
Flow Turbulence Combust (2016) 96:693–716
DOI 10.1007/s10494-015-9657-6

Assessment of Five SGS Models for Low-Rem MHD
Turbulence

Amar KC1 ·Abhilash J. Chandy1

Received: 25 March 2015 / Accepted: 26 September 2015 / Published online: 10 October 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Assessment of three regularization-based and two eddy-viscosity-based subgrid-
scale (SGS) turbulence models for large eddy simulations (LES) are carried out in the
context of magnetohydrodynamic (MHD) decaying homogeneous turbulence (DHT) with
a Taylor scale Reynolds number (Reλ) of 120 and a MHD transition-to-turbulence Taylor-
Green vortex (TGV) problems with a Reynolds number of 3000, through direct comparisons
to direct numerical simulations (DNS). Simulations are conducted using the low-magnetic
Reynolds number approximation (Rem << 1). LES predictions using the regularization-
based Leray-α,LANS-α, and Clark-α SGS models, along with the eddy viscosity-based
non-dynamic Smagorinsky and the dynamic Smagorinsky models are compared to in-house
DNS for DHT and previous results for TGV. With regard to the regularization models, this
work represents their first application to MHD turbulence. Analyses of turbulent kinetic
energy decay rates, energy spectra, and vorticity fields made between the varying magnetic
field cases demonstrated that the regularization models performed poorly compared to the
eddy-viscosity models for all MHD cases, but the comparisons improved with increase in
magnitude of magnetic field, due to a decrease in the population of SGS eddies within the
flow field.

Keywords LES · SGS modeling · Taylor Green vortex · MHD turbulence

1 Introduction

Several technological and industrial applications, like steel production and processing
involve the flow of electrically conducting fluids under the influence of a magnetic field[18].
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In such applications, magnetic Reynolds number, Rem defined as

Rem = UoLo/ηm (1)

is very small, i.e. Rem � 1. The physical significance of such a regime is that there is
a one-way coupling between fluctuations of the magnetic field and velocity, which allows
considering the electromagnetic effect as an additional body force in the momentum equa-
tions of the flow. On the other end of the spectrum, Rem ≥ 1 and the coupling is now
two-way. Applications of this regime include astrophysics and geophysics [16, 19].

A feature of low-Rem magnetohydrodynamic (MHD) turbulence is that a strong mag-
netic field makes the turbulent fluctuations anisotropic, resulting in an elongation of the
flow structures along the lines of the magnetic field [3, 35]. A fully-resolved numerical solu-
tion of the Navier-Stokes equations is called direct numerical simulation (DNS), which is
inapplicable to very high-Reynolds number (Re) flows due to the increased computational
expense. Large eddy simulation (LES) overcomes this limitation by filtering out all scales of
motion larger than a cutoff filter width, �, while the scales smaller than � are represented
using subgrid-scale (SGS) models [38].

HomogeneousMHD turbulence forms an ideal platform to illustrate how an applied mag-
netic field, while introducing anisotropy in the flow, can also increase the decay rate. Several
studies involving DNS of homogeneous MHD turbulence have been conducted concentrat-
ing both on forced turbulence [6, 46, 47] and decaying turbulence [1, 7, 30, 32, 33]. Some
of these works also included LES, focusing on SGS modeling in the context of MHD turbu-
lence [1, 30, 32, 33]. With regard to SGS modeling, Knaepen and Moin [33] showed that the
dynamic Smagorinsky model performed better than the classical non-dynamic Smagorinsky
model. More recently Burattini et al. carried out a numerical investigation of MHD turbu-
lence at magnetic interaction parameter values ranging from 0 to 50 [7]. They found that
nonlinearity dominated the flow evolution and hence a linear theory could not describe the
flow.

In the last two decades, various SGS models have been developed [45]. For instance,
implicit LES [27] is an LES approach where no SGS model is employed and the numeri-
cal effects of the discretization are assumed to mimic the physics of unresolved turbulent
motion. The second and the most widely-used approach is the eddy viscosity kind (e.g. the
Smagorinsky model) [38, 42, 44], that requires a model for the anisotropic residual stress
tensor term to close the equations for the filtered velocity. A more novel approach involves
regularization modeling as a SGSmodel (e.g. the Leray-α model) [15, 23, 24]. These models
are based on smoothing the dynamics of Navier-Stokes equations [24] via a direct modifi-
cation of the nonlinear convection terms, while still retaining the mathematical properties of
the equations [25]. As a result they differ from the eddy-viscosity models in that they result
in a mixed formulation involving both the filtered and unfiltered solution [24].

In this paper, we considered three regularization models including the Leray-α, LANS-α
and Clark-α. In the Leray-α model, the advective operator of Navier-Stokes (NS) equa-
tions, (u · ∇)u is replaced by (v · ∇)u, where the filtered velocity, v = H−1(u), and H

is the Helmholtz filter. Reeuwijk et al. [39] compared the Leray-α simulations from well
resolved and coarse DNS and concluded that additional dissipative modeling was needed to
capture accurately all the effects from turbulence. Another approach is the Lagrangian aver-
aged Navier-Stokes-α (LANS-α) model equations (also referred to as the Casmassa-Holm
equation) [12–14]. Different comparisons for LANS-α have been made to DNS at modest
Taylor-scale Reynolds number for decaying (Reλ = 130 [14], Reλ = 220 [36], Reλ = 300
[15]) and forced turbulence (Reλ = 80 and 115, [36]). The comparisons presented in [23]
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between Leray-α and LANS-α showed that the LANS-α model provided a solution that rep-
resented the filtered DNS results better. The third and final regularization model considered
here is the Clark-α model [17]. A study of Graham et al. [26] has compared the three reg-
ularization models (Leray-α, LANS-α and Clark-α) with DNS for a high-Re Taylor-Green
forced isotropic turbulence problem and found that Clark-α produced the best dissipation
rate and energy spectrum at scales larger than α. They also showed how the LANS-α model
performed the best in terms of predicting intermittency. A study by one of the co-authors
also compared these three regularization models for high-Re homogeneous turbulence and
Taylor-Green vortex [9]. The study found that all the regularization models performed better
at high-Re when additional dissipation was included. More recently, another investigation
by the co-author [11], compared the Leray-α model to DNS for low-Rem MHD turbu-
lence and found that the former was unable to predict the energy transfer and anisotropy
accurately.

The performance of the five different SGS models is presented for LES of low-Rem

MHD turbulence and comparisons are made to an in-house DNS results from [11] at varying
magnetic field strengths (different values of magnetic interaction parameter, N ). In addition
to the three regularization models described above, the classical non-dynamic and dynamic
Smagorinsky models are also tested. Two different cases are considered here: The first is
a homogeneous turbulence case, while the second the Taylor-Green vortex (TGV) case.
TGV is a simple system that is very useful to study the generation of small scales and
the turbulence resulting from it [5]. Decay rates, energy spectra, and vortical structures are
analyzed at varying values of N . In the subsequent sections, the formulation, computational
details and SGSmodels are described and this is followed by the presentation and discussion
of results obtained.

2 Formulation

The formulation employed in the current study is based on the Fourier pseudo-spectral
method that integrates the incompressible Navier-Stokes equations in a cubic box of side L

for periodic boundary conditions:

∂tu + (u · ∇)u = −∇p + ν∇2u + f

∇ · u = 0
(2)

where u, p, t and ν are the velocity field, pressure, time, and kinematic viscosity,
respectively. The Lorentz force, f is given by:

f = 1

ρ
J × B, (3)

J = σ (−∇φ + u × B) , (4)

∇ · J = 0, (5)

and
∇ · B = 0, (6)

where B, J, σ , and φ represent the applied magnetic field, electric current density, electrical
conductivity and the electrostatic potential, respectively. Ohm’s law is represented by Eq. 4.
Due to the fact that at low-Rem, the magnetic field affects the flow, but not vice-versa, the
Lorentz force term, J×B/ρ in the above equation is a function of only B and u, where ρ is
the density of the fluid. The magnetic field is assumed to be directed along the z direction.
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So B = Bok̂, where Bo is the amplitude of the magnetic field . Therefore, the Lorentz force
term is linearly dependent on velocity [35, 43, 46] and is given by

f = −σB2
o

ρ
∇−2 ∂2u

∂z2
(7)

A description of the current formulation is provided in [9, 11]. With the velocity field,
u(x, t), approximated as a finite Fourier series

u(x, t) =
∑

k

eik·x û(k, t), (8)

where ˆ(..) is a variable in the spectral or fast Fourier transform (FFT) space, and k is the
wavenumber vector, the incompressible Navier-Stokes equations in wavenumber space are:

(
d

dt
+ νk2 + σB2

o

ρ

(
kz

k

)2
)

ûj (k, t) = −ikl

(
δjk − kj kk

k2

) ∑

k′
ûk(k

′, t) ûl(k − k′, t)

(9)
where σ , k and i are the resistivity, wavenumber vector, and the imaginary unit, respectively,
and k ≡ |k|. For details on the quasi static derivation, see [40]. So the electromagnetic force
in the above governing equations represents an anisotropic term in the equation of motion.
From the above governing equations, a non-dimensional parameter, namely the interaction
parameter, N , can be defined as

N = σB2
oLo

ρUo

. (10)

N represents the strength of the magnetic damping term relative to convection in Eq. 9 and
also the ability of a magnetic field to reduce 3D turbulence to 2D turbulence.

2.1 SGS models

2.1.1 Two eddy-viscosity models

The classical Smagorinsky model [44] assumes quasi-equilibrium between large and small
scales. Here, the filtered Navier-Stokes equation yields,

∂i ũi = 0 (11)

∂t ũi + ũj ∂j ũi = −∂i p̃ + ν∂jj ũi − ∂j τij,R + fi (12)

where ˜(.) is the LES-filtered quantity and the residual stress is

τij,R = −2νT S̃ij = −2(Cs�)2 | S̃ |, S̃ij (13)

where � is the filter width and Cs is the Smagorinsky model coefficient, which is deter-
mined independent of the specific filter. For isotropic turbulence in the inertial range, Cs

is fixed at its classical value, Cs = 0.16 [38], and S̃ij = 1
2 (∂j ũi + ∂i ũj ) is the resolved

strain-rate tensor with a magnitude of |S̃| = (2S̃mnS̃mn)
1/2. This model allows only forward

energy transfer from the resolved scales to the subgrid scales.
For the dynamic Smagorinsky model, the filtered Navier-Stokes are written in the same

manner as presented above for the non-dynamic Smagorinsky, except now the model
coefficient, Cs , for calculating the residual stress, is calculated as,

C2
s = 〈Lij Mij 〉

〈Mij Mij 〉 (14)
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where 〈 . 〉 is a volume-averaged quantity. From the Germano identity [22],

Lij ≡ Tij − τ ij = ũi ũj − ũi ũj (15)

where ¯(.) is a test-filtered quantity on a filter width of 2�, Tij = ũiuj − ũi ũj is the SGS
tensor [29], and

Mij ≡ −2�2
[
4 | S̃ | S̃ij − | S̃ |S̃ij

]
. (16)

2.1.2 Three regularization models

The different regularization models considered here are, Leray-α, LANS-α and Clark-α.
The governing equations in the Leray formulation can be written as,

∂iui = 0, ∂ivi = 0 (17)

∂tui + vj ∂j ui = −∂ip + ν∂jjui + fi (18)

where the flow is advected by a smoothed (filtered) velocity v.

v = H−1u = (1 − α2∇)−1u. (19)

H is the Helmholtz filter and α is the Helmholtz length, which defines the effective width
of the filter. H is the standard filter used for all the regularization models considered here.
Similarly, for the LANS-α model and the Clark-α models, Eq. 17 stays the same, but Eq. 18
is replaced by

∂tui + vj ∂jui + uj ∂ivj = −∂ip + ν∂jj ui + fi (20)

and
∂tui + ∂j (vjui + ujvi − vj vi − α2∂lui∂luj ) = −∂ip + ν∂jj ui + fi, (21)

respectively.

3 Computational Details

The computer code solving the pseudo-spectral equations described above is written in For-
tran90 and employs the P3DFFT parallel three-dimensional FFT library. See the authors’
recent publications [9–11] and thesis [31], for more details. The 3/2-rule is used as the
dealiasing technique [41]. Grid resolutions illustrated in this paper for the different sim-
ulations are numbers after dealiasing. Temporal integration is achieved via a third-order
Runge-Kutta time stepping algorithm [8]. h = L/Nf is the numerical grid size, where Nf

is the number of Fourier modes and L = 2π is the side of the cubic computational domain.
The time step, �t , is calculated according to �t = (cfl) (h)/

√
tke0. In this equation, tke0 is

the initial turbulent kinetic energy, and cfl=0.03 [38] for all the cases presented here. Also,
the time step size is set to be a constant throughout the simulation. The total simulation
time was 10.0 in the case of homogeneous turbulence and 20.0 in the case of Taylor-Green
vortex.

4 Results

In this section the results from five different SGS models such as the non-dynamic
Smagorinsky (NDSMAG), Dynamic Smagorinsky (DSMAG), Leray-α (LERAY), LANS-α
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Table 1 Simulation parameters for DNS and SGS models

Cases Grid N Filter width, � Constants Time step

DNS-MHD N 2563 0, 0.1, 0.5, 1 - - 6 × 10−4

LES: NDSMAG N 963 0, 0.1, 0.5, 1 π/48 α = 1/42, Cs = 0.16 5.3 × 10−3

LES: DSMAG N 963 0, 0.1, 0.5, 1 π/48 α = 1/42 5.3 × 10−3

LES: LERAY N 963 0, 0.1, 0.5, 1 π/48 α = 1/42 5.3 × 10−3

LES: LANS N 963 0, 0.1, 0.5, 1 π/48 α = 1/42 5.3 × 10−3

LES: CLARK N 963 0, 0.1, 0.5, 1 π/48 α = 1/42 5.3 × 10−3

(LANS) and Clark-α (CLARK) are compared with in-house DNS results [9] for homoge-
neous MHD turbulence and previous simulations for the TGV case [4, 5]. The value of α

is taken as 1/42, which gives the best agreement compared to α > 1/42 and there is no
significant difference in the results by decreasing the value of α < 1/42 [9]. These mod-
els presented here are compared with DNS results without a magnetic field, i.e. N = 0 and
with a magnetic field using values of N = 0.1, 0.5 and 1. For all the simulations presented
here, the magnetic filed is applied only in the z-direction.

In the case of non-dynamic Smagorinsky model, the constant Cs is fixed at 0.16, which
is the conventional value for isotropic turbulence [34]. Simulation parameters for both the
homogeneous MHD turbulence and MHD Taylor-Green vortex are presented in Table 1.

4.1 Homogeneous turbulence

The first problem considered here is that of an initially-isotropic decaying turbulence case of
Taylor scale Reynolds number, Reλ = 120. The Taylor length scale and the r.m.s. velocity
in the longitudinal direction are used to calculate Reλ, i.e. Reλ = u1r.m.s.ν/λ, where ν is
the viscosity. DNS and LES were both initialized was with a divergence-free velocity field
and an energy spectrum according to [38] given by

E(k) = Ckε
2/3k−5/3

(
kLu

[(kLu)2 + cL]1/2
)5/3+p0

exp
(
−β{[(kη)4 + c4η]1/4 − cη}

)
. (22)

k is the wavenumber, Lu is the integral length scale and is 0.6, and η, the Kolmogorov
length scale, is given by

η = Re
−3/4
L Lu = 1.8937. (23)

In the above equation, ReL is the integral scale Reynolds number given by

ReL = 3 Re2λ /20 = 2160 (24)

In the energy spectrum function, p0, cL, and cη are constants given by 2.0, 3.75, and 0.4,
respectively [21, 38]. In addition, the constants, Ck = 1.5 and β = 5.2, values chosen such
that the total turbulent kinetic energy associated with the initial velocity field is 0.55. The
initialization is based on the process outlined in [29], where the velocity field is scale in
Fourier space using random phase Fourier modes, such that the energy spectrum represents
the initial energy spectrum. Using these initial conditions, the simulations are run for a cer-
tain time period ( 2.0, here), such that the velocity derivative skewness remains steady, after
which the velocity field is rescaled in Fourier space so that the initial energy distribution is
matched at this state and the time is reset to t = 0.
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Figure 1 shows the comparison of turbulent kinetic energy (TKE) evolution for the five
different SGS models with DNS results. TKE of filtered turbulence (filtered using spectral
cutoff filter) is obtained by integrating the 3D energy spectrum according to,

T KE =
∫ kmax

0
E(k)dk

where kmax is the largest wavenumber represented by, kmax = πN/L = π/�x. L is the
side of the domain, �x is the grid spacing and N is the grid size. A spectral-cutoff filter
with the same LES filter width size is used to truncate the DNS data, so that o that direct
comparisons can be made with the LES-filtered TKE. Essentially, the spectral cutoff filter
is an implicit numerical grid filter of filter size, � = h in a pseudo-spectral code. So for a
LES grid resolution of 963 after dealiasing, like the one employed in this paper, the filter
size, �, is π/48.

The LES calculations for the different models are compared with in-house DNS results
for four different values of N , N = 0, 0.1, 0.5 and 1 in Fig. 1. Obviously the TKE decreases
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Fig. 1 Evolution of the TKE with time, for five different SGS models compared with DNS, with different
values of N . N0, N0.1, N0.5, N1 represent N = 0, 0.1, 0.5 and 1, respectively
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with time because of decaying turbulence, but it decreases faster with increasing mag-
netic field due to the Joule dissipation effects resulting from the magnetic Lorentz force.
With regard to the performance of the SGS models, in the absence of magnetic field, the
Smagorinsky models seem to predict the TKE evolution better than the regularization mod-
els. All the regularization models overpredict the TKE at all times, with the LANS-α being
the worst. It is interesting to note that with an increase in magnetic field, the agreement
between the regularization models and the DNS results keeps improving until at N = 1, all
the SGS models are quite close to each other and do a reasonably good job in predicting the
evolution of TKE. Furthermore, in order to quantify the deviations of all the SGS models
from DNS, evolution of the ratio of TKE values between the SGS models and DNS, given
by tkeSGS/tkeDNS, is plotted for the different magnetic fields in Fig. 2. For the DNS calcula-
tions these values would be one, since there is no SGS model present. The overestimation of
TKE at all times for all magnetic fields is clear from the larger-than-one values of this ratio.
In addition, the SGS models are the most different from each other, with time, for the case

t

tk
e S

G
S
/t
ke

D
N
S

0 2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

2
DNS_N0.5
LERAY_N0.5
LANS_N0.5
CLARK_N0.5
NDSMAG_N0.5
DSMAG_N0.5

t

tk
e S

G
S
/t
ke

D
N
S

0 2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

2
DNS_N0.1
LERAY_N0.1
LANS_N0.1
CLARK_N0.1
NDSMAG_N0.1
DSMAG_N0.1

t

tk
e S

G
S
/t
ke

D
N
S

0 2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

2
DNS_N1
LERAY_N1
LANS_N1
CLARK_N1
NDSMAG_N1
DSMAG_N1

t

tk
e S

G
S
/t
ke

D
N
S

0 2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

2
DNS_N0
LERAY_N0
LANS_N0
CLARK_N0
NDSMAG_N0
DSMAG_N0

Fig. 2 Evolution of the ratio of SGS TKE to the DNS TKE, with time, for five different SGS models
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respectively
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of no magnetic field. As the magnetic field increases, the models tend to be closer to each
other and to the DNS. Overall, as was seen previously in Fig. 1, the Smagorinsky models
fare better than the regularization models, with the non-dynamic Smagorinsky model per-
forming marginally better than its dynamic counterpart. Among the regularization models,
the Leray model does the best, followed by Clark and then LANS.

Comparisons for the evolution of decay rate of TKE are presented in Fig. 3. In order
to emphasize the behavior at early times, results are presented for a time of t < 4 and
also again on a log-linear scale. The TKE decay rate increases early (t < 0.3) and subse-
quently decreases. For the no-magnetic field case, the Smagorinsky models are better than
the regularization models, with the dynamic Smagorinsky doing a slightly better job. All
the regularization models show a delay in the peak and also severely underpredict the peak
of the TKE decay rate. With an increase in magnetic field, the comparisons are better with
DNS results, with the SGS models all on top of DNS for the N = 1 case. The kind of behav-
ior observed in the plots of TKE and TKE decay rate shows again, how the regularization
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Fig. 3 Evolution of rate of decay of TKE, dK/dt, with time, for five different SGS models compared with
DNS; with different values of N . N0, N0.1, N0.5, N1 represent N = 0, 0.1, 0.5 and 1, respectively
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Fig. 4 Spectra, E(k), at two different times; N0 represents magnetic interaction parameter, N = 0

models are unable to correctly predict the energy levels at high-Re. But when the magnetic
field is added, the effective Re is reduced [3] resulting in better predictions compared to
DNS. This was also seen in some of the author’s recent works [11].

The energy distributed across the entire range of scales can be illustrated through energy
spectra and it gives a better and more specific understanding of the ability of the SGS mod-
els to correctly predict the energy with regard to the different length scales. In one of the
author’s earlier works [11], the effect of a SGS model was presented for homogeneous tur-
bulence in the absence of magnetic field by comparing the 3D energy spectra of the Leray-α
model to low- or LES-resolution DNS calculations. Figures 4 – 7 show the 3D energy spec-
tra for the various magnetic field cases at two different times, t = 2 and t = 8. Consider
the N = 0 case, where the magnetic field is absent. Here, all the SGS models compare well
with DNS for the low-wavenumbers or large length scales at both the times. But early in the
simulation (t = 2), at the high-wavenumbers (k > 20) or small length scales, there is an
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Fig. 5 Spectra, E(k), at two different times; N0.1 represents magnetic interaction parameter, N = 0.1
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Fig. 6 Spectra, E(k), at two different times; N0.5 represents magnetic interaction parameter, N = 0.5

insufficient dissipation of energy resulting in a build-up at these wavenumbers. This phe-
nomena was exhibited only to a slight extent by the dynamic Smagorinsky model, but for
the regularization models, discrepancy was much worse. With regard to the non-dynamic
Smagorinsky model, no build-up of energy can be seen. In fact it underpredicts the energy
at the small scales, but such a behavior is a function of the Smagorinsky constant, Cs , whose
value was chosen as 0.16 in these simulations. Later at t = 8 the comparisons are better
with DNS, with only slight build-up observed at the high wavenumbers. But that is because
at this stage of the simulation, the small-scales have dissipated significantly and hence the
SGS models, especially the regularization models are able to predict the energy levels better
at this stage.

To assess the scaling of the spectra at the different times and different magnetic fields,
compensated spectra, Ec = ε−2/3k5/3E(k) is plotted in Fig. 8 for two different times, but
only for two magnetic field cases, N = 0 and N = 0.5. With the inertial subrange approx-
imately being when 3 ≤ k ≤ 8, it can be seen that the 5/3 scaling only holds at early
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Fig. 7 Spectra, E(k), at two different times; N1 represents magnetic interaction parameter, N = 1
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Fig. 8 Compensated spectra, Ec = ε−2/3k5/3E(k), at two different times; (a) N0 represents magnetic
interaction parameter, N = 0 and (b) N0.5 represents magnetic interaction parameter, N = 0.5

times for both the magnetic field cases and all SGS models. At a later time of t = 8 for
the no-magnetic field case, only DNS exhibits a 5/3 scaling, albeit over a much shorter
range of 3 ≤ k ≤ 5. With regard to the N = 0.5 case, none of the models includ-
ing DNS has a 5/3 scaling. All of this behavior is expected, firstly, due to the fact that
turbulence is decaying and the range over which any model would exhibit a 5/3 scaling
would just get shortened. Although, none of the SGS models seem to predict this correctly.
Secondly, with the addition of the magnetic field, the turbulence is getting damped and
the effect does become more pronounced with time as well. As a result, isotropic turbu-
lence illustrated by a 5/3 slope in the energy spectra along the inertial subrange cannot
exist.

With the inclusion of magnetic field (See Figs. 5, 6 and 7), the Lorentz force comes
into play, and the Joule dissipation from the magnetic field affects all modes including
the more energetic large-scales, thus reducing their energy levels. The same phenomena
is seen at the small scales too, due to a reduction in the energy cascade from large scales
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to small scales [11]. Energy spectra for the magnetic field cases show a similar behavior
as what was seen for N = 0, where the regularization models exhibit a larger build-up
of energy at the small scales compared to the eddy-viscosity models. But the results do

Fig. 9 3D Gray scale contours of vorticity magnitude at time, t = 6 for DNS and the different SGS models
without magnetic field i.e. with a magnetic interaction parameter, N = 0; (a) DNS (b) NDSMAG(c) DSMAG
(d) LERAY (e) LANS (f) CLARK. The legends and the axes for the contours are the same
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show an overall improvement with increase in magnetic field. That is because the mag-
netic field tends to suppress the turbulent fluctuations, reduce the turbulent kinetic energy
at all the scales and thereby reduce the level of turbulence itself (i.e. an overall reduction in
effective Re).

Fig. 10 3D Gray scale contours of vorticity magnitude at time, t = 6 s, for DNS and the different SGS
models with a magnetic interaction parameter, N = 0.5; (a) DNS (b) NDSMAG (c) DSMAG (d) LERAY (e)
LANS (f) CLARK. The legends and the axes for the contours are the same
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Fig. 11 2DGray scale contours of vorticity magnitude on the Y −Z plane at time, t = 6 for DNS and the different
SGS models without magnetic field i.e. with a magnetic interaction parameter,N = 0; (a) DNS (b) NDSMAG
(c) DSMAG (d) LERAY (e) LANS (f) CLARK. The legends and the axes for the contours are the same

To visualize the effect of anisotropy on the flow, 3D and 2D contours of vorticity mag-
nitude are presented as gray scale contours for only two magnetic interaction parameters,
N = 0 and N = 0.5, in Figs. 9–12, at time, t = 6 s, for the six (One DNS + five LES)
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Fig. 12 2D Gray scale contours of vorticity magnitude on the Y − Z plane at time, t = 6 s, for DNS and
different SGS models with a magnetic interaction parameter, N = 0.5; (a) DNS (b) NDSMAG (c) DSMAG
(d) LERAY (e) LANS (f) CLARK. The legends and the axes for the contours are the same

different cases in a π3 domain. It can be seen from Fig. 10 that the flow becomes nearly two-
dimensional in the x − y plane with an increase in the magnetic field due to the damping of
fluid motions in the direction of the magnetic field, i.e. the z-direction, thus causing a flow
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Fig. 13 Evolution of the TKE of TGV with time, for five different SGS models, with different values of N

stretching in the same direction. A center slice along the Y − Z plane of the domain is pre-
sented in Figs. 11 and 12 and the two-dimensionality of the flow field is clearly evident due
to the flow being stretched in the z direction. While all the SGS model results qualitatively
are similar to DNS, the dynamic Smagorinsky shows the better comparison quantitatively
as indicated by the levels of gray scale contours and all the regularization models do a much
poorer job in predicting the vorticity contours correctly.

4.2 Taylor green vortex

The classic Taylor-Green vortex (TGV) problem [37] is considered next. This is a transi-
tion to turbulence problem, which has its 3D velocity field initialized in physical space
according to

u1,0 = sin(x) cos(y) cos(z)

u2,0 = −cos(x) sin(y) cos(z)

u3,0 = 0

(25)

Fig. 14 Decay rate of TKE of TGV with time, for five different SGS models, with different values of N
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Fig. 15 Energy spectra, E(k), of TGV at two different times

A case of Re = 3000 is simulated here, where the Re is defined here as the inverse of the
viscosity. There have been several studies in the past focusing on DNS [4, 5, 37] and LES [2,
20, 28], all in the absence of a magnetic field. To date, there haven’t been any investigations
related to a MHD TGV.

LES of the TGV is presented here for two different magnetic interaction parameters,
N = 0 and N = 0.05, and for the five different SGS models: non-dynamic Smagorin-
sky (NDSMAG), dynamic Smagorinsky (DSMAG), Leray-α (LERAY), LANS-α (LANS)
and Clark-α (CLARK). Figure 13 shows the evolution of the turbulent kinetic energy and
Fig. 14 shows the evolution of the rate of energy decay. From the decay rate plots at N = 0,
the results are qualitatively similar to previous results including DNS [4, 9], where the evo-
lution follows two phases. In the first phase (t < 9), the flow essentially remains laminar
and transitional, the flow structure would be highly organized and the dissipation increases
from zero to a maximum value, as the flow turns turbulent. In the second phase (t > 9),

Fig. 16 Energy spectra, E(k), of TGV at two different times
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starting with the maximum dissipation (or -dK/dt), the flow is of fully-developed turbulent
nature and the dissipation keeps decreasing. From Fig. 13, it is clear that in general, with an
increase in magnetic field, the energy decays faster due to the added Joule dissipation from
the Lorentz force.

Fig. 17 Gray scale vortical structures at time, t = 10 in terms of iso-surfaces at C = 12 for the different SGS
models without magnetic field i.e. with a magnetic interaction parameter, N = 0; (a) LERAY (b) LANS (c)
CLARK (d) NDSMAG (e) DSMAG
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In the no-magnetic field case, all the regularization models overpredict the TKE com-
pared to the eddy-viscosity models mostly at all times, but in the presence of a magnetic
field even as small as N = 0.05, the predictions are closer to each other. This is because the

Fig. 18 Gray scale vortical structures at time, t = 10 s, in terms of iso-surface at value C = 12 for the
different SGS models with a magnetic interaction parameter, N = 0.05; (a) LERAY (b) LANS (c) CLARK
(d) NDSMAG (e) DSMAG
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magnetic field has caused the flow to be less turbulent and the regularization models per-
form better in these conditions. With regard to the decay rate (in Fig. 14), the magnetic field
has caused a delay in the transition to turbulence as indicated by all the SGS model results.
And as expected the regularization models for reasons outlined previously, are closer to the
Smagorinsky models.

Figures 15 and 16 show the energy spectra for the two magnetic field cases (N = 0 and
N = 0.05) at two different times, t = 8 and t = 16. All the SGS models predict the large
scales (k < 20) pretty well at all times and for both magnetic fields. With regard to the small
scales (k > 20), compared to the dynamic Smagorinsky model, the non-dynamic Smagorin-
sky overpredicts the dissipation at all times and all magnetic field levels. On the other hand,
the regularization models, especially the Leray-α and LANS-α tend to underpredict the dis-
sipation, thereby displaying a build-up of energy at these large scales. The Clark-α model
though is very close to the dynamic Smagorinsky for all the cases at all times. The pre-
dictions of the regularization models get better with time for a single magnetic field case
and also with an increase in magnetic field because of the increased dissipation at the small
scales at those conditions.

Figures 17 and 18 present the vortical structures in the form of iso-surfaces of vorticity
magnitude at C = 12 for the different SGS models and the two magnetic field cases at
t = 10 s. This time was chosen in order to indicate fully-developed turbulence. It can be seen
that there are radical differences in the vortical structures between the regularization-type
models and the eddy-viscosity models. The obvious difference is the amount of structures
visible at this particular value. For instance, the non-dynamic Smagorinsky seems to show
the least amount of structures, which is directly related to the overprediction of small-scale
dissipation by this model. On the other end of the spectrum is the Leray model where it can
be seen that the structures are thicker and more in the number, indicating the underprediction
of dissipation. The LANS and Clark models also show much more structures compared to
the Smagorinsky models, but smaller in size compared to the Leray model, indicating a level
of predicted dissipation between Leray and Smagorinsky models.

5 Conclusions

A series of LES of low-Rem MHD turbulence was examined in the context of a DHT case
and the classic transition to turbulence case, the TGV. Five different SGS models such as the
non-dynamic and dynamic Smagorinsky, which constitute eddy-viscosity-type models, and
the Leray-α, LANS-α and Clark-α models which constitute the regularization-type models,
were assessed for varying interaction parameters. The magnetic field was applied only in
the z-direction and its strength was varied by varying values of the magnetic interaction
parameter as, N = 0, 0.05, 0.1, 0.5, and 1. In the case of DHT, LES calculations conducted
here were compared with in-house DNS.

For the decaying MHD turbulence calculations, comparisons with DNS for all the regu-
larization models were worse than the Smagorinsky models, with the Leray-α performing
the worst and the dynamic Smagorinsky the best. From the energy spectra it was clear that
the regularization models underpredicted the dissipation at small scales indicating a build-up
of energy due to insufficient resolution. On the other hand, the non-dynamic Smagorinsky
did overpredict the dissipation, which could be related to the Smagorinsky constant chosen
here in these studies (Cs = 0.16). The predictions of the regularization-based SGS mod-
els improved with increase in magnetic field though, due to a reduction in the effective Re

as a result of the additional Lorentz force. In other words, the regularization models were
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able to perform better with a decrease in the population of SGS eddies within the flow
field. The vorticity contours in the box demonstrated how all the SGS models were able
to qualitatively predict the stretching in the z-direction (due to the Lorentz force resulting
from a z-direction magnetic field) reasonably well. However, with regard to actual vorticity
values, the regularization model results did not match very well with the DNS, while the
eddy-viscosity-based models fared better.

For the TGV case, only two magnetic field cases were simulated, N = 0 and N = 0.05
for aRe = 3000, because for values ofN > 0.05, the flow remained almost frozen and there
ceased to be any development towards turbulence in those cases. Qualitative comparisons
were made with the DNS data from Brachet [4]. Again on assessing the five different SGS
models, dynamic Smagorinsky seemed to perform the best and Leray the worst. All the
SGS models predicted a further delay in transition to turbulence compared to the dynamic
Smagorinsky as indicated by the decay rate evolution. The LANS and Clark models though
did a better job in predicting the magnitudes of these decay rates while Leray and non-
dynamic Smagorinsky highly underpredicted these values. The comparisons were closer to
each other for the magnetic field case. The spectra demonstrated the same story as what
was observed in homogeneous turbulence, where non-dynamic Smagorinsky showed too
much dissipation at the small scales while the regularization models showed a build-up of
energy at the small scales or the large wavenumbers, and again comparisons were better
with an increased magnetic field. It was also interesting to note that the vortical structures
characterized by iso-surfaces of vorticity magnitude also showed significant differences
between the SGS models, especially with regard to the number of structures displayed at
a particular value. For instance, the non-dynamic Smagorinsky showed the least amount
of structures indicating the maximum dissipation, while regularization models showed the
largest amount of structures indicating the least dissipation.
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