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Abstract We perform a finely resolved Large-eddy simulation to study coherent vortical
structures populating the initial (near-nozzle) zone of a pipe jet at the Reynolds number
of 5300. In contrast to ‘top-hat’ jets featured by Kelvin-Helmholtz rings with the non-
dimensional frequency St ≈ 0.3 − 0.6, no high-frequency dominant mode is observed in
the near field of a jet issuing from a fully-developed pipe flow. Instead, in shear layers
we observe a relatively wide peak in the power spectrum within the low-frequency range
(St ≈ 0.14) corresponding to the propagating helical waves entering with the pipe flow.
This is confirmed by the Fourier transform with respect to the azimuthal angle and the
Proper Orthogonal Decomposition complemented with the linear stability analysis reveal-
ing that this low-frequency motion is not connected to the Kelvin-Helmholtz instability. We
demonstrate that the azimuthal wavenumbers m = 1 − 5 contain the most of the turbulent
kinetic energy and that a common form of an eigenmode is a helical vortex rotating around
the axis of symmetry. Small and large timescales are identified corresponding to “fast” and
“slow” rotating modes. While the “fast” modes correspond to background turbulence and
stochastically switch from co- to counter-rotation, the “slow” modes are due to coherent
helical structures which are long-lived and have low angular velocities, in agreement with
the previously described spectral peak at low St .
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1 Introduction

Jet-like flows are encountered in many technological applications. Moreover, because of
their rich physics and simple configuration, jets have been considered as the paradigm
of free shear flows and one of the basic research topics in hydrodynamics [1]. Coherent
structures sustained by the flow instabilities are closely linked to the mixing and noise-
generating characteristics. The knowledge of the flow response to an external forcing
and variation of initial conditions gives the opportunity to control some properties of jets
[2–4].

Jets produced with a ‘top-hat’ velocity profile using smoothly contracting nozzles are the
usual target in the literature [5]. The close-to-laminar inflow consists of a uniform flow in
the center and a thin boundary layer near the wall. The near field, apart from the Reynolds
number, is mainly governed by the ratio of the nozzle diameter D to the initial momen-
tum thickness θ . The third controlling criterium is the incoming level of turbulence. These
parameters influence the development of the Kelvin-Helmholtz instability close to the noz-
zle edge resulting in the formation of the energetic axisymmetric vortical rings [6] which
are induced by the inflexional instability of a thin shear layer [7, 8]. The initial growth of a
vortex ring can be described by the linear stability theory followed by the non-linear interac-
tion between vortices such as pairing [9]. Yule [9] schematically described the evolution of
the jet downstream, associated with the formation of laminar vortex rings very close to the
nozzle, the azimuthal instabilies provoking the transition to three-dimensional flow leading
to its turbulization.

The shear-layer instability is the most amplified at frequencies which scale with θ . As
the local momentum thickness grows further downstream from the nozzle, the characteristic
scale of the energetic instabilities corresponding to the interaction between the opposite
shear layers becomes the width of the jet (jet-column instability). Crow and Champange
[7] first observed this low-frequency instability at x/D = 4 appearing as ‘a more tenuous
train of large-scale vortex puffs’ existing with the average non-dimensional frequency, i.e.
the Strouhal number, StD ∼ 0.3 based on D and Ub which is the inflow bulk velocity. They
called it the preferred mode, which was later extensively studied by a number of authors
showing that StD falls into a range of values [10] due to different initial conditions. The
recent analysis of the global linear frequency response to some artificial forcing performed
by Garnaud et al. [11] shows that the dominant perturbations appearing with StD ≈ 0.45
are spatially located in the end of the potential core covering the attached shear-layers as
well. Thus, the connection of the shear-layer and jet-column instabilities together with high
sensitivity to the inflow conditions of ‘top-hat’ jets make the study of the inherent low-
frequency instabilities problematic.

In the spirit of Crow and Champange who tripped the boundary layer inside the nozzle to
destroy the energetic axisymmetric vortex rings in order ‘to isolate the large-scale pattern’
(sinusoidal perturbations of the jet column) we propose to study a canonical jet induced by
a fully developed turbulent pipe flow. This case is defined by only one governing param-
eter, i.e. the Reynolds number, as it completely determines the inlet conditions. The fully
developed inflow suppresses the development of the quasi-laminar Kelvin-Helmholtz rings
making pipe jets a natural object to study instability modes of the jet core. Relevant publica-
tions [12–14] report on comparison of mean and spectral characteristics between ‘top-hat’
and pipe jets. A number of authors [15–18] performed pipe jet experiments at relatively high
Reynolds numbers including the study of temperature and concentration fields. Visualiza-
tions [19] and extensive measurements [20–22] were recently conducted at lower Reynolds
numbers.
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Using Large-eddy simulation (LES) we study the flow at Re = UbD/ν = 5300,
where ν denotes the kinematic viscosity. The aim is to provide the lacking information
on vortical structures populating the near-nozzle area of a pipe jet. We report on the non-
Kelvin-Helmholtz-type low-frequency coherent motion with StD ≈ 0.14 originating from
the propagating helical waves existing in the pipe flow [23]. Two common techniques sup-
plementing each other are used to probe the typical coherent structures of the flow, i.e. the
Proper Orthogonal Decomposition (POD) and local linear stability analysis [24–26].

The application of POD, originally proposed by Lumley [27] in the context of turbu-
lence, advances the understanding of coherent structures. POD is a tool to identify the most
energetic motions in the form of a series expansions with respect to spatial eigenmodes and
their temporal amplitudes. This technique has been mostly applied to ‘top-hat’ jets using
the velocity fields measured in a plane normal to the jet (2D or ‘slice’ POD). Cintriniti and
George [28] performed POD analysis using information from an array of simultaneously
operating hot-wire anemometer probes. Based on the streamwise velocity they found that
five Fourier modes with azimuthal wavenumbers m = (0, 3, 4, 5, 6) were necessary to rep-
resent the dynamics at x/D = 3. Jung et al. [29] and Gamard et al. [30] analysed the near
and far fields using multiple ‘slices’ in the range 2 ≤ x/D ≤ 6 and 15 ≤ x/D ≤ 69,
respectively. They found that the symmetric mode m = 0 vanished rapidly after few diam-
eters downstream in the near field, while m = 2 became the most energetic by the end of
the potential core. In the far field the mode m = 2 was also dominant, while m = 0 and
1 were less energetic. Note that the above described investigations relied only on the infor-
mation about the streamwise velocity. Iqbal and Thomas [31] showed that when all three
velocity components were taken into account m = 1 overweighed m = 2. Similar results
were demonstrated for the far-jet [32]. In the present work we employ ‘slice’ POD and use
all three velocity components.

Numerical time-resolved simulations are widely used to extract coherent structures using
some filtering approach such as POD. As stated above, the ‘top-hat’ jets have been mainly
in focus. A database from the direct numerical simulations (DNS) of a high subsonic jet at
Re = 3600 [33] was employed by Freund and Colonius [34] to perform POD showing that
energetic axisymmetric (m = 0) and helical (m = 1) modes are present at the end of the
potential core which is a particularly important area for the noise radiation [35]. Vuorinen
et al. [36] studied the influence of the nozzle pressure ratios on the jet as encountered in the
internal combustion engines showing the connection of POD modes and observed pressure
fluctuations. LES/DNS databases [37, 38] were recently analysed by Ryu and co-authors
[26, 39] with the main emphasis on the noise generation and supersonic jets complementing
the analysis with linear stability tools.

The present work addresses the near field of a turbulent pipe jet at Re = 5300. We
combine POD and linear stability analysis to probe the typical coherent structures in the
flow. The observed low-frequency spectral peak of velocity fluctuations and its connection
to the fully developed turbulent inflow conditions is the main focus of the paper which is
arranged as follows. Section 2 provides computational details and flow configuration. In
Section 3 we describe the linear stability analysis and the POD algorithm. The main results
are presented in Section 4 followed by conclusions.

2 Problem Formulation and Computational Details

We consider a canonical jet induced by a fully developed turbulent pipe flow at Re =
5300. The computational domain represents a cylinder of 12D in diameter and 16D in
length. Figure 1 shows the instanteneous passive scalar field together with the computational
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Fig. 1 Left: Half of the computational domain, cylindrical coordinate system (r, φ, x) and boundary condi-
tions. The instanteneous field is visualized by a passive scalar. Cyan lines indicate walls of 1D pipe fragment.
Right: Two subsequent samples of vortical structures near the nozzle are visualized using two isosurfaces of
the Q-criterium with Q = 0.5 (transparent violet) and Q = 1.5 (orange). The inset shows the time power
spectrum E at x/D = 1 and r/D = 0.5 averaged over azimuthal angle together with the radial profile of
turbulent kinetic energy k at x/D = 1. The blue arrow indicates the low-frequency peak at St = 0.14

domain organization and boundary conditions. Vortices are visualized by constant levels of
the Q-criterium where Q = (�ij�ij − Sij Sij )/2, with �ij and Sij being the rotation rate
and the rate-of-strain tensors, respectively. The pipe flow supplies the streamwise streaky
structures which can be traced close to the nozzle. They interact with the shear layer forming
hairpin-like vortices which have a complex dynamics and breakdown further downstream.
In contrast to ‘top-hat’ jets, no high-frequency dominant mode is observed in the time power
spectrum close to the nozzle [12], while low-frequency range distinctly shows the existence
of energy-containing motion (see Fig. 1). This peak occurs at the Strouhal number St =
f D/Ub ≈ 0.14, where f is the frequency, and is not connected to the Kelvin-Helmholtz
instability as shown below from the spectral analysis and linear stability theory. To the
best of authors’ knowledge this issue has never been reported before in the literature. We
use POD to find the spatial form of the coherent structures corresponding to the observed
low-frequency peak.

LES is performed with the convective outflow imposed at the exit boundary, while con-
stant pressure is imposed on the open lateral boundary. A small co-flow of Uco = 0.04Ub

is set at the bottom x = −1D. The mesh has a DNS-like resolution in the near-nozzle area
and consists of 252×282×264 cells (∼ 16.7×106) in the radial, axial and azimuthal direc-
tions, respectively, with the majority clustered in the shear layers and near-wall regions with
the stretching factor being less than 5 percent. The minimum axial spacing �x = 0.005D

is at the nozzle exit resulting in the following near-wall cell dimensions �r+ = 0.5,
(D�θ/2)+ = 5.58 and �x+ = 2.51 expressed in terms of wall units ν/uτ , where uτ is the
pipe-wall friction velocity (see Fig. 2 for mesh spacing). Earlier [40] we showed that LES of
a coaxial swirling jet flow at Re = 11250 is well-resolved on a similar mesh of 12.3 × 106

cells satisfying the criterium �/η < 12 [1], where � = (r�r�θ�x)1/3 is the cell size and
η = (ν3/ε)1/4 the Kolmogorov scale and ε the kinetic energy dissipation rate. Moreover,
with the use of the dissipation profile from the pipe flow DNS [41], the calculated ratio
�/η appears to be around unity (or less) inside the pipe (see the inset in Fig. 2). To gener-
ate proper unsteady inflow conditions we perform a separate precursor LES simulation of a
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Fig. 2 The variations of axial grid spacing with x. The inset shows the ratio �/η inside the pipe fragment

periodic pipe flow with a cylinder length of 5D. The mesh consisted of 2.8 × 106 cells pro-
viding excellent agreement of the first- and second-order statistics with the available DNS
data of [41] and [42].

The LES was carried out with the TU Delft unstructured finite-volume computational
code T-FlowS. The filtered Navier-Stokes and continuity equations for incompressible fluid
are closed by the dynamic Smagorinsky subgrid-scale model. The diffusion and convection
terms in the momentum equations are discretized by the second-order central-difference
scheme, whereas the time-marching is performed using a fully-implicit three-level time
scheme. The velocity and pressure are coupled with the SIMPLE algorithm.

Figure 3 gives an overview of the time-averaged field of the axial velocity and turbulent
kinetic energy. Close to the pipe exit at x/D = −1 the profiles of Ux and k correspond
to a fully developed pipe flow. Due to the shear close to the nozzle the turbulent kinetic

 1  3  6  10  x / D 

Ux

  k    

Fig. 3 Fields of the time-averaged axial velocity Ux and turbulent kinetic energy k. The azimuthally averaged
radial profiles (solid black-in-white lines) of Ux and k are shown at selected axial positions (dashed lines).
The axes are not to scale



372 Flow Turbulence Combust (2017) 98:367–388

Table 1 Comparison of self-similar characteristics with pipe jet experiments at various Reynolds numbers

Authors Re K x0/D Kr

[15] 5.1 × 104 − 1.25 × 105 5.9 0.5 0.08

[14] 8.6 × 104 6.5 2.6 0.086

[43] 2.4 × 104 6.7 2.49 0.088 − 0.09

[21] 5500 5.7 2.65 0.078

present LES 5300 5.88 −1.41 0.08

energy rapidly grows between x/D = 1 − 3 but then begins to decay. The velocity profile
transforms to a self-similar Gaussian-shaped one by x/D = 10. The k field distinctly shows
the presence of a “preserving core” region which is similar to the potential core for jets with
the turbulent inlet [21]. This region spans until the point where the mixing layers merge on
the axis near x/D = 4.

According to the conservation law of the axial momentum, the time-averaged velocity
along the centreline at some distance becomes inversely proportional to the axial coordinate.
At the same time, the width of the jet grows linearly with the distance downstream. These
dependencies are expressed as follows:

Ue
c

Uc

= 1

K

x − x0

D
,

r1/2

D
= Kr

x − x0r

D
. (1)

where Uc = Ux(x, r = 0) is the time-averaged axial velocity along the centreline, Ue
c

corresponds to Ux(x = 0, r = 0) and r1/2 denotes the radius at which the velocity is half its
maximum value. The parameter x0 represents the coordinate of the virtual origin of the jet,
while x0r is the so-called “geometrical” virtual origin [21]. Although in the present work we
focus on the near field of the jet, it is instructive to calculate the self-similar parameters from
the obtained data. Table 1 and Fig. 4 show the comparison of Re, K, x0 and Kr with other
studies together with the variation of the centreline axial velocity and half-width of the jet
downstream. We find good agreement for K and Kr with the data from the literature [14, 15,
21, 43], while the negative value of the virtual origin is probably due to the considered short
near-nozzle axial range. Another lengthscale often used in the analysis of jets and mixing
layers is the momentum thickness. The following definitions are used in the present study:

θco =
∫

Ux − Uco

Uc − Uco

(
1 − Ux − Uco

Uc − Uco

)
dr, (2)

θ∗
co = 2

D

∫
Ux − Uco

Uc − Uco

(
1 − Ux − Uco

Uc − Uco

)
rdr, (3)

where the asterix denotes the definition accounting for cylindrical geometry while the sub-
script ‘co’ indicates that the non-zero co-flow is taken into account. Note that inside the
pipe θ = θco and θ∗ = θ∗

co since Uco = 0. The inflow provides a relatively high momentum
thickness corresponding to D/θ ≈ 22.3 and D/θ∗ ≈ 30.8. Figure 5 (left) shows the direct
comparison of the inflow velocity profile of the present pipe jet simulation to ‘top-hat’ jets
used by Kim and Choi [44]. The slope of the pipe jet axial velocity at the wall falls between
the ‘top-hat’ inflow profiles with D/θ = 80 and 120. Below we compare the pipe jet with
the data for ‘top-hat’ jets with D/θ = 80 at similar Reynolds numbers. The growth of θco

with x can be well approximated by a linear function, while θ∗
co increases more rapidly. Up
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Fig. 4 Left: The inverse time-averaged axial velocity along the centreline, Uc . Right: The half-width r1/2
against x. Dashed lines correspond to the appropriate linear fit

to x/D = 2, θ∗
co can be accurately represented by a parabola while further it seems to grow

linearly.
To validate the computation we compare the time-averaged axial velocity Ux , the root-

mean-square (rms) axial and radial fluctuations normalized by Ub with DNS of Sandberg
et al. [45] at a close Reynolds number and PIV experiments of Capone et al. [22] in a
range of Reynolds numbers, Fig. 6. A comparison is shown in the near-nozzle region of few
diameters (0 ≤ x/D ≤ 3) with DNS with a much stronger co-flow (Uco > 0.2Ub, M46-
c1 case) compared to the present case with Uco = 0.04Ub affecting the statistics further
downstream. Experiments and LES show good agreement for Ux . Note that the level of
fluctuations u′

x is slightly higher in experiments compared to LES and DNS while u′
r is

in excellent agreement. Higher level of u′
x may indicate that the pipe flow in experiments

does not completely correspond to the fully developed one. The LES computations [44] of
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Fig. 5 Left: The time-averaged inflow axial velocity profile from the present LES (solid line) against the
profiles from LES of the ‘top-hat’ jet [44] (dashed lines). Note that the ‘top-hat’ profiles have also been
normalized with the bulk velocity. Right: The momentum thickness calculated according to Eqs. 2 and 3.
Thin dashed lines correspond to the appropriate linear fit
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Fig. 6 Profiles of the mean axial velocity Ux , fluctuations u′
x and u′

r along the centreline against the DNS
with co-flow (Sandberg et al. [45]) and PIV experiments (Capone et al. [22]). Note that ‘top-hat’ LES results
[44] for the jet with D/θ = 80 and Re = 3150 (brown squares) and Re = 8750 (violet triangles) are also
shown for comparison

a ‘top-hat’ jet with D/θ = 80 for two Reynolds numbers are also shown for comparison.
Despite the different incoming velocity profile, the decay of the axial velocity has a similar
slope for Re = 8750 to the present LES.

3 Description of Tools

3.1 Linear stability analysis

With a focus on coherent motion, we start from the triple decomposition of the velocity field

u = U + ũ + u′′, (4)

where u, U are the instanteneous and time-averaged velocity and ũ, u′′ represent periodic
(coherent) and stochastic fluctuating (turbulent) part, respectively. Note that velocity fluc-
tuations in the traditional Reynolds decomposition are u′ = ũ + u′′. We are interested in
the govering equation for the coherent part of the velocity field. After the substitution of the
triple decomposition into the Navier-Stokes equations and further manipulations, we arrive
to the following equation

∂ũ
∂t

+ ũ · ∇U + U · ∇ũ = − 1

ρ
∇p̃ + 1

Re
∇2ũ − ∇ · τ, ∇ũ = 0, (5)

where the constituents of the stress tensor τ = ũ̃u − ũ̃u + ˜u′′u′′ represent different inter-
actions of the mean, coherent and turbulent fields. While the coherent contribution in τ is
neglected due to the assumption of the small-amplitude perturbations, the stochastic stresses
are expressed using the linear eddy viscosity model [46]

τij = νt

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
, νt = −u′

ru
′
x/

(
∂Ux

∂r
+ ∂Ur

∂x

)
, (6)
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resulting in linear differential equations governing the coherent part of fluctuations of veloc-
ity and pressure, ũ and p̃. The local linear stability framework is used to supplement the
analysis of the numerical data to provide information (frequency and wavelength) of the
most unstable modes. The mean velocity field U = Uxex is assumed to be unidirectional
with Ux = Ux(r) profile taken from LES at a given axial position corresponding to the
quasi-parallel approach. The coherent velocity field is decomposed into the normal modes
with respect to axial and azimuthal homogeneous directions

ũ(r, φ, x, t) = û(r)ei(kx+mφ−ωt) + c.c., p̃(r, φ, x, t) = q̂(r)ei(kx+mφ−ωt) + c.c. (7)

Here k = kre + ikim denotes the complex streamwise wavenumber, ω the angular fre-
quency and m the real azimuthal wavenumber. The solution of Eqs. 5–7 with the appropriate
boundary conditions provides the dispersion relation k = k(ω).

Within the normal mode ansatz we obtain a system of linear ordinary differential equa-
tions for û and q̂ depending only on r. The spatial stability analysis approach gives the
complex-valued k, determined for a certain real-valued ω. A disturbance is exponentially
amplified at a given ω provided kim(ω) < 0. A well-established Chebyshev pseudospec-
tral collocation technique is used to discretize and solve the obtained eigenvalue problem
[25, 47]. The performance of the algorithm is verified against the data of other authors (see
Table 2).

3.2 Fourier analysis and proper orthogonal decomposition

As in the local linear stability analysis described above for a fixed axial location we perform
the Fourier transform with respect to azimuthal angle φ of the instanteneous velocity field
u(r, φ, t) in r − φ plane. The LES snapshots of u at some x position are decomposed into
complex Fourier coefficients u(r,m, t) yielding

u(r,m, t) = 1

2π

∫ 2π

0
u(r, φ, t)eimφdφ. (8)

To get the spectral characteristics of the flow one proceeds with the analysis in the
wavenumber-frequency space. The corresponding complex-valued Fourier coefficients are

u(r,m, f ) = 1

T

∫ T

0
u(r,m, t)e−2πf tdt. (9)

The power spectral density Em = |u(r, m, f )|2 shows the amount of turbulent kinetic
energy in a single azimuthal mode [48].

Table 2 Comparison of the eigenvalue spectrum and convergence for spatial stability of the Poiseuille pipe
flow with Re = 10000 and ω = 0.5. Ncol is the number of Chebyshev terms used to represent the flow
variables

m Ncol k = kre + ikim from [47] k = kre + ikim present work

0 20 0.519991235 +i 0.020832533 0.519991235467656 +i 0.020832533314062

0 30 0.519989251710 +i 0.020835493892 0.519989251737318 +i 0.020835493914057

0 40 0.519989251713 +i 0.020835493884 0.519989251712683 +i 0.020835493883866

1 40 0.53525108 +i 0.01722763 0.535251083158650 +i 0.017227643948031
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We further apply POD for each azimuthal wavenumber m to an ensemble of N instan-
taneous φ-Fourier-decomposed fields [um

1 ,um
2 , ..., um

N ] corresponding to time instants t =
t1, ..., tN :

um
i (r) = u(r,m, ti) =

N∑
q=1

am
q (ti)λ

(m)
q Vm

q (r), (10)

where Vm
q (r) and am

q (t) are the non-dimensional complex-valued spatial eigenfunctions and
time coefficients (temporal amplitudes) satisfying

1

D2

∫ ∞

0
Vm

i (r)Vm
j (r)rdr = δij ,

1

N

N∑
n=1

am
i (tn)a

m
j (tn) = δij , (11)

λ
(m)
q are the real eigenvalues and δij is the Kronecker delta. The functions Vm

q (r) together

with am
q (t) and λ

(m)
q are to be determined from a variational problem so that the basis max-

imizes the mean-square projection on the velocity vector. The solution of the Fredholm
integral equation of the second kind provides the optimal basis of this variational problem,
where the kernel of the integral operator is a two-point cross-correlation function between
the instantaneous velocity fields Bij (r, r

′, m) = √
r um

i (r)um
j (r ′)

√
r ′. Note that each veloc-

ity component is multiplied by
√

r to make the kernel Hermitian symmetric [28]. To reduce
the computational cost of the algorithm, we use Singular Value Decomposition [49] of a set
of N Fourier-decomposed velocity vectors [um

1 ,um
2 , ..., um

N ] multiplied by
√

r used to obtain

the eigenvalues λ
(m)
q , basis functions Vm

q and temporal amplitudes am
q .

4 Results

4.1 General observations

To highlight the difference between the ‘top-hat’ jet produced by a contracting nozzle and
a fully developed pipe jet we again compare the results with Kim and Choi [44]. They
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averaged over azimuthal angle, while black lines correspond to x/D = 1 and r/D = 0.5. Red lines denote
the moving average

presented the axial velocity fluctuations for a particular azimuthal wavenumber m integrated
over a cross-section

Em
xx =

∫
(u′

xu
′
x)

m
rdr (12)

as a function of the axial station. Figure 7 shows Em
xx for m = 0 − 3 from both compu-

tations. The quasi-laminar ‘top-hat’ inflow with the chosen flow parameters provides the
development of vortex rings at x/D = 2−4 with subsequent turbulization. The growth rate
of Em=0

xx is exponential for the inflow produced by the contraction, while other modes also
experience rapid increase at the same axial distance. On the contrary, the fully developed
inflow produces linear growth of energy which is weak compared to the burst-like increase
for the laminar inflow. The maximum amplitudes of the ‘laminar’ profiles of Em

xx are 2 − 3
times higher than for the fully developed pipe jet. At the same time, the values at x/D = 15
from Kim and Choi are comparable with that from the present LES at x/D = 10.

The turbulent kinetic energy spectrum and the peak at St = 0.14 observed in Fig. 1,
which motivated the present study is further analyzed for different velocity components.
According to Fig. 8, the axial velocity component is responsible for low-frequency energetic
motion. It turns out that this is a footprint of the propagating helical waves which are present
in the pipe flow, as was shown by Duggleby et al. [23]. Indeed, in Fig. 8 we see the same
peak at St = 0.14 in the power spectrum of the axial velocity fluctuations denoted by a blue
line in the periodic pipe flow (or at x/D = −1). Further below we investigate this issue.
At the same time, the tangential velocity fluctuations do not have a pronounced spectral
peak at high frequencies, while radial fluctuations possess a bump at St ≈ 0.78 at the
considered axial station. As discussed below, this frequency is well-represented by a neutral
wave solution (with kim = 0) in the framework of the linear stability theory.

As mentioned above, the distribution of the turbulent kinetic energy inside the pipe flow
strongly affects the spectral characteristics in the near field of the jet. Figure 9 depicts the
distribution of the turbulent kinetic energy contained in individual m obtained from the
pipe flow precursor simulation. While in the centre of the pipe the energy is exclusively
stored in m = 0 (fluctuations of the axial velocity) and m = 1 (radial and tangential
velocity fluctuations), a very broad range of m contributes to the near-wall peak. Note that
the main contribution comes from m = 9 corresponding to the statistically average spanwise
distance between the near-wall streaky structures at this Reynolds number. The ‘slice’ POD
agrees well with the conclusions of Duggleby et al. [23] who performed a three-dimensional
analysis and revealed the dynamical significance of the propagating helical waves. The most
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energetic POD mode obtained in [23] with m = 5 at Re ≈ 4300 rotates with the frequency
of St ≈ 0.165 confirming the above discussed peak in the power spectrum.1 For the pipe
flow we obtain a wide range of POD modes of comparable energy. The eigenvalue (namely,
λ2/2) is connected to the turbulent kinetic energy integrated over the considered area. The
first POD mode (q = 1) with m = 3 contains the most energy, i.e. 2.47 percent from the
total energy, while q = 1 with m = 0 is ranked 14th with 1.35 percent. The spatial spotty
distribution of the axial velocity for various modes is also shown in Fig. 9.

4.2 Identification of helical waves

As a first step we track the evolution of the power spectra along the axial coordinate for
various m starting from the fully developed pipe flow, see Eq. 9. The velocity field decom-
posed into helical waves of the form ei(mφ−2πf t) shows the azimuthal modes rotating with
the constant angular velocity, Oberleithner et al. [48]. Figure 10 presents Em for several
axial locations calculated in the shear layer. The dynamics inside the pipe is mainly concen-
trated around the frequency St ≈ 0.14 with a mild scatter. The modes with m = 3, 4, 5, 6, 8
can be easily identified. Another group of high wavenumber modes (m ≥ 7) focuses around
zero frequency corresponding to the so-called ‘non-propagating’ sub-class employed by
Duggleby et al. [23]. These modes resemble the features of the near-wall streaky structures
existing in the wall-bounded turbulent flows. The same trends are observed at x/D = 1 with
additional energy present in the high-frequency range due to the shear layer instabilities.
Further downstream the turbulent kinetic energy is transferred to low m and low frequen-
cies. At x/D = 6 with St = 0.14 being the highest with m = 1, 2, 3 contributing the most,
there are several other low-frequency peaks.

Further we perform POD at 32 axial locations starting from x/D = 0 with the last
position at x/D = 10. The spatial step close to the nozzle is �x/D = 0.25, while at the end
of the domain it is fixed to �x/D = 0.5. Figure 11 (left) shows the turbulent kinetic energy

1This frequency has been obtained by calculating the slope of the phase of the complex-valued temporal POD
amplitude, see Fig. 10(e) in [23]. We applied a similar procedure for the jet described by Eq. 13 and Fig. 15.
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Fig. 10 The time power spectrum for various azimuthal modes at several axial locations. For x/D = −1 the
spectrum is calculated at r/D = 0.46 while for other stations we used r/D = 0.5 position

of the first POD mode for different m against the axial position. Along 0 ≤ x/D ≤ 10
there is a competition between the eigenvalues for different m. The most energetic modes
correspond to low wavenumbers m = 1−5. The distribution of the relative turbulent kinetic
energy between various (m, q) modes at x/D = 6 can be observed in Fig. 11 (right). The
cumulative energy of (m = 0 − 7, q = 1) modes contributes around 25 % of the total
energy. If the modes are ranked among all m and q then the first 15 modes carry around
40 % of energy, while 40 and 120 modes contribute around 60 % and 80 %, respectively. It
is interesting to compare the distribution of energy between the pipe- and ‘top-hat’ jets. For
high Reynolds numbers ‘top-hat’ jet Jung et al. [29] calculated the fraction of energy stored
in the first POD modes summed among all m. At x/D = 6 in the first (q = 1), the first two
(q = 1, 2) and the first three (q = 1 − 3) modes contribute around 66 %, 83 % and 92 %,
respectively, while in our case it is 30 %, 47 % and 57 %. Further in Section 4.4 we employ
POD to analyze dynamical features investigating temporal amplitudes of the most energetic
modes.
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4.3 Local linear stability analysis of the mean flow

Although above we show that the spectral characteristics of a wall-bounded pipe flow deter-
mines the dynamical features of the jet, it is instructive to compare results with the linear
stability analysis (LSA). The local LSA relies on the mean velocity profiles at a fixed axial
station and eddy-viscosity concept to account for the background turbulence where coher-
ent fluctuations may develop. Figures 12 and 13 show the growth rate −kim against the
frequency f = ω/(2π) at x/D = 1 and 10, respectively. We perform two sets of calcu-
lations for comparison. The dashed lines indicate results using the laminar model velocity
profiles (see Table 3), whereas the solid lines correspond to the LES velocity profiles with
the turbulent viscosity taken into account. At x/D = 1 the velocity gradient in shear layers
is relatively steep giving rise to unstable modes with m = 0 and 1. The frequency corre-
sponding to the maximum spatial growth rate (St ≈ 0.39 and 0.47) is not observed in the
turbulent kinetic energy spectrum while the frequency of the neutral eigensolution (with
−kim = 0) describes well the Kelvin-Helmoltz instability. At x/D = 1 the power spectrum
of the radial velocity component gives a peak at St ≈ 0.78 (see Fig. 8), while LSA provides
the value of St ≈ 0.76 for m = 0. This is in agreement with Petersen and Samet [50] who
showed that the spectral peak value of a ‘top-hat’ jet agrees well with the one correspond-
ing to the neutral growth rate solution at some distance downstream. At the pipe exit the
sinusoidal mode m = 1 also provides unstable high-frequency solutions close to those for
m = 0. At the same time, the low-frequency peak is around St ≈ 0.14 and is not captured
by the linear stability analysis confirming that it is not connected to the Kelvin-Helmholtz
instability but is a pipe flow legacy. At x/D = 10 only m = 1 remains unstable with the
peak frequency St ≈ 0.019 (see Fig. 13). Again the neutral mode appearing at St ≈ 0.041
is in excellent agreement with the energy spectrum.

Figure 14 shows the variations of spectral peaks obtained with LSA and LES. The
Kelvin-Helmholtz peak (orange dashed line) derived from the radial velocity power spec-
trum can be tracked for x/D ≤ 2 with the frequency value well approximated by a linear
fit St = 1.25 − 0.4x/D. This peak is closely described by LSA up to x/D ≤ 1. After
x/D = 1 the cut-off of the axisymmetric instabilities takes place due to the spreading of the
velocity profile. No unstable modes for m = 0 can be found with LSA for x/D ≥ 1.6. The
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Table 3 Two profiles common in the literature [51, 52] are used to obtain the reference dispersion curves
k = k(ω)

Near field Far field

Unf = 1
2

(
1 + tanh

[
1

4θ
(

r0
r

− r
r0

)
])

+ Uco Uff = Uc/

(
1 + r2

R2
0

)2

We use θ = 0.1, r0 = 0.488D, Uc = 0.665Ub and R0 = 1.4D to match LES profiles at x/D = 1 and 10
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frequencies of the maximum growth rate solutions and neutral waves are all presented in
Fig. 14 following a power-law decrease with the axial distance. A blue dashed line denotes
the peak St ≈ 0.14 tracable along 0 ≤ x/D ≤ 10. The shaded area schematically presents
other low-frequency motion/peaks (see, for example, inset in Fig. 13).

4.4 Propagating helical waves: POD analysis

The above analysis is supplemented with direct observations from POD. To be able to sepa-
rate helical patterns rotating in opposite directions, we follow the approach of Davoust et al.
[53] (see also [23, 54–56] for a similar analysis in the channel and pipe flows). Recently,
they successfully described flapping and helical motion of the ‘top-hat’ jet at x/D = 3
based on the information about the temporal amplitudes. We analyse the complex-valued
temporal amplitudes am

q (t) starting from the following representation:

a(t) = β(t)e2πiγ (t), (13)

where β and γ are the time sequences of N real numbers. Particular combinations of β and
γ correspond to helical and flapping motion [53]. The ideal helix represents a rotation of
the jet core with constant angular velocity at some fixed distance from the x-axis. Thus,
one expects β to be constant and γ to grow in time linearly. In terms of two azimuthal
waves with opposite m values this means that one mode is present while the other is not.
For the flapping motion both modes are present with the same rotation speed but opposite
directions. This results in a more complicated behaviour of β and γ .

Figure 15 shows γ (t) during 150 time units for the first several q and m. A striking
feature of γ is that it contains very long time intervals over which it varies linearly. As
pointed out above, this means that the corresponding spatial mode rotates around the jet core
with some precession frequency. This fact was first observed by Sirovich and co-authors
in the 3D POD results of the channel flow DNS database [54] and recently in a pipe flow
[23]. The linear variation of the phase in time led to coining the term ‘propagating wave’.
We also show the slope of γ (t) for some characteristic regions (dashed lines). This slope
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is in fact the non-dimensional angular velocity � of the mode rotation. For example, three
typical regions are shown in Fig. 15 for m = 1 with � ≈ −0.87, −0.14 and 0.08. For
� ≈ −0.14 and γ = �t the corresponding POD mode turns around in seven time units
according to Eq. 13. These curves of γ (t) for m = 1 show changes of rotation direction
within short time intervals (say, t < 25 with the typical value of t = 5−10), while in a long
run the average rotation is non-zero. For m = 2 the slope of γ is bounded between −0.167
and 0.14, while � ≈ 0.08 is visible in the plot of m = 2, 3 and 4. Similar patterns can be
recognised for higher wavenumbers. Note that one of the insets in Fig. 15 (m = 4) shows
the time power spectrum at x/D = 6 of the turbulent kinetic energy calculated in the shear
layer. We observe two peaks in the low-frequency range, i.e. St = 0.08 and 0.14, which
are explained by typical slopes of γ (t) corresponding to the low average |�|. However, in
Fig. 15 we also observe a quite common steep slope with |�| ∼ 1.0. We interpret it as
a superposition of “fast” and “slow” rotation. While the “fast” rotation appears stochastic
with short time scales, the “slow” rotation can last for up to a hundred of non-dimensional
time units. Although we have considered in detail only the axial position x/D = 6, the
mentioned features can be found along the whole considered near-nozzle area. Coming back
to the Fourier analysis summarized in Fig. 10 and LSA shown in Fig. 14 the results are in
line with the POD. The Spectral Fourier analysis shows noticeable peaks at St ≈ 0.04, 0.08
and 0.14 for x/D = 6 (see Fig. 10). All three slopes (or �) are readily observed in the
time series of the phase γ . Furthermore, at this axial distance LSA for m = 1 shows the
maximum growth rate at St ≈ 0.037, while neutral mode solution corresponds to St ≈ 0.09.
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These two values bound two peaks at St ≈ 0.04 and 0.08 observed in the spectral Fourier
analysis.

Figure 16 shows some additional observations during t ∈ [49; 52.5] for m = 1 and q =
4. This region, as mentioned above, has a slope −0.87 pointing at a relatively fast rotation
of a POD structure. The left graph demonstrates a sample of the trajectory of am=1

q=4 (t) in
a complex plane. A typical pattern here is an ellipse due to oscillations of β(t) around the
mean value β = 0.9. We employ Taylor’s hypothesis to reconstruct a three-dimensional
structure. The convective velocity is adopted as Uconv = Uc/2, where Uc = 1.01Ub is
the local mean centreline axial velocity at x/D = 6. Figure 16 on the right shows an
isosurface of the Q-criterium for the velocity field, which is the sum of the mean field
and q = 4, m = 1 POD mode. Apparent helical motion is explicitly detected. Although
this mode represents only a relatively small fraction of the total turbulent kinetic energy
(1.26 %), propagating wave motion appears to be a typical building block among POD
modes according to Fig. 15. A preliminary three-dimensional POD analysis fully supports
the presented results and conclusions, thus, giving the confidence that helical structures are
indeed present and are not the consequence of the Taylor’s hypothesis.

Further we inspect if separate POD modes resemble the actual flow features. Figure 17
shows the velocity magnitude time sequence corresponding to the sum of a number of POD
modes. Every row in Fig. 17 can be compared with the instanteneous velocity field shown
at the bottom. We start with the most energetic mode m = 1 and q = 1 with 5.77 % of the
total turbulent kinetic energy. Only one mode traces the local velocity maximum but hardly
represents the complex dynamics of the whole field. However, the sum of two modes with
m = 1 and q = 1, 2 resembles the flow more accurately (second row in Fig. 17). Obviously,
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the larger the number of modes in the sum, the closer we approach the instanteneous field.
To compare we sum up 12, 18, 48 and 930 modes with the latter corresponding to the
instanteneous field. The important conclusion here is that few modes are needed to trace the
dynamics of the flow with even one mode sufficient to track the main features.

5 Conclusions

We performed LES, linear stability analysis and ‘slice’ POD to get an insight into the coher-
ent motion in the near-nozzle area (x/D ≤ 10) of a canonical pipe jet at Re = 5300. The
main conclusions can be summarized as follows.

– The near-wall streaky structures supplied by the pipe and observed only close to the
pipe exit (“nozzle”) suppress the growth of Kelvin-Helmholtz vortex rings that char-
acterize and dominate in ‘top-hat’ jets. In contrast to the exponential growth of the
turbulent kinetic energy in the latter, the pipe jet features a linear growth rate for low
azimuthal wavenumbers, which are found to be the most energetic (m = 1 − 5).
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– A low-frequency peak (St ≤ 0.14) detected in the time power spectrum corresponds
to the propagating helical waves which are present in the pipe flow. The linear stability
analysis confirmed that this motion is not connected to the Kelvin-Helmholtz instability.

– The analysis of the dynamic features based on the temporal amplitudes obtained from
POD identifies clearly two types of the dominant helical structures: the “fast” and
“slow” rotations. They differ in the characteristic time scales of the process with t < 25
(or, more pronounced, for t = 5 − 10) for the former and with up to t = 150 (or more)
for the latter. The “slow” modes are due to the coherent helical structures (propagating
waves) which are long-lived and have low angular velocities of rotation around the axis
of symmetry while the “fast” modes correspond to the background stochastic turbulence
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