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Abstract To understand turbulent transport mechanisms of interface turbulence over
porous and rough walls, statistical analyses using direct numerical simulation (DNS) data
are carried out at a bulk Reynolds number of 3000. The presently considered porous wall,
whose porosity is 0.71, consists of interconnected staggered cube arrays and the rough wall
has the same surface structure. Through quadrant and budget term analyses, the transport
mechanisms of the plane averaged Reynolds stress are investigated and mutual depen-
dency between turbulence and dispersion is elucidated. Moreover, the influence of the
Kelvin-Helmholtz instability on turbulent transport is clarified.

Keywords Direct numerical simulation · Lattice Boltzmann method · Turbulent channel
flow · Porous media · Double averaged second moments · Budget terms
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K permeability
K plane-dispersion energy : K = Tkk/2
L cube-row pitch
p pressure

Rij plane averaged Reynolds stress:
[
u′

iu
′
j

]f

Reb bulk Reynolds number: Reb = UbH/ν

Reτ bottom-wall friction Reynolds number: Reτ = uτ δ/ν

Retτ top-wall friction Reynolds number: Retτ = ut
τ δ

t /ν

t time

Tij plane-dispersive covariance :
[
ũi ũj

]f

ui velocity
uτ bottom-wall friction velocity
ut

τ top-wall friction velocity
Ub bulk mean velocity
x streamwise coordinate
y wall-normal coordinate
z spanwise coordinate
δ bottom-wall boundary layer thickness
δt top-wall boundary layer thickness
�c coarser grid spacing
�f finer grid spacing
κ Kármán constant
ν kinematic viscosity
ρ fluid density
ϕ porosity
φ variable
φ Reynolds averaged value of φ

φ′ fluctuation of φ : φ − φ

[φ]f plane averaged value of φ

φ̃ dispersion of φ : φ − [φ]f
ψ surface porosity
( )+ normalized value by uτ

( )t+ normalized value by ut
τ

1 Introduction

Nuclear reactor cores, catalytic converters, metal foam heat exchangers, vegetation and
urban canopies can be considered to be porous media. Since interface turbulence over the
porous medium plays an important role for heat and mass transfer of the system, understand-
ing the turbulent transport mechanisms helps us to control its performance. Accordingly,
many studies on the turbulent transport processes inside the interface regions of porous
media have been performed.

For flows over vegetation canopies, some experimental studies paid attention to pro-
duction, diffusion and dissipation processes of the turbulent kinetic energy. By sonic
anemometry measurements, Meyers and Baldocchi [19] carried out a budget term analysis
for the turbulent kinetic energy equation. They concluded that the mean shear production
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was dominant near the canopy interface whilst the ‘wake production’ (mean dispersive-
shear production) exceeded the mean shear production inside the canopy. Katul [10]
performed triaxial sonic anemometer measurements to investigate behaviours of triple
velocity correlations and reported that the triple moment related to the vertical turbulent
diffusion process of the Reynolds shear stress became significant just above the interface.
By acoustic and laser Doppler velocimetries, Nepf [20] measured the drag force, turbulent
and ‘mechanical diffusion’ (transport by dispersion) terms of the scaler transport within
a vegetation canopy. The experiments showed that the turbulence intensity was mainly
dependent on the drag. It was found that as the vegetation density increased (or the poros-
ity decreased), the turbulent diffusion was reduced due to the reduction of an eddy scale
whilst the mechanical diffusion, which arose from the velocity dispersion, became signif-
icant. Nezu and Sanjou [21] measured aquatic vegetation canopy flows by laser Doppler
and particle image velocimetries. Their budget term analysis for the turbulent kinetic energy
equation revealed that the turbulent diffusion played an essential role in the mixing layer.
For flows over permeable beds, Pokrajac and Manes [23] and Manes et al. [18] measured
turbulent open channel flows over a porous bed composed of glass spheres by particle image
velocimetry and an ultrasonic velocity profiler. They concluded that turbulent kinetic energy
was transported toward the lower bed mainly by pressure fluctuations whereas the transport
by turbulent velocity fluctuations was limited to a thinner layer in the upper part of the bed.

From those experimental studies, it was found that, in the interface regions of porous
media, the mean shear production was the major process and the turbulent diffusion trans-
ported the energy downward to the porous layer whilst the dispersion production became
dominant inside the layer. However, accuracy and reliability of the measured data were
sometimes limited to the clear flow regions because of the difficulty of measurements inside
porous media. Consequently, behaviours of higher order turbulent correlations such as the
budget terms of the Reynolds stress equations were not fully investigated and the detailed
turbulent transport mechanism in the porous and fluid interface region was not realized very
well.

Accordingly, several large eddy simulation (LES) and direct numerical simulation (DNS)
studies have been attempted. Since enormous computational costs are required to resolve
the complex porous structures, the volume averaged Navier-Stokes (VANS) equations of
Whitaker [29, 30] were sometimes applied to the porous regions. Dwyer et al. [6] conducted
LES for flows over a modelled forest and investigated the turbulent kinetic energy budgets.
As the forest permeability increased, turbulence was more enhanced due to the increased
mean shear production. Their results showed that the turbulent diffusion worked near the
interface whereas the pressure diffusion transported the energy deeply inside the forest.
For porous-walled channels, Breugem et al. [2] performed a DNS study. They also applied
the VANS equations to model the porous wall region and concluded that the wall-normal
and spanwise Reynolds stresses were substantially enhanced near a highly permeable wall
because of the significant redistribution from the streamwise component. Due to the weak-
ened wall-blocking effect near the interface, the viscous diffusion became less important
whereas the turbulent diffusion transported the wall-normal Reynolds stress inside the
porous media. However, since their VANS equations included a model for the drag force
term and neglected the effect of the dispersion, it may be considered that the turbulence
transport mechanisms around and inside the porous layer were not precisely reproduced.
They also performed another DNS study resolving each porous element [1]. Although
root mean square values of turbulence fluctuations were reported, information of the bud-
get terms of turbulent transport equations in the resolved porous layer was not provided.
Recently, Chandesris et al. [3] also performed a full DNS study for low Prandtl number
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(Pr= 0.1) heat transfer fields with the same flow conditions as those of Breugem et al. [2]
resolving the model porous structure. Since their focus was on heat transfer, they did not
provide any further information on turbulent flow physics than that in Ref. [2].

As described above, although several important pieces of information of the interface
turbulence transport have been delivered, it can be said that many other aspects are still unre-
vealed. Hence, to reveal more the flow physics of interface turbulence over a porous wall
and to clarify the effect of the wall permeability on turbulence, the present authors carried
out a full DNS study of turbulent porous- and rough-walled channel flows (Kuwata and Suga
[15]). The porous wall consisted of staggered cube arrays in which solid cubes were inter-
connected and the same solid structure was considered for the rough wall. To directly treat
the porous structure, the D3Q27 multiple relaxation time (MRT) lattice Boltzmann method
(LBM) [26] with the imbalance-correction local grid-refinement method [14] was employed
for the turbulent flow simulation. The study focused on the presence and the characteris-
tics of pressure perturbations induced by the Kelvin-Helmholtz (K-H) instability over the
porous layer. Due to the pressure perturbations, it was confirmed that the turbulent coherent
structure was shredded over the porous layer and large scale intermittent fluctuations were
induced inside the porous layer. It was also confirmed that the intensified wall-normal and
spanwise velocity fluctuations over the porous layer were due to the K-H instability and
the most energy containing perturbations were of the wavelength of 550 wall units. In the
present study, to discuss further the detailed transport mechanism of interface turbulence
statistically, quadrant and budget term analyses of the second moments are carried out.

2 DNS by the D3Q27 MRT LBM

In our previous report [15], the time-dependent flow fields were simulated by the LBM
since it has many distinctive computational features such as easiness for parallelization and
applicability to complex geometries. The lattice Boltzmann equation can be obtained by
discretizing the velocity space of the Boltzmann equation into a finite number of discrete
velocities ξα{α = 0, · · · , Q − 1}. There are several discrete velocity models for three-
dimensional flows such as the D3Q15, D3Q19 and D3Q27 models. It was reported that
although unphysical spurious currents were sometimes visible by the D3Q15 and D3Q19
models in axisymmetric flows, they were effectively suppressed by the D3Q27 model [9, 13,
31]. Also, to ensure the numerical stability for high Reynolds number flows, it is effective to
apply the MRT scheme [5]. Accordingly, our study employed the D3Q27 MRT-LBM [26].
The time evolution of the distribution function of the MRT-LBM can be written as

| f (x + ξαδt, t + δt)〉− | f (x, t)〉 = −M−1Ŝ
[| m(x, t)〉− | meq(x, t)〉] ,

(1)

where the notation such as |f 〉 is |f 〉 = (f0, f1, · · · , fQ−1)
T and δt is the time step. Note

that for the D3Q27 model, Q = 27. The discrete velocity components ξα for the D3Q27
model are listed in Table 1. The matrix M is a Q × Q matrix which linearly transforms
the distribution functions to the moments as |m〉 = M|f 〉. The equilibrium moment meq is
obtained as

∣∣meq〉 = M|f eq
〉
with

f eq
α = wα

(
ρ + ρ0

[
ξα · u

c2s
+ (ξα · u)2 − c2s |u|2

2c4s

])
, (2)
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Table 1 Parameters of the D3Q27 discrete velocity model

Model cs/c ξα/c wα

D3Q27 1/
√
3 (0, 0, 0) 8/27(α = 0)

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 2/27(α = 1, · · · , 6)

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/54(α = 7, · · · , 18)

(±1,±1,±1) 1/216(α = 19, · · · , 26)

where u is the fluid velocity and ρ is expressed as the sum of constant and fluctuation
values: ρ = ρ0 + δρ [8]. The sound speed is cs/c = 1/

√
3 with c = �/δt where � is

the lattice spacing and the values of wα are listed in Table 1. The equilibrium moments

Table 2 Equilibrium moments
m

eq

0 = ρ ≡ ∑26
α=0 f

eq
α

m
eq

1 = jx ≡ ∑26
α=0 f

eq
α ξαx

m
eq

2 = jy ≡ ∑26
α=0 f

eq
α ξαy

m
eq

3 = jz ≡ ∑26
α=0 f

eq
α ξαz

m
eq

4 = e ≡ ∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)
f

eq
α

m
eq

5 = XX ≡ ∑26
α=0

(
2ξ2αx − ξ2αy − ξ2αz

)
f

eq
α

m
eq

6 = WW ≡ ∑26
α=0

(
ξ2αy − ξ2αz

)
f

eq
α

m
eq
7 = XY ≡ ∑26

α=0

(
ξαxξαy

)
f

eq
α

m
eq

8 = YZ ≡ ∑26
α=0

(
ξαyξαz

)
f

eq
α

m
eq

9 = ZX ≡ ∑26
α=0

(
ξαzξαx

)
f

eq
α

m
eq

10 = ϕx ≡ 3
∑26

α=0

(
ξ2αx + ξ2αy + ξ2αz

)
ξαxf

eq
α

m
eq

11 = ϕy ≡ 3
∑26

α=0

(
ξ2αx + ξ2αy + ξ2αz

)
ξαyf

eq
α

m
eq

12 = ϕz ≡ 3
∑26

α=0

(
ξ2αx + ξ2αy + ξ2αz

)
ξαzf

eq
α

m
eq

13 = ψx ≡ 9
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)2
ξαxf

eq
α

m
eq

14 = ψy ≡ 9
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)2
ξαyf

eq
α

m
eq

15 = ψz ≡ 9
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)2
ξαzf

eq
α

m
eq

16 = ε ≡ 3
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)2
f

eq
α

m
eq

17 = e3 ≡ 9
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)3
f

eq
α

m
eq

18 = XXe ≡ ∑26
α=0

(
2ξ2αx − ξ2αy − ξ2αz

) (
ξ2αx + ξ2αy + ξ2αz

)
f

eq
α

m
eq

19 = WWe ≡ ∑26
α=0

(
ξ2αy − ξ2αz

) (
ξ2αx + ξ2αy + ξ2αz

)
f

eq
α

m
eq

20 = XYe ≡ ∑26
α=0

(
ξαxξαy

) (
ξ2αx + ξ2αy + ξ2αz

)
f

eq
α

m
eq

21 = YZe ≡ ∑26
α=0

(
ξαyξαz

) (
ξ2αx + ξ2αy + ξ2αz

)
f

eq
α

m
eq

22 = ZXe ≡ ∑26
α=0

(
ξαzξαx

) (
ξ2αx + ξ2αy + ξ2αz

)
f

eq
α

m
eq

23 = τx ≡ ∑26
α=0 ξαx

(
ξ2αy − ξ2αz

)
f

eq
α

m
eq

24 = τy ≡ ∑26
α=0 ξαy

(
ξ2αz − ξ2αx

)
f

eq
α

m
eq

25 = τz ≡ ∑26
α=0 ξαz

(
ξ2αx − ξ2αy

)
f

eq
α

m
eq

26 = XYZ ≡ ∑26
α=0

(
ξαxξαyξαz

)
f

eq
α

ρ: density, jx, jy , jz :
momentum, e : kinetic energy,
XX,WW,XY, YZ,ZX :
second-order tensors, ϕx, ϕy, ϕz :
flux of the energy, ψx,ψy, ψz :
flux of the square of the energy, ε
: square of the energy, e3 : cube
of the energy, XXe,WWe :
product of XX and WW by the
energy, XYe, YZe, ZXe :
extra-diagonal second-order
moments of the energy,
τx, τy , τz : third-order pseudo
vector, XYZ : third-order totally
antisymmetric tensor.
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and the transformation matrix are shown in Tables 2 and 3. The collision matrix Ŝ is
diagonal:

Ŝ ≡ diag(0, 0, 0, 0, s4, s5, s5, s7, s7, s7, s10, s10, s10, s13,

s13, s13, s16, s17, s18, s18, s20, s20, s20, s23, s23, s23, s26). (3)

The relaxation parameters optimized in Ref.[26] are

s4 = 1.54, s5 = s7, s10 = 1.5, s13 = 1.83, s16 = 1.4,

s17 = 1.61, s18 = s20 = 1.98, s23 = s26 = 1.74. (4)

The relaxation parameters s5 and s7 are related to the kinematic viscosity ν,

ν = c2s

(
1

s5
− 1

2

)
δt = c2s

(
1

s7
− 1

2

)
δt. (5)

The accuracy of this D3Q27 MRT-LBM for the turbulent channel flow of Kim et al. [11]
was confirmed to be equivalent to that of the spectral method. See Suga et al. [26] for the
details.

3 Flow Geometry and Computational Conditions

Figure 1a illustrates the geometry of the porous-walled channel. The channel bottom wall
was made of a porous medium whilst a smooth surface was considered for the top wall. The

Table 3 27 × 27 transformation matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 −1 0 0 0 1 −1 −1 1 1 0 −1 0 1 0 −1 0 1 −1 −1 1 1 −1 −1 1 0

0 1 0 −1 0 0 1 1 −1 −1 0 1 0 −1 0 1 0 −1 1 1 −1 −1 1 1 −1 −1 0

0 0 0 0 1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 0

−1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 −2

2 −1 2 −1 −1 −1 1 1 1 1 1 −2 1 −2 1 −2 1 −2 0 0 0 0 0 0 0 0 0

0 1 0 1 −1 −1 1 1 1 1 −1 0 −1 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 −1 0 1 1 1 −1 −1 −1 −1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 −1 0 −1 0 1 0 1 −1 −1 1 −1 1 1 −1 0

−4 0 4 0 0 0 −1 1 1 −1 −1 0 1 0 −1 0 1 0 2 −2 −2 2 2 −2 −2 2 0

0 −4 0 4 0 0 −1 −1 1 1 0 −1 0 1 0 −1 0 1 2 2 −2 −2 2 2 −2 −2 0

0 0 0 0 −4 4 0 0 0 0 −1 −1 −1 −1 1 1 1 1 2 2 2 2 −2 −2 −2 −2 0

4 0 −4 0 0 0 −2 2 2 −2 −2 0 2 0 −2 0 2 0 1 −1 −1 1 1 −1 −1 1 0

0 4 0 −4 0 0 −2 −2 2 2 0 −2 0 2 0 −2 0 2 1 1 −1 −1 1 1 −1 −1 0

0 0 0 0 4 −4 0 0 0 0 −2 −2 −2 −2 2 2 2 2 1 1 1 1 −1 −1 −1 −1 0

0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 4

4 4 4 4 4 4 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 1 1 1 1 1 1 1 1 −8

−4 2 −4 2 2 2 1 1 1 1 1 −2 1 −2 1 −2 1 −2 0 0 0 0 0 0 0 0 0

0 −2 0 −2 2 2 1 1 1 1 −1 0 −1 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 2 −2 2 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 −2 0 2 0 2 0 −2 1 1 −1 −1 −1 −1 1 1 0

0 0 0 0 0 0 0 0 0 0 −2 0 2 0 2 0 −2 0 1 −1 −1 1 −1 1 1 −1 0

0 0 0 0 0 0 1 −1 −1 1 −1 0 1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 −1 1 1 0 1 0 −1 0 1 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Flow Turbulence Combust (2016) 97:1071–1093 1077

2πH

πH

H
Porous media

h

x
z

y

y=0

2πH

πH

H
h

(a) case P

(b) case R

L

L

D

D/2

h

Fig. 1 Channel flow computational geometries: a case P, b case R

considered porous medium consisted of interconnected staggered cube arrays. The poros-
ity ϕ, the permeability K and the other configuration parameters (cube size D and the cube
pitch L) in the homogeneous region are summarised in Table 4. Since flows over porous
media are principally affected by two factors which are the wall roughness and the wall per-
meability, two cases are simulated to investigate the influence of the wall permeability. They
are namely case P: the simulation with the porous layer, and case R: the simulation with
the rough wall that is shown in Fig. 1b. In those two cases, the surface structures were the
same although the bottom wall thickness h was different. In case P, h was set as h = 0.54H
where H was the clear channel height, whilst in case R, it was set as h = 0.088H which
meant only one cube row was placed on the very bottom wall. Each computational domain
size was 6.7H(x)×(H +h)(y)×3.2H(z). Using the imbalance-correction grid-refinement

Table 4 Parameters of computational geometries

Case ϕ K/H 2 D/H L/H h/H Grid node number Grid resolution

(x × y × z)

P 0.71 1.7×10−4 0.088 0.16 0.54 Fine(1674 × 210 × 837) �f + = 1.2, D/�f = 23

Coarse(837 × 100 × 419) �c,t+ = 1.6

R – – 0.088 0.16 0.088 Fine(1674 × 89 × 837) �f + = 1.0, D/�f = 23

Coarse(837 × 100 × 419) �c,t+ = 1.5
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Table 5 Flow conditions of the simulation

Case Reb ReK Reτ Ret
τ δ/H Cf Ct

f

P 2930 3.8 223 67 0.31 2.5 × 10−2 1.1 × 10−2

R 2920 0 161 76 0.37 1.6 × 10−2 9.8 × 10−3

method [14], the computational domain was decomposed into the finer and coarser reso-
lution domains. Note that this method removes discontinuity problems of the higher order
moments at the grid interface. The finer mesh domain covered near wall regions whilst the
coarser mesh domain covered the core flow region of the clear channel. The grid node num-
bers and resolutions of the finer and coarser mesh regions are listed in Table 4. Not that the
values with the superscripts “t+” and “+” indicate the values normalized by the friction
velocities ut

τ and uτ , respectively. The friction velocity of the top smooth wall ut
τ can be

directly computed whilst the friction velocity of the bottom (porous or rough) wall uτ is cal-
culated by the balance between the pressure drop �P and the averaged wall shear stresses
on the bottom and top walls as

(τw + τ t
w)LxLz = LyLz�P, (6)

where τw = ρ(uτ )
2 and τ t

w = ρ(ut
τ )

2. Thus, uτ is given as

uτ =
{
−(ut

τ )
2 + �PLy

ρLx

}0.5
. (7)

The grid resolution was confirmed to be fine enough by comparison with the results by
a mesh of 1.5 times finer in each direction. Indeed, almost identical profiles of the flow
variables were obtained by the two different meshes. Periodic boundary conditions were
applied to the streamwise and spanwise directions with a constant streamwise pressure dif-
ference. For non-slip boundaries, which were applied to the surfaces of the top wall and the
elements of the porous medium, the half-way bounce-back method was used whilst the slip
boundary condition was imposed on the very bottom face of the domain in case P. The bulk
Reynolds number was Reb = UbH/ν ≈ 3000, the values of the permeability Reynolds
number ReK = uτ

√
K/ν, the friction Reynolds numbers on the solid and bottom walls

Ret
τ = ut

τ δ
t /ν and Reτ = uτ δ/ν are listed in Table 5. Here, δt and δ are the distances from

Flow

x

y

(a) case R

(b) case P

k’0.0
t+

5.0

Fig. 2 Instantaneous turbulent kinetic energy distributions: a case R, b case P
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the solid and bottom walls to the location where the Reynolds shear stress becomes zero:
δt /H = (ut

τ )
2/[(ut

τ )
2 + (uτ )

2] and δ/H = (uτ )
2/[(ut

τ )
2 + (uτ )

2], respectively.

4 Results and Discussions

4.1 Instantaneous flow field

To capture general characteristics of the overall flow field, some instantaneous snapshots are
displayed. Figure 2 shows instantaneous turbulent kinetic energy k′[≡ (u′2 + v′2 + w′2)/2]
contours in x-y planes. In Fig. 2a, there is no distinct difference between the levels of k′t+
over the rough and top smooth walls whilst stronger k′t+ is observed over the porous layer
in Fig. 2b. It is seen that the generated turbulence over the porous layer is mostly transported

Flow

x

y

(a) case R

(b) case P

p’-10
t+

10

y/
D*

0.0

-1.0

-2.0

-3.0

-4.0

-5.0

-6.0

0.1Ub

Fig. 3 Instantaneous pressure fields: a case R, b case P
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to the clear channel region whilst the remaining part is rapidly dissipated inside the porous
layer. It is not sustained deeply inside the porous layer.

Instantaneous pressure fields are shown in Fig. 3. Pressure fluctuations become signifi-
cant over the rough and porous walls, which are induced by the K-H instability as reported
by the previous study [15]. It should be noted that flows over highly permeable walls are
known to behave as perturbed mixing layer flows rather than boundary layer flows and the
inflection point of the streamwise velocity causes the K-H instability [7, 22, 24]. The insta-
bility becomes dominant when the shear penetration becomes large [17]. Interestingly, as
shown in Fig. 3b, strong pressure fluctuations over the porous wall propagate deeply inside
the porous layer as well as to the clear channel region. The velocity vectors zoomed up in
Fig. 3b indicate that near the interface region the flows frequently go into and out from the
porous layer and moderate velocity perturbations are induced underneath the interface of
−0.2 < y/D∗ < 0. However, velocity fluctuations are hardly observed deeply inside the
porous layer at y/D∗ < −0.2. Here, D∗ indicates a half of the cube pitch: D∗ = L/2. In
the same flow geometries, our previous report [15] discussed on the presence and the size of
large scale spanwise rolls induced by the K-H instability through the two-point correlation
and the proper orthogonal decomposition. It was reported that the wavelength of 550 wall
units estimated by the two-point correlation corresponded to the most energy containing
motions.

4.2 Turbulence statistics

For discussing turbulence statistically, plane averaging of a variable φ(x, y, z) is defined as

[φ(y)]f = 1

ASf

∫

S

φ(x, y, z)dS, (8)

where S and ASf
are the surface of a x-z plane and the surface areas of the fluid phase con-

tained within S, respectively. Following the derivation of the volume averaged momentum
equation by Whitaker [29], the plane and Reynolds averaged (double averaged) momentum
equation can be derived as

∂ [ui ]f

∂t
+ [

uj

]f ∂ [ui ]f

∂xj

= − 1

ρ

∂ [p]f

∂xi
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∂xj
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ν
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∂xj

)

− ∂

ψ∂xj
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[
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′
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︸ ︷︷ ︸

Rij

+
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ũi ũj

]f
︸ ︷︷ ︸
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⎞
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−
(

1

ψρAS
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�

ni p̃d� − ν

ψAS

∫

�

nj

∂ũi

∂xj

d�

)

︸ ︷︷ ︸
fi

+ ν

ψ

(
∂ψ

∂xj

∂ [ui ]f

∂xj

+ [ui ]
f ∂2ψ

∂x2
j

)

︸ ︷︷ ︸
g

ψ
i

, (9)

where � is the total length of the solid obstacle within an averaging surface and nk is its unit
normal vector pointing outward from the fluid to solid phases. The surface porosity ψ is
defined as ψ = AS/ASf

. Here, AS is the surface area of the x-z plane. The second moments
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Fig. 4 Plane averaged
streamwise mean velocity
profiles

[
]

b
f

U
u

/

case P
case R
case S

Rij and Tij are the plane averaged Reynolds stress and the plane-dispersive covariance

(dispersive stress), respectively. The terms fi and g
ψ
i are, respectively, the drag force term

and the hetero porous term arising from the inhomogeneity of the surface porosity. To obtain
the statistical quantities, averaging over 4× 105 time steps is carried out. The time duration
corresponds to 25 turn-over-times. The quantities including gradients are obtained by the
fourth-order central difference.

Figures 4 and 5 show the plane averaged streamwise mean velocity and the off-diagonal
components Rt+

12 and T t+
12 normalised by ut

τ , respectively. For comparison with those over
a smooth wall (case S), the DNS data of Kim et al. [11] at Reτ = 180 are also plotted. Note
that the friction Reynolds numbers of the cases are in the same level. (In cases P and R,
Reτ = 223 and Reτ = 161, respectively). Figure 5 shows that Rt+

12 over the bottom wall
is significantly enhanced in cases P and R whereas T t+

12 is negligibly small compared with
Rt+
12 . This means that the contribution of T t+

12 to the streamwise mean velocity is far smaller
than that of Rt+

12 . The enhancement of Rt+
12 is more significant in case P than in case R

and it makes the streamwise mean velocity profile skewed as seen in Fig. 4. Corresponding
to the enhancement of the plane averaged Reynolds shear stress, the friction factor Cf =
2(uτ /Ub)

2 of the rough wall is 1.4 times as high as that of the top smooth wall: Ct
f , whilst

Cf of the porous wall is 2.3 times as high as Ct
f as shown in Table 5. Consequently, it is

confirmed that both wall roughness and permeability enhance the friction factor.
On semi-logarithmic coordinates, Fig. 6 shows the velocity profiles defined as

[u]f + = 1

κ
ln

{
(y + d)+

h+
r

}
, (10)

Fig. 5 Off-diagonal components
of the second moments: Rt+

12 and
T t+
12 +tR12-

+t
12T-

+t R 12
-

+t 12
T-

,

case P
case R
case S
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Fig. 6 Semi-logarithmic plots of
the streamwise mean velocities

[
]f

u
where parameters κ , d and hr are, respectively, Kármán constant, the zero-plane displace-
ment and the equivalent roughness height. As reported by our previous report [15], in which
the vortex structure over the same flow geometries was discussed, κ of case P is smaller
than that of case R whilst d and hr of case P are significantly larger than those of case R. To
compare them with those of the other studies, Fig. 7 indicates κ , hr and d of case P with the
DNS [2] and experimental [4, 17, 27] data. With the increase of the permeability Reynolds
number ReK , κ tends to decrease (Fig. 7a) whereas hr and d tend to increase (Fig. 7b, c) as
in Refs. [17, 27]. It is seen that the present results well accord with the experimental data of
Suga et al. [27] for porous-walled channel flows.

In order to investigate the contribution of quadrant events to the plane averaged Reynolds
shear stress, Fig. 8 shows the plane averaged Reynolds shear stress decomposed into the
first quadrant (Q1): outward interactions, the second quadrant (Q2): ejections, the third
quadrant (Q3): inward interactions and the fourth quadrant (Q4): sweeps. At the interface,
Q2 and Q4 motions become larger in case P than those in case R. The sweep and ejection
events over the porous layer seem to be associated with large scale pressure fluctuations as
observed in the instantaneous velocity vectors of Fig. 3b. (See [15] for detailed discussions
on this large scale motion). Although Q4 motions are most dominant at the interface in both
cases, Q2 motions overtake them at y/H = 0.040 (y+ = 13) in case P and at y/H = 0.048
(y+ = 13) in case R. This trend is the same as that seen in the experimental studies [7,
25, 28]. From the probability density of the quadrant events P(Qi) shown in Fig. 9, it is
understood that the ejections occur more frequently than the sweeps though the contribution
of the sweeps is more dominant inside the bottom wall at −1.0 < y/D∗ < 0 as seen in
Fig. 8. Such a tendency is more obvious in case P. This implies that weak ejections are most
dominant inside the porous layer whilst less frequent but stronger sweeps contribute more
to the shear stress generation. This supports the discussion of Ref. [23].

Figure 10 shows profiles of the plane averaged turbulent kinetic energy k(≡ Rkk/2).
The profiles normalised by ut

τ show local maxima and are significantly enhanced over the
bottom wall in cases P and R. The enhancement is more significant over the porous layer.
Figure 11 shows k and K(≡ Tkk/2) distributions normalised by the friction velocity on the
bottom wall uτ . In Fig. 11a, it is found that k+ over the porous layer becomes lower than
those over the rough and smooth walls. This is because the wall shear stress over the porous
wall is more significantly enhanced than the turbulent kinetic energy. Figure 11a also shows
that k+ inside the porous layer becomes larger and its penetration is deeper than that in the
rough wall. The penetration of k+ inside the porous layer reaches to y/D∗ = −2.0. As seen
in Fig. 11b, the levels of K+ in cases P and R are roughly the same at y/H < 0.
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Fig. 7 Comparison of the
parameters for the mean velocity
profiles over porous layers: a
Kármán constant κ , b equivalent
roughness height hr , c zero-plane
displacement d

present
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Fig. 8 Quadrant analysis of the plane averaged Reynolds shear stress: a case P, b case R
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Fig. 9 Probability density of the quadrant events: a case P, b case R

Figure 12 presents the plane averaged Reynolds stress and the plane-dispersive covari-
ance over and inside the bottom wall. In Fig. 12a, it is seen that R+

11 over the bottom
wall (y/H > 0) becomes smaller in case P whilst R+

22 and R+
33 become larger compared

with those of case R. This indicates that turbulence becomes more isotropic in case P than
in case R. In case P, although the plane averaged Reynolds stress components become
R+
11 > R+

33 > R+
22 over the porous layer (y/H > 0), the streamwise and spanwise com-

ponents: R+
11 and R+

33, rapidly decay inside the porous layer and the relation becomes
R+
22 > R+

11 > R+
33 in the region of −2.2 < y/D∗ < −1.0. It is also found that R+

12 in case P
is larger and is more rapidly damped than the normal stresses. This tendency was also seen
in Ref. [2]. Moreover, in the present results, it is seen that the profiles of R+

11 and R+
33 are

affected by the solid elements whilst, interestingly, such a structural effect on R+
22 and R+

12
is not obvious. Indeed, the profiles of R+

22 and R+
12 do not show clearly the wavy shapes

corresponding to the structure. As seen in Fig. 12b, although T +
12 is hardly produced in both

cases, the normal components Tii are produced inside the bottom wall. The distributions of
the streamwise component T +

11 in both cases show similar profiles underneath the interface
of −1.0 < y/D∗ < 0.0 and the levels are the same as that of R+

11 whereas T
+
22 and T +

33 are
far smaller than T +

11 . Deeply inside the porous layer at y/D∗ < −2.0, only the streamwise

Fig. 10 Plane averaged turbulent
kinetic energy profiles
normalised by the top-wall
friction velocity

kt+

case P
case R
case S



Flow Turbulence Combust (2016) 97:1071–1093 1085

y/D*

0.0-2.0-4.0-6.0
y/D*

0.0-2.0-4.0-6.0

(a)                                                           (b)

+
Kk+

case P case R case S

Fig. 11 Plane averaged turbulent kinetic energy and the plane-dispersion energy profiles normalised by the
bottom-wall friction velocity: a plane averaged turbulent kinetic energy k+, b plane-dispersion energy K+

component T +
11 exists and the other components are hardly observed. The fact of T12 � 0

despite the existence of the mean shear under the bottom wall indicates that the usual eddy
viscosity form for Tij cannot be valid for turbulence modelling.

Figure 13 shows the plane averaged pressure fluctuation. Although k+ over the porous
layer becomes lower than those over the rough and smooth walls as seen in Fig. 11a, the
plane averaged pressure fluctuation of case P surpasses those of cases R and S. It is because
of significant pressure perturbations by the K-H instability over the porous layer and the
substantial pressure fluctuation is sustained deeply inside the porous layer.

4.3 Budget term analysis

To discuss the turbulent transport, the plane averaged transport equation of the Reynolds
stress u′

iu
′
j is derived as
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Fig. 12 Plane averaged second moment profiles around the bottom wall: a plane averaged Reynolds stress
R+

ij , b plane-dispersive covariance T +
ij ; solid lines: case P, dashed lines: case R

where Dt
ij , D

p
ij ,Dν

ij , φij , Pij and εij are the turbulent, pressure and viscous diffusions, re-
distribution, production and dissipation terms, respectively. The second term in the left-hand
side of Eq. 11 can be decomposed as

[
uk

∂u′
iu

′
j

∂xk

]f

= [uk]
f

∂
[
u′

iu
′
j

]f

∂xk

+
[
ũk

∂u′
iu

′
j

∂xk

]f
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−T d

ij

, (12)

where T d
ij expresses the turbulent transport by dispersion. Hence, Eq. 11 may be rewritten

symbolically as

∂Rij

∂t
+ [uk]

f ∂Rij

∂xk

= T d
ij + Dt

ij + D
p
ij + Dν

ij + φij + Pij − εij . (13)

Figure 14 shows the profiles of the budget terms of Eq. 13 for R+
11. The turbulent pro-

duction is found to be maximum over the porous and rough walls. The production of case
R becomes larger than that of case P over the bottom wall whilst, inside the bottom wall,
P +
11 of case P exceeds that of case R. However, the penetration of P +

11 in case P is limited
in the region of −1.3 < y/D∗. Over the bottom wall, the level of P +

11 in case P is smaller
than that in case R although the levels of φ+

11 are roughly the same. It means that the ratio of
φ+
11/P

+
11 of case P is larger and this makes turbulence more isotropic as shown in Fig. 12a.
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Fig. 13 Plane averaged pressure
fluctuation profiles
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The enhanced re-distribution is associated with the pressure fluctuation induced and inten-
sified by the K-H instability as shown in Fig. 13. In both cases, although T d+

11 is negligible,
the dissipation term ε+

11 and the viscous diffusion term Dν+
11 show pointed peaks near the

edges of the solid elements at y/D∗ = 0.0,−1.0. The turbulent diffusion Dt+
11 works as a

sink term over the bottom wall but it works as a source term inside the bottom wall near
y/D∗ = −1.0. This means that Dt+

11 transports the energy into the bottom wall whereas the
diffusion by Dν+

11 is limited near the edges of the solid elements.
Figure 15 compares the profiles of the budget terms of the R+

22 equation. Although both
profiles of φ+

22 over the bottom walls are similar, they are different inside the walls. In case P,
φ+
22 works as a source in the region of −0.9 < y/D∗ < 0.0 and its effect is more significant

Fig. 14 Budget terms of the
transport equation of R+

11; solid
lines: case P, dashed lines: case R
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Fig. 15 Budget terms of the
transport equation of R+

22; solid
lines: case P, dashed lines: case R

Fig. 16 Budget terms of the
transport equation of R+

33; solid
lines: case P, dashed lines: case R
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than in case R. In the region of y/D∗ < −1.4, φ+
22 of case P becomes negative and thus

the energy of R+
22 is transported to the other components. The viscous diffusion term Dν+

22
and the dispersion transport term T d+

22 of both cases are small whilst the pressure and turbu-

lent diffusion terms: Dt+
22 and D

p+
22 , are substantially large. In case P, Dt+

22 gains energy in

−0.9 < y/D∗ < −0.3 whilst D
p+
22 gains energy more deeply inside the porous layer of

y/D∗ < −0.9. It is confirmed that the processes of φ+
22 and D

p+
22 play very important roles

deeply inside the porous layer and this supports the results of Ref. [2]. This is due to the
strong pressure fluctuation sustained inside the porous layer as shown in Fig. 13. Unlike in
the streamwise component, Dν+

22 and ε+
22 do not show sharp peaks at the interface. Its reason

is that because of the limiting behaviour of the wall-normal velocity component toward a
wall, dv/dy becomes small in the vicinity of the wall leading to the insignificant profiles of
Dν+

22 and ε+
22.

Figure 16 shows the profiles of the budget terms of the R+
33 equation. The profiles of the

re-distribution term φ+
33 have local maxima over the porous and rough walls. The profile

of φ+
33 in case P is smaller than that in case R over the interface while it becomes larger

than that in case R inside the bottom wall. The viscous diffusion term Dν+
33 has peaks near

y/D∗ = 0.0,−1.0 in both cases and the processes of Dt+
33 and T d+

33 become negligibly
small inside the walls. It is noticed that, inside the porous layer, φ+

33 is still dominant and
works as a counter part of ε+

33.
Figure 17 shows the distributions of the budget terms of the R+

12 equation. It is found

that the main processes are φ+
12, D

p+
12 and P +

12 and the other processes are negligible. The

magnitudes of φ+
12 and D

p+
12 become significant near y/D∗ = 0.0,−1.0 and they seem to

Fig. 17 Budget terms of the
transport equation of R+

12; solid
lines: case P, dashed lines: case R
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work as the counter processes to each other. Indeed, in the region of y/D∗ < −1.0, they
almost balance each other out (Dp+

12 +φ+
12 ≈ 0). Furthermore, P +

12 of case P becomes larger
than that of case R inside the bottom wall and it rapidly decays to zero in the region of
y/D∗ < −1.0. This is the reason why R+

12 rapidly decays inside the porous layer as shown
in Fig. 12a.

To discuss the mutual dependency between turbulence and dispersion, transport equa-
tions of the plane averaged turbulent kinetic energy and the plane-dispersion energy are
considered. Their transport equations are symbolically written as

Dk

Dt
= Dk + P s

k + P d
k − ε, (14)

DK
Dt

= DK + P s
K − P d

k + F − E, (15)

where Dk and ε are the diffusion and dissipation terms of k, and DK and E are the diffu-
sion and dissipation terms of K, respectively. (See Kuwata and Suga [12], for the detailed
derivation of Eq. 15). The term F(≡ f i [ui]f ) is the drag force term. The production terms
P s

k and P d
k in Eq. 14 are the mean shear production and the mean dispersive-shear pro-

duction terms, respectively. They are obtained by the decomposition of the production term

Fig. 18 Budget terms of the
transport equations of k+ and
K+ for case P: a budget terms of
k+, b budget terms of K+
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Pkk/2 in Eq. 13. The production P s
K in Eq. 15 is the mean shear production forK. They are

expressed as

P s
k = −Rik

∂ [ui]f

∂xk

, P s
K = −Tik

∂ [ui]f

∂xk

, P d
k = −

[
ũ′

i ũ
′
k

∂ũi

∂xk

]f

. (16)

It is noted that P d
k appears with positive sign in Eq. 14 whilst it appears with negative sign

in Eq. 15. This indicates that P d
k exchanges energy between k and K.

Figure 18 compares the budget terms of Eqs. 14 and 15. Figure 18a shows that the
mean shear production P s

k becomes dominant and the mean dispersive-shear production P d
k

works as a sink term over the porous layer whereas, inside the porous layer, P d
k becomes

a dominant source term. The turbulence generation by P s
k and P d

k vanishes in the region
of y/D∗ < −1.0, and the diffusion process of Dk transports the energy to that region.
Although P s

k is the main source term for k over the porous layer, Fig. 18b shows that P s
K of

K hardly produces energy and the drag force term F is found to be the main source term
instead of P s

K. Inside the porous layer, (−P d
k ) becomes negative and its sink effect is nearly

the same as that by the dissipation. This means that the gained energy by F is transferred
from K to k by P d

k and it becomes the main source for k inside the porous layer. Inside
the porous layer of y/D∗ < −0.4, although the diffusion term DK exceeds F , it transports
energy less than Dk of k. This is the reason why K decays more rapidly than k inside the
porous layer as shown in Fig. 11. These results imply that for predicting k precisely, it is
necessary to model P d

k and Dk properly inside the porous layer of −0.075 < y/H < 0 and
y/H < −0.075, respectively. As seen in Fig. 18b, since P s

K hardly contributes to generate
the dispersion energy K but F is the main source inside the porous layer, one can correlate
K and F as reported by Kuwata snd Suga [16].

5 Conclusions

Studies on the turbulent transport of interface turbulence over the porous and rough walls
are carried out using the DNS data of porous- and rough-walled channel flows at a bulk
Reynolds number 3000. The considered porous medium consists of interconnected stag-
gered cube arrays with a porosity of 0.71 and the rough wall has the same surface structure.
By the quadrant and budget term analyses, the turbulent transport mechanisms around
porous and rough walls are discussed in detail. The key findings in the present study are:

(1) Although weak ejections become dominant near the porous and rough walls, less fre-
quent but more energetic sweeps contribute more to the plane averaged Reynolds shear
stress. This trend is more remarkable over the porous layer.

(2) Near the porous and rough walls, the off-diagonal components of the plane-dispersive
covariance are hardly produced whilst the normal components are produced inside the
walls. Compared with the plane averaged Reynolds stresses, the levels of the wall-
normal and spanwise components are far smaller though the streamwise component
keeps the same level.

(3) The pressure perturbations induced and intensified by the K-H instability over the
porous layer strengthen the re-distribution and pressure diffusion processes. The sig-
nificant re-distribution makes turbulence more isotropic over the porous layer. The
intensified pressure diffusion carries the wall-normal component of the plane averaged
Reynolds stress deeply inside the porous layer. However, since the pressure diffusion
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and the re-distribution for the plane averaged Reynolds shear stress balance each other
out inside the porous layer, the plane averaged Reynolds shear stress rapidly decays
unlike the normal components.

(4) For the plane averaged turbulent kinetic energy, the mean shear production is the
main source over the porous layer and the mean dispersive-shear production, which
transports the energy from the plane-dispersion energy, becomes dominant inside the
porous layer.

(5) For the plane-dispersion energy, the drag force is the main energy source instead of
the mean shear production inside the porous layer and the gained energy is partly
transferred to the plane averaged turbulent kinetic energy by the mean dispersive-
shear production. The magnitudes of this energy transport and the dissipation are
comparable.
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