss of
kinetic energy [16].

Eaton [32] also discussed several problems related to two-way coupling. His first issue
is that particles are typically larger than the grid cell, so that they cannot be represented by
a point. As already pointed out above, in almost all numerical simulation methods, the grid
size is larger than the Kolmogorov length and if the particle is smaller than the Kolmogorov
length, it is certainly smaller than the grid size. Therefore, this argument is most often not
problematic. Eaton’s second objection against two-way coupling is that for dilute flows, the
two-way coupling term is “spotty”, as most grid cells do not contain a particle. This cer-
tainly depends on the problem. Simulations [54, 87] have been carried out with many very
small particles, which are so small that the flow is still dilute, for example with a parti-
cle volume fraction on the order of 10~. In the simulations cited the number of particles
is comparable to the number of grid cells. The non-smooth character of the two-way cou-
pling force does not lead to problems in the numerical method. Moreover, statistical results
of the simulations, averaged over a sufficiently long time, appear not to be affected by the
non-smooth two-way coupling force.

Boivin et al. [16] studied the influence of the presence of particles at different mass
loading on the turbulence kinetic energy and dissipation rate for homogeneous isotropic
turbulence. They noticed that both quantities decrease with increasing mass loading and
that this decrease depends on the particle size (Stokes number). By considering the energy
spectra, they observed that the turbulence spectral density is attenuated by larger particles
and increased by smaller particles.
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Pan and Banerjee [77] performed two-way coupled point-particle DNS of turbulent chan-
nel flow. They did not take the added-mass force and Basset history force into account, but
included the pressure gradient force. The particle volume fraction was close to 10~*. For the
two-way coupling force on the fluid a Stokeslet was applied for each particle. They observed
that particles smaller than the Kolmogorov length suppress the turbulence, whereas larger
particles enhance turbulence.

Zhao et al. [123, 124] performed two-way coupled point-particle DNS in turbulent chan-
nel flow at a frictional Reynolds number, based on half the channel height, of 180. A striking
result is that particles reduce the drag, resulting in a larger bulk fluid flow rate at the same
frictional Reynolds number compared to the unladen flow. Just like [16] they observed that
the fluid velocity fluctuations in the streamwise direction are enhanced by the presence
of particles, whereas the other two components and the Reynolds stress are significantly
decreased. They also studied the effect of particles on coherent structures and reported an
increase of their size.

Lee and Lee [56] performed two-way coupled point-particle DNS of turbulent channel
flow at Re; = 180 taking into account only the nonlinear drag force exerted by the fluid
on the particles. They considered particles with various Stokes numbers, keeping the mass
loading constant and focused on the effects of the particles on the turbulence. The main
result is that particles of small Stokes number increase turbulence intensities, the Reynolds
stress, the viscous dissipation and the fluid acceleration statistics, whereas particles of larger
Stokes numbers suppress the turbulence intensities. They explained this result by studying
the interaction of the particles with the sweeps and ejections close to the walls. Note, how-
ever, that the particle volume fraction in the case with the lowest Stokes number is so high
(1073), that the disregard of particle collisions is questionable.

In [52] apart from momentum exchange also heat exchange between particles and fluid
has been taken into account in differentially heated turbulent channel flow at frictional
Reynolds numbers of 150 and 395. It was observed that the presence of small heavy particles
with a specific heat larger than that of the fluid, gives rise to enhanced heat transfer between
the two walls of the channel. This is caused by a combination of turbophoresis, which drives
the particles toward the walls of the channel and a difference in mean temperature between
particles and fluid close to the walls. Another result of this research is that the incorpo-
ration of two-way coupling reduces the effect of turbophoresis, resulting in lower particle
concentrations close to the walls compared to one-way coupled simulations. This can be
explained by the reduction in the wall-normal fluid velocity fluctuations due to two-way
coupling.

This research has been further extended to include mass transfer between the dispersed
phase, which consisted of water droplets, and the carrier phase, a combination of dry air and
water vapor. Russo et al. [87] considered an incompressible formulation of the carrier gas,
whereas Bukhvostova et al. [21] included the effects of changes in the total mass density
caused by evaporation of droplets and condensation of water vapor, by applying a compress-
ible formulation of the carrier gas. The possibility of phase change results in an even higher
enhancement of the heat transfer between the walls of the channel, caused by the enthalpy
of evaporation which results in a larger difference in mean temperature between droplets
and gas than without phase change. For mild initial conditions the results of the incompress-
ible and compressible formulation do not show significant differences. However, a lower
initial relative humidity, leading to fast initial evaporation of droplets, results in differences
on the order of 15 % in mean thermal properties of the system [22]. A drawback of the com-
pressible formulation is the severe restriction on the time step if an explicit time-marching
method is applied, since realistic Mach numbers are very small. This can be avoided by a
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low-Mach-number algorithm, which has been shown to yield results in very good agreement
with the fully compressible formulation [20].

In earlier research DNS of droplet-laden turbulent flow has been studied for the case
of forced homogeneous isotropic turbulence [66]. In that work only evaporation and no
condensation of vapor has been considered and the droplet equations were simplified in the
sense that it was assumed that the heat capacities of the liquid and vapor are constant and
equal. In this paper the influence of varying the initial droplet temperature, mass loading and
size on the evaporation rate and on the PDF of the droplet diameter has been investigated.

Evaporating droplets have also been considered in DNS of a confined mixing layer with
one stream of hydrocarbon droplets [71]. In this research also two-way coupling of mass,
momentum and energy has been incorporated. It was observed that an increased mass load-
ing results in attenuation of the growth rate of the mixing layer and of the kinetic energy.
This research has later been extended to higher Reynolds numbers [72] in order to study the
role of the subgrid scales on transport, heating and evaporation of droplets by means of an
a priori analysis of the DNS results and in order to propose subgrid models.

Another example where mass exchange between the dispersed phase and the carrier gas
is relevant, is pyrolysis of biomass particles in a turbulent gas flow, where during pyrolysis
the particles release volatile gases. This process has been studied by means of point-particle
DNS in [88]. In order to model the processes taking place inside each particle, such as the
moving front between the virgin biomass and the char, which results after pyrolysis, and
the temperature profile, for each particle an additional set of ordinary differential equations
has been solved. These equations represent a simplified model of the partial differential
equation modeling the conduction, convection and heat of reaction inside the particle. The
paper studied the relevance of two-way coupling and it appeared that two-way coupling
starts influencing the conversion time of the particles at particle volume fractions on the
order of 1073, which is close to the boundary between one-way and two-way coupling
indicated in [34] for momentum transfer.

2.5 Four-way coupling

For higher particle volume fractions the particles do not only influence the continuous phase,
but also the interaction between particles becomes more and more important. According
to the diagram by Elghobashi [34], particle collisions have an effect on the results if the
particle volume fraction is larger than 103 for homogeneous, isotropic turbulence. Sim-
ulations in which particle collisions are taken into account are frequently called four-way
coupled simulations. Particle collisions require two additional elements in the simulation:
an algorithm that searches collisions and a method that determines the result of a collision.
In general it is assumed that the particle volume fraction and the duration of a collision are
sufficiently small that only binary collisions need to be considered. In this section we will
only consider spherical particles. Collision algorithms for non-spherical particles have also
been developed and studied [93, 122]. Zhao et al. [122] considered ellipsoidal particles and
used an extension of a collision search algorithm for spherical particles by treating each
ellipsoid as a set of overlapping fictitious spheres, whose hull approximately corresponds to
the shape of the ellipsoid.

Collision search algorithms can be divided into deterministic and stochastic methods.
The simplest deterministic collision search algorithm considers all particle pairs. How-
ever, the cost of this algorithm is proportional to the square of the number of particles
and becomes prohibitively expensive in most cases. More efficient search algorithms have
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been developed that are based on nearest-neighbor lists or domain decomposition. Nearest-
neighbor lists are also employed in molecular dynamics simulations. Since in a time step
At the distance between two particles cannot change more than by 2vA¢, where v is the
maximum magnitude of particle velocity, only particle pairs within this distance need to
be considered. If N, is the number of particles, this results in a maximum reduction
of the computational cost of the search algorithm to order N4, log N . Hoomans et al.
[48] employed square neighbor lists to determine all collision pairs in simulations of two-
dimensional gas-fluidized beds. Vreman [109] applied a similar algorithm, but based on a
decomposition of the domain in small blocks, to study turbulent particle-laden pipe flow.

An alternative way to avoid the computationally expensive particle-pair-collision search
algorithm is to use a stochastic collision model. Such a stochastic model has first been pro-
posed and employed by Oesterle and Petitjean [75] for gas-solid flow in a horizontal pipe.
In this method single particles are tracked and in every time interval the fraction of particles
that collide is determined from a collision probability. The collision probability involves
the cross-sectional area of a particle pair, the relative velocity of two particles, the particle
number density and the radial distribution function [100]. Due to preferential concentration
of particles, the radial distribution function is not easy to determine. Moreover, the rela-
tive velocity of two colliding particles is strongly influenced by the correlation between
two inertial particles at small distance, which makes this problem more complicated than in
kinetic gas theory [114]. Stochastic particle-collision models have been further developed
by e.g. Berlemont et al. [11] and Sommerfeld [96].

The second element of four-way coupling is the collision algorithm, which determines
the outcome of a collision. Two basic types of models can be distinguished: hard-sphere
and soft-sphere collision models. In the hard-sphere model two particles only feel each
other the moment they touch and the collision occurs instantaneously. In the soft-sphere
approach the relative motion of two colliding particles is governed by an equation of motion
which involves the contact force between the two particles. For the contact force a linear
spring-dash-pot model can be applied [106]. For very dense systems, the hard-sphere model
cannot be applied, since it leads to very close packing and low relative velocities. This may
ultimately result in overlapping particles. An advantage of the hard-sphere model is that
the post-collision velocities can be calculated analytically from conservation of momentum
and energy. Energy does not need to be conserved; inelastic collisions in which part of the
kinetic energy of the relative motion of the two particles is transferred into heat can easily
be incorporated as well.

In most simulations that have been performed with four-way coupling not only the lin-
ear momentum of the particles is taken into account, but also the particle rotation. During
a collision both the particle linear and angular momentum are exchanged, in such a way
that the sums of the linear and the angular momentum of the two collision partners are
conserved [59]. Inelasticity of collisions can be incorporated by the coefficient of normal
restitution, which reduces the normal component of the relative velocity during a collision.
If the tangential component of the relative velocity is smaller than a certain threshold value,
the particles undergo a sticking collision, otherwise a sliding collision [59].

Four-way coupled DNS of turbulent channel and pipe flow have been performed by a
number of researchers. Vreman [109] studied the effects of small, heavy particles in vertical
pipe flow of air for a wide range of mass loadings between 0.1 and 30. He incorporated a
model for wall roughness and concluded that the effects of this model are much larger than
effects of changes in the particle model, such as incorporation of a lift force and variations
in collision parameters. Wall roughness turned out to be necessary to obtain agreement with
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experimental results. The turbulence intensities of the air reduce strongly with increasing
particle mass loading.

Similar results have been obtained for particle-laden turbulent channel flow at mass load-
ings between 0.2 and 2 [31, 57]. In this flow the particles inhibit the transfer of energy from
the streamwise to the spanwise and wall-normal velocity components, which increases the
anisotropy of the turbulence. It has also been observed that particle collisions result in a sig-
nificant reduction of turbophoresis. This latter observation has been studied in more detail
for droplet-laden turbulent channel flow [54], where it appeared that even at a relatively
low overall droplet volume fraction of 10~*, droplet collisions have a large impact on the
droplet concentration profile. The combination of turbophoresis and preferential concentra-
tion results in local droplet concentrations which are much larger than the average volume
fraction. The effect of collisions on the heat transfer between the walls of the channels is,
however, not as big as on the droplet concentration. This can be explained by the higher dif-
ference in mean droplet and gas temperature as compared to two-way coupled simulations
[87], resulting from the lower heat exchange area between gas and droplets in the near-wall
region.

Vreman [110] performed four-way coupled point-particle DNS of downward gas-solid
flow in a vertical channel at Re; = 642 and with a mass loading of 0.8. He considered
smooth and rough walls, where rough walls were modeled by fixing tiny spherical parti-
cles on the walls. Rough walls enhance the turbulence attenuation caused by the free solid
particles. Moreover, he decomposed the force exerted by the particles on the gas into three
contributions: the spatial average of the mean force, the non-uniform part of the mean force
and the fluctuating part of the force. He showed that the second contribution, the non-
uniform part of the mean feedback force, has a significant contribution to the turbulence
attenuation caused by the particles.

Some papers studied the particle collision frequency, which is an important quantity in
stochastic collision algorithms. Since nearby inertial particles are correlated, the collision
frequency differs from the theoretical expression that can be derived for molecules from
kinetic gas theory. Sundaram and Collins [100] derived an estimate for the collision fre-
quency, i.e, the number of collisions per unit volume and time, for inertial mono-disperse
particles in a turbulent flow based on the cylindrical volume swept by a single particle per
unit time. This estimate depends on the particle number density, on the relative velocity of
two particles just before a collision and on the particle radial distribution function at con-
tact. A second estimate of the collision frequency is the so-called spherical formulation by
Wang et al. [113, 114], According to Saffman and Turner [89], the collision frequency in
turbulent flows can be based on the net inward flux into a sphere of radius d, around a
particle.

Sundaram and Collins [100] calculated the particle collision frequency in simulations of
particle-laden homogeneous isotropic turbulence for particles of various Stokes numbers.
In their simulations the particle volume fraction is so low that they ignored the effect of
the particles on the flow, but they carried out the collisions. For very small Stokes numbers
the particles behave in agreement with the prediction of Saffman and Turner [89], while for
very large Stokes numbers the particle collisions are more in agreement with kinetic theory.
In the intermediate range a more complex behavior is observed, which is a consequence
of preferential concentration and reduced correlation between neighboring particles. Both
phenomena result in increased collision rates. In [83] the dependence of the radial distri-
bution function on the turbulence and particle parameters was studied by means of DNS of
particle-laden homogeneous isotropic turbulence.
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Wang et al. [114] studied a similar system, but they only calculated the collision fre-
quency without implementing the post-collision particle positions and velocities. In this
way particles are allowed to overlap. In this way they avoided artificial repeated collisions,
which may occur if particles collide with low relative velocity and the surrounding fluid
field pushes the particles toward each other after a collision. They determined the colli-
sion frequency, the relative velocity of two colliding particles and the radial distribution
function at contact for particles of various Stokes numbers and studied the effects of pref-
erential particle concentration and relative velocity on the collision frequency separately.
They concluded that the spherical formulation of the collision frequency is more accu-
rate than the cylindrical formulation, if the particle concentration has reached a stationary
state.

Collision frequencies have been determined for inhomogeneous turbulent flow in [54]
for the case of droplet-laden turbulent channel flow at a frictional Reynolds number of 150.
In inhomogeneous turbulent flows the particle number density, mean relative velocity and
radial distribution function are all dependent on the coordinate in which the turbulence is
homogeneous, in this case the wall-normal coordinate. Due to turbophoresis, the particle
number density close to the walls is larger than in the center of the channel. The effect
of this on the collision frequency is enhanced by the larger mean relative velocity near
the walls. In turbulent channel flow preferential concentration not only results in larger
particle concentrations near the walls. Both near the walls and in the center of the chan-
nel local particle clustering also plays an important role. Near the walls the particles are
clustered in the low-speed streaks. In the center of the channels regions with large par-
ticle concentration and regions void of particles can be observed. Both structures have a
quite long life time. Typical examples of both regions are shown in Fig. 2 for particle-
laden turbulent channel flow at Re; = 950 with particles of St = 10 and an overall
particle volume fraction of 9 x 10~3. These results have been determined by point-particle
DNS.

The radial distribution function at contact resulting from this DNS is shown in Fig. 3 as
a function of the wall-normal coordinate.

Fig. 2 Instantaneous particle positions for point-particle DNS of turbulent channel flow at Re;, = 950,
St = 10 and an overall particle volume fraction of 9 x 107>, The figures show a small slice parallel to
the walls for 7.45 < y* < 7.55 (left) and for 949.85 < y* < 950.15 (right), and y™ is the wall-normal
coordinate in wall units
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Fig. 3 Radial distribution 6(
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3 LES with Point-Particle Approach
3.1 Subgrid modeling in the particle equation of motion

Instead of DNS also LES can be used for the description of the continuous phase in point-
particle simulations. This implies that filtered fluid quantities are employed, usually defined
by

(. 1) = /V G (x — Yuy, dy, (11)

where G is a convolution kernel and u a velocity component or the pressure. Possible fil-
ter functions are a top-hat filter, which is only unequal to zero inside a small rectangular
domain or a Gaussian filter. The governing equations for the filtered fluid velocity are
derived by applying the filter operation to the Navier-Stokes equation and to the continuity
equation in case of incompressible flow [40]. Due to the non-linearities in the Navier-Stokes
equation some terms appear which cannot be expressed in filtered quantities only, but also
contain unfiltered quantities, for example a product of two unfiltered velocity components.
Such terms have to be closed by a model, which expresses them as functions of the filtered
quantities.

The most important term that needs to be closed is the subgrid stress tensor, which is
defined by

Tij = Uillj — Uil (12)
for incompressible flow, where u; is a component of the fluid velocity. Various subgrid mod-
els have been proposed. The best known is the Smagorinsky model [95], which is based on
the eddy-viscosity assumption, which renders the model dissipative. This model has later
been improved by including corrections near a wall and by the dynamic procedure, which
reduces the eddy viscosity in laminar regions [39]. Other subgrid models are based on the
scale-similarity assumption [10], a Taylor series expansion [26], or approximate deconvolu-
tion [99]. For many types of turbulent flow LES has become a valuable simulation method,
because of the significantly reduced computational costs as compared to DNS.

If LES is applied to the continuous phase in point-particle simulations of particle-laden
turbulent flow, also the particle equations of motion contain terms that need to be closed. In
particular, the pressure gradient force (5), the added-mass force (6), the drag force (7) and
the history force (10) contain the unfiltered fluid velocity, which is unknown. In cases where
the particle relaxation time is large compared to the typical time scales of the turbulent flow
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and to the smallest time scale resolved in the LES, the subgrid scales in the fluid velocity do
not influence the particle motion significantly. In such cases a subgrid model in the particle
equation of motion is not required and this approach has been followed in several papers
[108, 115, 118]. The a priori and a posteriori study of Armenio et al. [5] showed that the
subgrid scales have only a small effect on the particle motion, but they restricted this study
to quantities and