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Abstract The paper examines the impact of different modelling choices in second-moment
closures by assessing model performance in predicting 3-D duct flows. The test-cases
(developing flow in a square duct (Gessner and Emery, ASME J. Fluids Eng. 103, 445–455,
1981), circular-to-rectangular transition-duct (Davis and Gessner, AIAA J. 30, 367–375,
1992), and S-duct with large separation (Wellborn et al., J. Prop. Power 10, 668–675 1994)
include progressively more complex strains. Comparison of experimental data with selected
7-equation models (6 Reynolds-stress-transport and 1 scale-determining equations), which
differ in the closure of the velocity/pressure-gradient tensor �ij , suggests that rapid
redistribution controls separation and secondary-flow prediction, whereas, inclusion of
pressure-diffusion modelling improves reattachment and relaxation behaviour.

Keywords Turbulence modelling · Reynolds stress model · Second moment closure ·
Separated flow · Secondary flow · 3-D duct flows

1 Introduction

The accurate prediction of 3-D turbulent flow in geometrically complex ducts is impor-
tant in many practical applications, including aerospace [26], process [4] and nuclear [11]
engineering, and agrofood industry [3]. These flows can be particularly complex, and tur-

� I. Vallet
isabelle.vallet@upmc.fr

G. A. Gerolymos
georges.gerolymos@upmc.fr
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bulence structure may be influenced by various mechanisms, including 3-D boundary-layer
entrainment [50], secondary flows [8], flow separation [69], especially 3-D [21], and impor-
tant streamline curvature [71], associated with the presence of convex and concave bends
[70]. Therefore, in a RANS (Reynolds-averaged Navier-Stokes) framework [65], differential
full Reynolds-stress models (RSMs) are an appropriate choice [45], in an effort to include
terms in the model that account for all these mechanisms, especially if one considers not
only the prediction of the mean flow, but also of the detailed Reynolds-stress field [83].
In a recent study [26] of a double-S-shaped duct intake, typical of unmanned combat air
vehicles (UCAVs), comparison of RSM predictions with available measurements highlighted
the importance of the closure for the rapid part of the velocity/pressure-gradient tensor
�ij := −u′

i∂xj
p′−u′

j ∂xi
p′ (where ui ∈ {u, v,w} are the velocity-components in the Carte-

sian frame xi ∈ {x, y, z}, p is the pressure, (·) denotes Reynolds (ensemble) averaging,
and (·)′ denotes Reynolds-fluctuations) in successfully predicting the complex 3-D flow
structure dominated by 2 pairs of contrarotating streamwise vortices.

To improve our understanding of the predictive capability, but also of limitations, of
RSMs applied to the computation of streamwise-developing 3-D duct flows, it seemed
worthwhile to study 3 configurations, where the effects of different mechanisms could be
assessed separately, or at least sequentially: (a) developing flow in a square duct [39], (b)
flow in a circular-to-rectangular (C-to-R) transition duct [19], and (c) separated flow in a
circular diffusing S-duct [80]. These are highly anisotropic and inhomogeneous 3-D flows,
driven by mechanisms that are not modelled in linear eddy-viscosity closures, and are
therefore well suited for the assessment of anisotropy-resolving closures [53].

In turbulent fully-developed (streamwise-invariant in the mean) flow in a straight square
duct [40] the anisotropy of the diagonal stresses, v′2 and w′2, in the crossflow plane yz [8],
but also the inhomogeneity of the gradients of the secondary shear-stress v′w′ [9, (3), p.
378], trigger secondary (⊥x) flow, associated with streamwise vorticity [9]. The Gessner
and Emery [39] test-case is further complicated by the streamwise evolution of the very
thin inflow boundary-layers, on the duct walls, which grow streamwise, until they interact
and fill the entire duct, resulting in fully-developed (streamwise-invariant in the mean) flow.
Previous RSM computations of this flow [29, 72, 77] illustrated the difficulty to correctly
predict the streamwise development of the centerline velocity ūCL, but also, near the duct’s
exit where the flow reaches a fully-developed state, the underestimation of the secondary
velocity along the corner bisector (diagonal); this underestimation of the secondary-flow
velocities is also observed in fully-developed flow predictions [63]. Notice that, in fully-
developed turbulent square-duct flow, secondary ”velocities · · · are found to be smaller than
the root-mean-square turbulent velocity” [9, p. 376], and, furthermore, ”secondary-flow
velocities, when nondimensionalized with either the bulk velocity (ūB) or the axial mean-
flow velocity at the channel centerline (ūCL) decrease for an increase in Reynolds number”
[40, p. 689]. The So-Yuan [72] wall-normal-free (WNF) RSM slightly underestimates the
centerline velocity peak [72, Fig. 14, p. 51], while results with different WNF-RSM variants
[29, 77] demonstrated the sensitivity of the prediction of the x-wise development of ūCL

to the closures for both �ij [29] and turbulent diffusion [77]. Finally, the wall-geometry-
dependent Launder-Shima [52] RSM was found to perform poorly for this type of flows
[29], despite a slight improvement when using its WNF version.

Contrary to turbulence-driven secondary flows [8, Prandtl’s second kind], pressure-
driven secondary flows [8, Prandtl’s first kind] are generally much stronger [22]. In the
C-to-R transition duct studied by Davis and Gessner [19], the curvature of the walls in the
transition part of the duct induces pressure-gradients in the crossflow plane yz [19, Fig. 14,
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p. 373], driving relatively strong secondary flows that develop into 2 contrarotating vortex
pairs. The cross-sectional area of the duct varies in the divergent/convergent transition part
of the duct [54, Fig. 4, p. 242], and this further complicates the flow, although the diverging
part of the duct was sufficiently long to exclude separation [19]. Previous RSM computa-
tions for this configuration were reported by Sotiropoulos and Patel [73] with a variant of
the Launder-Shima [52] RSM, by Lien and Leschziner [54] with a zonal Gibson-Launder
[42] RSM coupled with a nonlinear k-ε model near the wall, and by Craft and Launder
[15] with their two-component limit (TCL) RSM. The detailed comparisons of model predic-
tions with available experimental measurements presented in [73] showed quite satisfactory
agreement, both for the mean-flow and for the Reynolds-stresses, with the single exception
of the Reynolds-stresses at the last measurement station, located 2 inlet diameters down-
stream of the end of the C-to-R transition, where computations do not predict the measured
increase of turbulence levels, compared to the previous measurement station located exactly
at the end of the C-to-R transition.

The diffusing S-duct, that was experimentally investigated by Wellborn et al. [80], com-
bines centerline curvature and cross-sectional area increase, both of which induce streamline
curvature, with associated crossflow pressure-gradients which generate significant sec-
ondary flows. This configuration is further complicated by the strong adverse streamwise
pressure-gradient, related to the streamwise-diverging cross-sectional area of the duct,
which induces a large separated-flow zone. The presence of several interacting mechanisms
renders this test-case a difficult challenge, even for the prediction of the mean-flow veloc-
ity and total-pressure fields [47]. Previous RSM computations were reported by Vallet [77],
who found that the predictive quality of the models depended mainly on the ability of the
redistribution closure to correctly predict separation.

The second-moment closure (SMC) that was assessed in the present work is the RSM

developed by Gerolymos et al. [28] (hereafter GLVY RSM), which is the final result of pre-
vious research [29, 35, 66, 77] on the development of wall-normal-free (WNF) RSMs with
quasi-linear closure for the rapid part of �ij . To put the comparisons with measurements
into perspective, results were also presented for the RSM developed by Gerolymos and Vallet
[35] (hereafter GV RSM), the wall-normal-free version of the Launder-Shima [52] RSM with
the Launder-Sharma [51] closure for the modified dissipation-rate [29] (hereafter WNF–
LSS RSM), and with the baseline Launder-Sharma k-ε model [51] (hereafter LS k–ε). All of
the computations were run specifically for the present assessment, carefully adjusting the
boundary-conditions separately for each model, to obtain the best possible match with the
experimental data at the first available measurement plane.

The RSMs used in the present work are briefly reviewed in Section 2, with particular
emphasis on differences between modelling choices, and their implications. In Section 3
computational results using the various models are compared with available experimen-
tal measurements. Conclusions from the present results, and recommendations for future
research, are summarized in Section 4.

2 Turbulence Closures and Flow Solver

All measurements were performed in airflow, and a compressible aerodynamic solver was
used in the computations. The square [39, M̄CL ∼ 0.05] and C-to-R [19, M̄CL ∼ 0.1]
ducts test-cases were at sufficiently low Mach-number for the flow to be essentially incom-
pressible (M̄CL is a typical centerline Mach number), whereas in the S-duct high-subsonic
flow conditions prevail [80, M̄CL ∼ 0.6]. Obviously in all of the previous cases, density
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fluctuations have negligible influence [7], so that Favre (used in Section 2.1) or Reynolds
averages are, for practical purposes, equivalent. The flow is modelled by the Reynolds-
averaged Navier-Stokes (RANS) equations [35, 78], coupled with the appropriate modelled
turbulence-transport equations (Sections 2.1 and 2.2). All computations were performed for
air thermodynamics [78].

2.1 Turbulence closures

Details on the development of the RSMs used in the present work, can be found in the
original papers [28, 29, 35]. They are summarized below for completeness, in a common
representation which highlights differences in the closure choices between different models.
Define

rij := 1

ρ̄
ρu′′

i u
′′
j ; k := 1

2 r�� ; aij := rij

k
− 2

3δij (1a)

A2 := aikaki ; A3 := aikakj aji ; A := 1 − 9
8 (A2 − A3) (1b)

ε∗ := ε − 2ν̆

√
k

∂x�

√
k

∂x�

; �T := k
3
2

ε
; �∗

T := k
3
2

ε∗ ; ReT := k2

ν̆ε
; Re∗

T := k2

ν̆ε∗ (1c)

μ̆ := μSutherland(T̃ ) ; ν̆ := μ̆

ρ̄
; S̆ij := 1

2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
(1d)

where ρ is the density, rij are the 2-moments of velocity-fluctuations, k is the turbulent
kinetic energy, δij is the identity tensor, aij is the deviatoric Reynolds-stress anisotropy-
tensor, with invariantsA2 andA3,A is Lumley’s [55] flatness parameter, ε is the dissipation-
rate of k, ε∗ is the modified dissipation-rate [51], �T (�∗

T) is the turbulent lengthscale andReT
(Re∗

T) is the turbulent Reynolds-number, (defined using either ε or ε∗), μ̆ is the dynamic
viscosity evaluated from Sutherland’s law [78, (6), p. 528] at mean temperature T̃ , ν̆ is the
kinematic viscosity at mean-flow conditions, S̆ij is the deformation-rate tensor of the mean-
velocity field, (̃·) denotes Favre averaging, (·)′′ are Favre fluctuations, and ˘(·) denotes a
function of averaged quantities that cannot be identified with a Reynolds or a Favre average
[34, 38]. Recall that ε and ε∗ are significantly different only very near the wall [34, 35, 51].

All of the 3 RSMs [28, 29, 35] use the same scale-determining equation, solving for the
modified dissipation-rate ε∗ [35, 51]

∂ρ̄ε∗

∂t
+ ∂ (ρ̄ε∗ũ�)

∂x�

= ∂

∂x�

[
Cε

k

ε∗ ρ̄rm�

∂ε∗

∂xm

+ μ̆
∂ε∗

∂x�

]

+Cε1Pk
ε∗

k
− Cε2 ρ̄

ε∗2

k
+ 2μ̆Cμ

k2

ε∗
∂2ũi

∂x�∂x�

∂2ũi

∂xm∂xm

(2a)

Pk := 1
2P�� ; Cε = 0.18 ; Cε1 = 1.44 (2b)

Cε2 = 1.92(1 − 0.3e−Re∗
T
2
) ; Cμ = 0.09e

− 3.4
(1+0.02Re∗T )2 (2c)
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where t is the time, Pij is the Reynolds-stress production-tensor (3) and Pk is the
production-rate of turbulent kinetic energy k. The scale-determining (2) is solved along
with the 6 transport equations for the components of the symmetric tensor rij [28, (1), p.
2849]

∂

∂t

(
ρrij
)+ ∂

∂x�

(
ρrij ũ�

)
︸ ︷︷ ︸

Cij

= −ρri�
∂ũj

∂x�

− ρrj�

∂ũi

∂x�︸ ︷︷ ︸
Pij

+ ∂

∂x�

(
μ̆

∂rij

∂x�

)
︸ ︷︷ ︸

d
(μ)
ij

+ d
(u)
ij + �ij − ρεij + Kij (3)

where convection Cij , production Pij and viscous diffusion d
(μ)
ij are computable terms, and

diffusion by the fluctuating velocity field d
(u)
ij , the velocity/pressure-gradient correlation

�ij , the dissipation-tensor εij and the fluctuating-density terms Kij require closure. For
all of the 3 RSMs [28, 29, 35] the fluctuating-density terms Kij and the pressure-dilatation

correlation φp := p′∂x�
u′

� [28, (1), p. 2849] were neglected

Kij = 0 ; φp = 0 (4)

this being a safe assumption for the subsonic flows that were investigated [19, 39, 80]. The
closure for the remaining terms (d(u)

ij , �ij , εij ) differs between the 3 RSMs [28, 29, 35],
either in the functional dependence of the model coefficients on the local turbulent scales,
or in the tensorial representation that was used (Table 1).

Diffusion by the triple velocity correlation

d
(u)
ij := ∂

∂x�

(
−ρu′′

i u
′′
j u

′′
�

)
(5)

is modelled (Table 1) using either the Daly-Harlow [17] closure in the WNF–LSS RSM [29],
or the Hanjalić-Launder [46] closure in the GV [35] and GLVY [28] RSMs.

The dissipation-rate tensor is modelled as

ρ̄εij = 2

3
ρ̄ε (1 − fε) δij + fε

ε

k
ρ̄rij (6)

The anisotropic part modelled via fε (Table 1) is only present in the GLVY RSM, the GV and
WNF–LSS RSMs following Lumley’s [55] suggestion to include the anisotropy of εij in the
closure for the slow-redistribution terms [27].
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A general tensorial representation of the pressure terms �ij , which describes, by
appropriate choice of the coefficients, all 3 models (Table 1), reads [28, (4–6), pp.
2851–2854]

�ij =

φ
(R)
ij︷ ︸︸ ︷

φ
(RH)
ij + φ

(RI)
ij +

φ
(S)
ij︷ ︸︸ ︷

φ
(SH)
ij + φ

(SI)
ij︸ ︷︷ ︸

φij

+ 2
3φpδij + d

(p)
ij (7a)
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⎞
⎠ ∂

∂x�

⎛
⎝ �T[1 − e− Re∗T

30 ]
1 + 2

√
A2 + 2A16

⎞
⎠

(7e)

where φij denotes the redistribution tensor, d(p)
ij denotes pressure diffusion, the superscripts

S and R denote slow and rapid terms [45], the superscripts H and I denote homogeneous and
inhomogeneous terms [32], and the unit-vector eI was modelled [35] to point in the main
direction of turbulence-inhomogeneity [29]. Notice that, although initially eI was designed
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to mimic the wall-normal direction in wall-echo terms [35], it turns out that inhomogeneous
terms are also active at the shear-layer edge and in regions of recirculating flow [29], away
from or even in absence of solid walls. As a consequence, the closure (7) must be considered
as a whole, and inhomogeneous terms should be kept when computing free shear flows.

Very near the walls, �ij → 0
(7a)=⇒ φij + 2

3φpδij → −d
(p)
ij , so that all authors [28] avoid

the complexity of including terms in the model that would correctly mimic the individual
behaviour of φij and d

(p)
ij as wall-distance n → 0, which would cancel one another in

Eq. 7a, but rather model �ij as a whole in that region [28, Fig. 6, pp. 2855–2856], in line
with the suggestion of Mansour et al. [57]. For this reason, the wall-echo-like [42] tensorial
form of the terms containing eI in Eq. 7 is justified, because it was recently shown [32],
from the analysis of DNS data, that it is in agreement with the near-wall behaviour of �ij

[32, Fig. 13 p. 41], unlike that of φij [32, Fig. 12 p. 39]. The coefficients in Eqs. 5–7 are
generally functions of the local turbulence state (A, A2, ReT, · · · ) and of its gradients, and
depend on the particular RSM (Table 1).

The WNF–LSS [29] is a wall-normal-free extension of the Launder-Shima [52] RSM,
which, in complex flows, performs better than the original wall-topology-dependent model,
mainly because of the action of the inhomogeneous terms away from solid walls. The main
drawback of this model is that, although it quite naturally improves upon 2-equation clo-
sures, it still underestimates separation [26]. The GV [35] RSM was developed to overcome
this limitation, mainly by an optimized C

(RH)
φ coefficient (Table 1) of the isotropisation-

of-production [42, 45, 52] closure of the rapid homogeneous part of redistribution (7d).
The resulting model successfully predicted flows with large separation, but reattachment
and especially relaxation were slightly slower than experimental data [66, 77]. The GLVY

[28] RSM improves this behaviour [28, Fig. 9, p. 2858] through extended modelling of the
inhomogeneous part of the slow redistribution terms φ

(SI)
ij (7a–7e) and of pressure diffusion

d
(p)
ij (7b), while using the same optimized closure for φ

(RH)
ij as the GV [35] RSM. It was

also observed that the inclusion of these modifications influences the apparent transition
behaviour [64] of the models, at low external turbulence conditions.

Comparing the 3 RSMs (Table 1), the WNF–LSS [29] RSM conceptually [45] includes
pressure-diffusion in the Daly-Harlow [17] closure for d

(u)
ij , while the GV [35] RSM neglects

d
(p)
ij ; they both (WNF–LSS and GV) include the dissipation-rate anisotropy εij − 2

3εδij in the

closure for φ
(S)
ij [52, 55]. On the contrary, the GLVY [28] RSM explicitly models both d

(p)
ij

and εij − 2
3εδij .

Computations were also compared with the baseline linear Launder-Sharma [51] k-ε
closure, as implemented in [34].

2.2 Flow solver

Computations were performed using a structured multiblock solver [36], with WENO3
[49] reconstruction of the primitive variables, both mean-flow and turbulent, an HLLCh
approximate Riemann solver [6], and implicit multigrid dual-time-stepping pseudo-time-
marching integration [37]. With the implicit implementation used [37] RSM computations
are roughly ∼ 30 % more expensive compared to k-ε calculations [14]. All of the compu-
tations presented in the paper were run using LGRD = 3 levels of multigrid with a V(2,0)
sawtooth cycle [37] and dual-time-stepping parameters [36] [CFL, CFL∗;Mit, rTRG] =
[100, 10;—, −1] (where CFL is the CFL-number for the pseudo-time-step, CFL∗ is the
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CFL-number for the dual pseudo-time-step, Mit is the number of dual subiterations, and
rTRG < 0 is the target-reduction in orders-of-magnitude of the nonlinear pseudo-time-
evolution system solution). This methodology is implemented in the open source software
aerodynamics [2] with which the present results were obtained.

In all instances, a subsonic reservoir condition was applied at inflow [34, (24), p. 1324],
a subsonic pressure condition [34, (26), p. 1324] was applied at outflow (uniform static
pressure at outflow), and the no-slip walls were considered adiabatic [34, (25), p. 1324]. The
inflow boundary condition was implemented using the method of finite waves [5]. Note that
in this approach, the inflow boundary-layers are prescribed through the initial total pressure
and total temperature profiles [30], but the streamwise mean-flow velocity ũ at inflow is
also influenced by the outgoing pressure-wave [10], and may therefore evolve differently
for different turbulence closures [6, (Fig. 6), p. 209].

3 Assessment

The predictive capability of the 4 turbulence models (Section 2.1) was assessed by sys-
tematic comparison with experimental data for 3 duct-flow configurations [19, 39, 80].
Hereafter, the abbreviations GLVY RSM [28], GV RSM [35], WNF–LSS RSM [29] and LS k–ε
[51], are used consistently to denote each model.

3.1 Developing turbulent flow in a square duct [39]

The experimental data described by Gessner and Emery [39] were obtained [39, 41, 61]
in a duct of square cross-section (Figs. 1, 2). The duct’s height, which at incompressible
flow conditions is also the duct’s hydraulic diameter [81, (3.55), p. 123], is Dh = 2a =
0.254 m, and the length of the straight working section is 87Dh [41, Fig. 2, p. 121]. The flow
[39] is essentially incompressible (centerline Mach number M̄CL � 0.05) at bulk Reynolds
number ReB � 250000 (ReB = ūBDhν

−1, where ūB is the bulk velocity and ν is the
practically constant kinematic viscosity). The flow at the duct’s inlet is nearly uniform,
with very thin boundary-layers, whose virtual origin was estimated experimentally at x �

−0.65Dh [41, p. 122]. These very thin boundary-layers grow until they fill the entire duct
at x � 32Dh [41, p. 123] and interact to reach practically fully developed flow conditions at
the last measurement station located at x = 84Dh, near the exit of the duct’s working section
[41, Fig. 2, p. 121]. Measurements [39, 41, 61], taken at 5 axial planes (Fig. 3), include
mean-flow x-wise velocities (Kiel probes in conjunction with wall static pressure taps), and
secondary mean-flow velocities and Reynolds-stresses (hot-wire). They also include the
detailed x-wise evolution of the centerline velocity (Kiel probe) and limited skin-friction
data (Preston tubes) only at the last measurement station (x = 84Dh) where the flow is
considered fully developed [39, Fig. 2, p. 448].

In the Gessner and Emery [39] square duct, the main mechanisms are the interaction
of stress-induced secondary flows, typical of the square cross-section [40], with boundary-
layer entrainment [50]. The streamwise thickening of the wall-layers induces blockage,
resulting in flow acceleration, which overshoots before stabilizing at the streamwise-
invariant fully developed level (Fig. 2). Sufficient grid resolution is therefore required, both
near the walls and at the centerline, to correctly reproduce the development and interaction
of the boundary-layers, and as a consequence to obtain grid-convergence of the streamwise
evolution of centerline velocity (Fig. 2). Results are presented for an 18 × 106 points grid
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Fig. 1 Computational grid topology (Table 2) for the square duct [39], the C-to-R transition duct [19] and
the S-duct [80] test-cases (in all cases the i = const grid-surfaces are ⊥ x planes)

(Table 2) discretizing one quadrant of the duct, with symmetry-conditions at the y- and z-
wise symmetry-planes. The computational domain Lx ×Ly ×Lz = 98.43Dh× 1

2Dh× 1
2Dh

was slightly longer (0 ≤ x ≤ 25 m � 98Dh > 87Dh) than the actual duct [41] to avoid
interaction between the uniform outflow pressure boundary-condition and computed results
at the last measurement station (x = 84Dh). The grid (Fig. 1) is uniform in the stream-
wise (x) direction, while in the y and z directions, 65 % of the Nj = Nk = 149 points
are stretched geometrically near the walls [31] with ratio rj = rk = 1.067 (Table 2), the
remaining 35 % being uniformly distributed in the centerline region. For the investigated
flow conditions, the first node at the walls is located at 
y+

w = 
z+
w � 1

2 (Table 2).
At inflow (Table 3), standard atmospheric total conditions (ptCLi

= 101325 Pa, TtCLi
=

288 K), with a turbulent intensity TuCLi
= 1 % and turbulent lengthscale �TCLi

= 50 mm,
were assumed at the centerline. The outflow pressure was adjusted to obtain the correct
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Fig. 2 Comparison of measured [39] streamwise evolution of x-wise centerline (y = z = a) velocity ūCL

with computations (18×106 points grid discretizing 1
4 of the square duct; Table 2) using (Section 2.1) the GV

[35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for developing turbulent
flow in a square duct (ReB = 250000, M̄CL � 0.05; Table 3)

ReB = 250000 (po = 0.995ptCLi
) corresponding to an inlet Mach number at centerline

MCLi � 0.0516 (Table 3). The initial inflow boundary-layer was adjusted to a different
value for each turbulence model (0.1 mm ≤ δi ≤ 0.875 mm) to obtain a close fit to the
experimental centerline velocity ūCL in the entry region of the duct (x ∈ [0, 10Dh]; Fig. 2).
Another approach would have been to start the computations with 0 initial inflow boundary-
layer thickness and to adjust in the post-processing phase the virtual origin of the developing
boundary-layers (x-shift the results) to best fit the experimental centerline velocity ūCL in
the entry region.

The computations using the 3 RSMs and the k–ε model (Section 2.1) highlight (Figs. 2–7)
the great sensitivity of the predictions to the turbulence model. It should be stated from the
outset that the underlying Boussinesq hypothesis [82, pp. 273–278] renders the linear LS k–
ε model ill-adapted for the present Reynolds-stress-anisotropy-driven flow [39]; results with
the baseline LS k–ε model are only included as a reference to the limitations of standard
Boussinesq models.

In the initial part of the duct (0 � x � 30Dh; Fig. 2), all of the 4 models (Section 2.1)
correctly predict the thickening of and associated blockage by the developing wall-layers,
which determine, because of massflow conservation, the centerline velocity ūCL. Recall
that the initial conditions for the boundary-layers at inflow (x = 0) were independently
adjusted for each turbulence model (Table 3), precisely to obtain the best fit of ūCL in this
region (0 � x � 30Dh; Fig. 2). The best prediction is obtained by the GLVY and GV

RSMs (whose results are quite similar; Fig. 2), both of which correctly simulate the ūCL-
peak (30Dh � x � 50Dh; Fig. 2) and the final fully developed level at x = 84Dh (Fig. 2).
However, the results of the GLVY and GV RSMs do not tend to this final level monotonically,
as the experimental data in the region 50Dh � x � 80Dh seem to indicate, but exhibit a
∼2.5% undershoot before reaching the correct fully developed level at x = 84Dh (Fig. 2).
In contrast with the GLVY and GV RSMs, the WNF–LSS RSM severely underpredicts the
experimentally observed ūCL-peak (30Dh � x � 60Dh; Fig. 2) and also underpredicts by
∼2.5% the final fully developed value (x = 84Dh; Fig. 2). On the other hand, the WNF–
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Fig. 3 Comparison of measured [39] streamwise (x-wise) velocity ū, along the wall-bisector (z = a) and
along the corner-bisector (z = y), at the 5 experimental measurement stations, with computations (18 × 106

points grid discretizing 1
4 of the square duct; Table 2) using (Section 2.1) the GV [35], the WNF–LSS [29]

and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for developing turbulent flow in a square duct
(ReB = 250000, M̄CL � 0.05; Table 3)

LSS RSM tends to this final value in a less oscillatory fashion (40Dh � x � 80Dh; Fig. 2).
Finally, the LS k–ε model also underestimates the ūCL-peak (30Dh � x � 60Dh; Fig. 2)
and tends monotonically to an ∼1.5 % overestimated value of the final fully developed level
(x = 84Dh; Fig. 2).

The detailed evolution of the streamwise mean-flow velocity ū profiles (Fig. 3) provides
insight into the predictions of centerline velocity ūCL (Fig. 2) by the different models. The
term wall-bisector was used by Gessner and Emery [39] to denote the symmetry-plane at
z = a = 1

2Dh and the term corner-bisector to denote the diagonal with distance yc :=√
2
2 (y − yw) +

√
2
2 (z − zw) from the corner (notice that a−1

c yc = a−1y = a−1z along the
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diagonal whose length between the corner and the centerline is ac := a
√
2). The flowfield

along the corner-bisector yc is strongly influenced by the secondary flows. The GLVY and
GV RMSs yield quite accurate results for the ū profiles (Fig. 3), both along the wall-bisector
y (z = a; Fig. 3) and along the corner-bisector yc (z = y; Fig. 3). Notice, nonetheless,
that no experimental data are available in the region 50Dh � x � 80Dh where the slight
undershoot in centerline velocity ūCL was observed (Fig. 2). The predictions of the WNF–
LSS RSM for the streamwise velocity ū (Fig. 2) are similar to those of the GLVY and GV

RSMs, except for the outer part (wake region) of the boundary-layer, especially at x = 40Dh
along the wall-bisector y (z = a; Fig. 3) and at x ∈ {8Dh, 16Dh, 24Dh, 40Dh} along the
corner-bisector yc (z = y; Fig. 3). Finally, expectedly, the linear LS k–ε model makes the
worst prediction, especially at the last 2 stations x ∈ {40Dh, 84Dh}, where it overpredicts ū

in the lower part of the boundary-layer along the wall-bisector y (z = a; Fig. 3) and rather
severely underpredicts it in the lower part of the boundary-layer along the corner-bisector
yc (z = y; Fig. 3).

By the continuity equation the x-wise development of the streamwise velocity ū is related
to the profiles of the in-plane velocity components, v̄ and w̄. Measurements of the y-wise
component v̄ are only available at the last 2 measurement planes (x ∈ {40Dh, 84Dh};
Fig. 4). Notice first that, along the wall-bisector y (z = a) we have w̄ = 0 by symmetry,
while along the corner-bisector yc (z = y) we have w̄ = v̄ again by symmetry. Contrary
to the results for the profiles of streamwise velocity ū (Fig. 3), the predictions of the y-
wise component v̄ have noticeable differences between the various models (Fig. 4). The
GLVY RSM gives the best prediction of secondary velocities, both along the wall-bisector y

(z = a; Fig. 4) and along the corner-bisector yc (z = y; Fig. 4). Although the agreement of
the GLVY RSM results with measurements is quite satisfactory at x = 40Dh, the secondary
velocities are underestimated at the last measurement station x = 84Dh (Fig. 4). The GV
RSM gives results very close to those of the GLVY RSM along the corner-bisector yc (z = y;
Fig. 4), some discrepancies very near the corner (yc � 0.1ac; Fig. 4) notwithstanding, but
underestimates v̄ along the wall-bisector y (z = a; Fig. 4) at the outer part of the boundary-
layer. The WNF–LSS RSM, does predict secondary flows, less intense than the GLVY and GV

RSMs (Fig. 4), while the linear LS k–ε model completely fails (Fig. 4), implying that the
strong values of v̄ at the last measurement stations (x ∈ {40Dh, 84Dh}; Fig. 4) are the con-
sequence of secondary turbulence-driven flows, in a region where the flow approaches the
fully developed state [8, 39, 40].

The comparison of computational results with measured Reynolds-stresses (Figs. 5–7)
is consistent with the comparisons of the mean-flow velocity field (Figs. 3, 4). The GLVY

and GV RSMs give the best overall prediction of the shear Reynolds-stresses, u′v′ along the
wall-bisector y (z = a; Fig. 5) and u′v′ = u′w′ (by symmetry) along the corner-bisector yc

(z = y; Fig. 5), but overestimate their magnitude, especially along the corner-bisector yc

(z = y; Fig. 5). The experimental data are generally consistent with the symmetry condition
u′v′ = u′w′ along the corner-bisector yc (z = y; Fig. 5), except at x = 40Dh in the outer
part of the boundary-layer (yc � 0.4ac; z = y; Fig. 5). The overprediction of the shear
Reynolds-stress u′v′ = u′w′ along the corner-bisector yc at x = 40Dh (z = y; Fig. 5) is
not consistent with the satisfactory prediction of the mean-flow velocity field at this station
(x = 40Dh; z = y; Figs. 3, 4), especially as the x-wise gradients predicted by the GLVY and
GV RSMs are in good agreement with experimental data at x = 40Dh (Fig. 2). Regarding
the last measurement station at x = 84Dh, the shear Reynolds-stress u′v′ = u′w′ predicted
by the GLVY and GV RSMs along the corner-bisector yc (x = 84Dh; z = y; Fig. 5) is
closer to the experimental data than at x = 40Dh, but computed values are still larger in
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Fig. 4 Comparison of measured [39] wall-normal (y-wise) velocity v̄, along the wall-bisector (z = a) and
along the corner-bisector (z = y, where by symmetry w̄ = v̄), at the 5 experimental measurement stations,
with computations (18×106 points grid discretizing 1

4 of the square duct; Table 2) using (Section 2.1) the GV

[35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for developing turbulent
flow in a square duct (ReB = 250000, M̄CL � 0.05; Table 3)

magnitude by ∼ 30 %. The WNF–LSS RSM and LS k–ε models predictions of the shear
Reynolds-stress u′v′ along the wall-bisector y (z = a; Fig. 5) are generally similar with
those of the GLVY and GV RSMs, in satisfactory agreement with measurements. On the
other hand, the WNF–LSS RSM and the LS k–ε model perform less satisfactorily than the
GLVY and GV RSMs regarding the prediction of the shear Reynolds-stresses u′v′ = u′w′
(by symmetry) along the corner-bisector yc (z = y; Fig. 5), the WNF–LSS RSM, expectedly,
performing better than the linear LS k–ε model. The GLVY and GV RSMs predict quite
accurately the streamwise normal Reynolds-stress u′2 (Fig. 6) both along the wall-bisector
y (z = a) and the corner-bisector yc (z = y), some slight discrepancies along the corner-
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Fig. 5 Comparison of measured [39] Reynolds shear-stresses, u′v′ along the wall-bisector (z = a) and along
the corner-bisector (z = y), and u′w′ along the corner-bisector (z = y, where by symmetry u′w′ = u′v′),
at the 5 experimental measurement stations, with computations (18 × 106 points grid discretizing 1

4 of the
square duct; Table 2) using (Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS

[51] linear k–ε model, for developing turbulent flow in a square duct (ReB = 250000, M̄CL � 0.05; Table 3)

bisector yc (x ∈ {16Dh, 24Dh, 40Dh}; z = y; Fig. 6) notwithstanding. The predictions of
the streamwise normal Reynolds-stress u′2 by the WNF–LSS RSM and the LS k–ε model
are, again, less satisfactory (Fig. 6), especially along the wall-bisector y (z = a; Fig. 6).
Regarding the prediction of the other normal Reynolds-stresses, wall-normal v′2 along the
wall-bisector y (z = a), transverse w′2 along the wall-bisector y (z = a), and secondary
v′2 = w′2 along the corner-bisector yc (z = y), all 3 RSMs (GLVY, GV and WNF–LSS) are in
good agreement with experimental data (Fig. 7), in contrast with the linear LS k–ε model,
which completely fails in predicting the Reynolds-stress tensor anisotropy (Fig. 7), because
of the pathological shortcomings of the Boussinesq hypothesis [82, pp. 273–278].
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Fig. 6 Comparison of measured [39] streamwise diagonal Reynolds-stress u′u′, along the wall-bisector
(z = a) and along the corner-bisector (z = y), at the 5 experimental measurement stations, with computations
(18×106 points grid discretizing 1

4 of the square duct; Table 2) using (Section 2.1) the GV [35], the WNF–LSS
[29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for developing turbulent flow in a square
duct (ReB = 250000, M̄CL � 0.05; Table 3)

To explain the better agreement with experimental data of the GLVY and GV RSMs,
compared to the WNF–LSS RSM (Figs. 2–7), it is interesting to examine the differences
between the closures (Table 1). The differences (Table 1) between the GLVY and GV RSMs
(pressure diffusion d

(p)
ij , explicit algebraic modelling for εij , extra inhomogeneous terms

in �ij ) do not have any substantial influence on the prediction of the [39] square duct
flow, the only noticeable difference being the better prediction by the GLVY RSM of the
wall-normal velocity v̄ along the wall-bisector y (x ∈ {40Dh, 84Dh}; z = a; Fig. 4), espe-
cially in the outer part of the boundary-layer (y � 0.6a). There are 2 main differences
between the WNF–LSS RSM and the GV RSM (Table 1), the coefficient-function C

(RH)
φ of the
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Fig. 7 Comparison of measured [39] normal Reynolds-stresses v′v′ and w′w′, along the wall-bisector
(z = a) and along the corner-bisector (z = y, where by symmetry w′w′ = v′v′), at the 5 experimental mea-
surement stations, with computations (18 × 106 points grid discretizing 1

4 of the square duct; Table 2) using
(Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for
developing turbulent flow in a square duct (ReB = 250000, M̄CL � 0.05; Table 3)
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isotropisation-of-production model for the homogeneous rapid part of redistribution (7d),
and the closure for the triple velocity correlations (5). The coefficient C

(RH)
φ (Table 1) in

the GLVY and GV RSMs was designed [35, Fig. 4, p. 1838] to increase rapidly towards a
value of 1 when Lumley’s [55] flatness parameter A (1b) increases beyond 0.55 (which is
approximately the value of A just before the beginning of the logarithmic zone of the flat-
plate boundary-layer velocity profile). Regarding turbulent diffusion (Table 1), the GLVY

and GV RSMs use the Hanjalić-Launder [46] closure, whereas the WNF–LSS RSM uses
the Daly-Harlow [17] closure (Section 2.1). Obviously (Figs. 2–7), the combined use of
these 2 modelling choices in the GLVY and GV RSMs substantially improves the predic-
tion of the [39] square duct flow compared to the WNF–LSS RSM. To put into perspective
the specific influence of each of the 2 mechanisms, a test-model (not recommended for
practical use), hereafter GV–DH RSM, which combines the C

(RH)
φ coefficient-function of

the GLVY and GV RSMs (Table 1) with the Daly-Harlow [17] closure for turbulent dif-
fusion (with appropriate recalibration of various coefficients to get the correct log-law in
flat-plate boundary-layer flow; [29, Table 2, p. 418]), has been developed [29, 77]. Calcu-
lations of the [39] square duct flow with the GV, GV–DH and WNF–LSS RSMs, using the
same inflow boundary-layer-thickness [29, δyi

= δzi
= 0.5 mm, Fig. 7, p. 422] for all of

the models, indicate that C(RH)
φ influences the initial part of the region where the boundary-

layers on the 4 walls first merge (30Dh � x � 40Dh; Fig. 2) whereas turbulent diffusion
is active especially in the region after the centerline velocity peak (40Dh � x � 60Dh;
Fig. 2).

3.2 Circular-to-rectangular transition duct [19]

This configuration [18, 19] is a transition duct where the cross-section changes (Fig. 1)
from circular at the inlet to quasi-rectangular at the exit (rectangle aspect-ratio of 3 at the
exit section). Such geometries are typical of the transition section necessary to connect an
aircraft engine exit to a rectangular nozzle [62]. The precise geometrical specification of the
duct’s cross-section is superelliptical [18, (A.1), p. 136] so that the exit section has slightly
rounded corners with a ”variable radius fillet” [18, p. 2]. The diameter of the circular inlet
section is DCSG1 = 2RCSG1 = 0.2043 m [18, p. 137], and the length of the transition section
(from inlet station 2 to exit station 5; Fig. 8) is 3

2DCSG1 . Although there is no net cross-
sectional area change, between inflow and outflow, locally [54, Fig. 4, p. 242], the transition
section is divergent [18, p. 2] from inlet to midpoint (cross-sectional area increase of 15%)
and then convergent from midpoint to exit (cross-sectional area decreases back to the inlet
area). The duct is cylindrical upstream (circular cross-section of diameter DCSG1 for several
diameters upstream of station 2) and downstream (quasi-rectangular superelliptical constant
cross-section for several inlet-diameters DCSG1 downstream of station 5) of the transition
section [18, Fig. 3.1, p. 22].

The flow [19] is essentially incompressible (centerline Mach number M̄CL � 0.10)
at bulk Reynolds number ReB � 390000 (ReB = ūBDCSG1ν

−1, where ūB is the bulk
velocity and ν is the practically constant kinematic viscosity). Measurements, taken at 6
axial stations (Fig. 8), include total pressure (circular and flattened Pitot tubes and Kiel
probes), static pressures (static pressure probes and wall pressure taps), mean-velocities and
Reynolds-stresses (hot wires) and skin-friction (Preston tubes resting on the duct walls).
These data [19] are available in digital form [24].

Because of the combined streamwise evolution of both cross-sectional form and area
(Figs. 1, 8), the curvature of the duct’s walls changes sign x-wise [54, Fig. 3, p. 241].
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Fig. 8 Comparison of measured [19] wall-pressure coefficient CpB and skin-friction coefficient cfB , at 4
experimental measurement stations, with computations (10 × 106 points grid discretizing the entire duct;
Table 2) using (Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear
k–ε model, for turbulent flow in a C-to-R transition duct (ReB = 390000, M̄CL � 0.09; Table 3; s is the
curvilinear coordinate of the duct contour in the yz-plane normalized by 1

4 of the circumference s 1
4
)

The upper and lower (z-wise) walls are concave from the inlet (station 2) to approximately
midpoint (located between stations 3 and 4; Fig. 8) and then convex from approximately
midpoint to exit (station 5; Fig. 8). The opposite applies to the sidewalls (y-wise) which are
convex in the first part (from station 2 to approximately midpoint) then switching [54, Fig.
3, p. 241] to concave (from approximately midpoint to exit station 5). This streamwise
evolution of the duct’s geometry directly affects the mean pressure field, inducing strong
pressure gradients, both streamwise (area change) and crossflow (wall curvature), generat-
ing intense (� 10 % ūB; [19, Fig. 7, p. 371]) pressure-driven secondary flows [8, Prandtl’s
first kind] which rapidly form 2 contrarotating (y-wise symmetry) pairs of contrarotating
(z-wise symmetry) vortices [19, Fig. 7, p. 371], one pair near the z = 0 midplane of each
sidewall. Downstream of station 5 (exit of the transition section; Fig. 8) the vortex system
persists, evolving streamwise, and is clearly visible at the last measurement station 6, 2 inlet
diameters (2DCSG1 ) downstream of station 5 (Fig. 8).

The in-depth analysis of the experimental data by Davis [18] has largely contributed
to our understanding of the dynamics of the mean-flow and associated Reynolds-stresses.
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Careful computations of the Davis and Gessner [19] C-to-R transition duct, in quite satisfac-
tory agreement with experimental measurements, have been reported by Sotiropoulos and
Patel [73], using a 7-equation RSM, which is a variant of the Launder-Shima [52] RSM in 2
respects, (a) the use of the Hanjalić-Launder [46] closure for the triple velocity correlations
in lieu of the Daly-Harlow [17] closure adopted for turbulent diffusion in the original model
[52], and (b) the use of the modified coefficient-functions in the ε-equation introduced by
Shima [68] to improve the prediction of skin-friction. Notice that the closure used for turbu-
lent diffusion has a strong influence on the predicted secondary flows [77]. Sotiropoulos and
Patel [75] have further exploited their computational results to analyse the streamwise (x-
wise component of) mean-flow vorticity equation [75, (1), p. 504], and have shown that all
of the vorticity-production mechanisms (vortex stretching and skewing, turbulence-induced
production) are important in different regions of the flow.

The computations were run on a 10 × 106 grid (Table 2) discretizing the entire duct
without symmetry conditions (Fig. 1). Based on the grid-convergence studies of Sotiropou-
los and Patel [73], who used an O(
�2) upwind numerical scheme for the incompressible
RSM–RANS equations, this grid (Table 2) is sufficiently fine. As defined in the experimen-
tal study [18, 19], the origin of the coordinates system, x = 0, is located at mid-distance
between station 1 and station 2, located at the beginning of the transition section (x1 =
−RCSG1 , x2 = +RCSG1 ; Fig. 8). The computational domain (−DCSG1 ≤ x ≤ 5DCSG1 )
starts 3

2 inlet-diameters ( 32DCSG1 ) upstream of the transition section inlet (station 2; Fig. 8)
and extends 3 inlet-diameters (3DCSG1 ) downstream of the transition section exit (station
5; Fig. 8), to avoid interaction between the uniform outflow pressure boundary-condition
and computed results at the last measurement station 6 located 2 inlet-diameters (2DCSG1 )
downstream of the transition section exit (Fig. 8). The grid is uniform in the streamwise (x)
direction and consists of 2 blocks (Fig. 1; Table 2). The inner block (H�; Table 2) is an H-
grid of x-wise varying square cross-section with uniform yz-spacing, introduced to avoid
the axis-singularity of an axisymmetric-type grid. The outer block (O�; Table 2) is stretched
geometrically near the wall with ratio rk (Table 2). For the investigated flow conditions, the
first node at the walls is located at 
n+

w � 2
10 (Table 2), n being the wall-normal direction.

At inflow (Table 3), measured [18, 19, 24] total conditions (ptCLi
= 101325 Pa,

TtCLi
= 298.3 K), with a turbulent intensity TuCLi

= 0.3%, were applied at the centerline.
In the absence of experimental data, a turbulent lengthscale �TCLi

= 50 mm was assumed
at the centerline, with reference to the duct radius (RCSG1 = 0.10215 m) and the measured
boundary-layer thickness δ995 = 30.85 mm at station 1 (Fig. 8; Table 4). Detailed measure-
ments of the boundary-layer profiles of mean-flow and Reynolds-stresses are available [18,
19, 24], and were interpolated onto the computational grid to define the inflow conditions.
These data were extended to the wall, in the region where experimental data were not avail-
able, using semi-analytical profiles [30], and used to define, by assuming local equilibrium
in the boundary-layer and matching to the prescribed centerline �TCLi

[30], the ε profiles.
The outflow pressure was adjusted to obtain the correct ReB = 390000 (po = 100627 Pa)
corresponding to an inlet Mach number at centerline MCLi � 0.0940 (Table 3).

Computational results for the integral axisymmetric [25] boundary-layer thicknesses and
associated shape-factors at the first measurement station 1 (Fig. 8), where the flow is still
practically axisymmetric, are in good agreement (Table 4) with those determined from the
experimental data [19, Table 1, p. 370]. Following Davis and Gessner [19] the approximate
(linearized; δ � RCSG) definitions of the axisymmetric integral boundary-layer thicknesses
[18, (3.5–3.7), p. 20], as expressed by Fujii and Okiishi [25], were applied.

Predicted wall-pressures are quite similar for all 4 turbulence models and are in quite sat-
isfactory agreement with available measurements (Fig. 8). Skin-friction was measured by
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Preston tubes aligned with the x-wise direction and ”presumes that the 2-D form of the law-
of-the-wall is valid and that streamwise pressure-gradients are small” [18, p. 19]. Computed
skin-friction was determined by the wall-normal gradient of streamwise velocity ū, at each
measurement plane. At stations 5 (exit of the transition section) and 6 (2 inlet diameters fur-
ther downstream), the GLVY and GV RSMs predict quite well the evolution of skin-friction
along the peripheral wall-coordinate s (Fig. 8), yielding the correct s-gradient of cfB every-
where. The small differences in absolute level at station 5 (Fig. 8), where the streamwise
pressure-gradient is not negligible, are of the same order as the differences between mea-
surements with Preston tubes of various diameters [19, Fig. 15, p. 374], and can also be
attributed to the error introduced by the log-law assumption in the measurements [74]. On
the other hand, the linear LS k–ε model is unsatisfactory predicting a peculiar inverted s-
curvature of cfB around s � 0.6s 1

4
at both stations (Fig. 8) and a nearly constant level of

cfB on the sidewall (0.9s 1
4
� s � s 1

4
; Fig. 8). The negative s-gradient of cfB on the sidewall

(s = s 1
4
corresponds to the middle of the sidewall at z = 0; Fig. 8) is an important feature

of the flow, as it is directly related [18, pp. 50–51] to the presence of the secondary flow
streamwise vortices [19, Fig. 7, p. 371]. The overall prediction of cfB by the WNF–LSS RSM

is satisfactory, except for the too weak negative s-gradient of cfB for s � 0.9s 1
4
(Fig. 8)

which is indicative of an underestimation of the strength of the streamwise vortices.
All 4 turbulence models predict quite accurately the streamwise mean-flow velocity ū

along the z-traverse on the y-symmetry plane at all measurement stations (Fig. 9). Along
the y-traverse on the z-symmetry plane (Fig. 9), differences between turbulence models
start appearing at station 4, where the linear LS k–ε model does not reproduce the experi-
mentally observed inflection of the velocity profile at y − yw � 0.1RCSG1 (Fig. 9). Further
downstream, at stations 5 and 6, the linear LS k–ε model fails to predict the experimentally
observed double inflection of the velocity profile along the y-traverse (Fig. 9), returning
instead a more filled 2-D-boundary-layer-like profile. Davis [18, pp. 50–51] has identified
this feature of the ū velocity profile as the result of a ”transfer of low-momentum fluid from
the boundary-layer toward the centerline creating a flat spot in the velocity field”, which
”is seen to be much larger at station 6 than at station 5” (contour plots of ū; Fig. 9). This
transfer, along the sidewall, is directly related to the presence of the secondary flow vortex-
pair near the z = 0 symmetry plane [19, Fig. 7, p. 371]. The 3 RSMs successfully predict the
double inflection of the ū profile along the y-traverses at planes 5 and 6 (Fig. 9). The GLVY

and GV RSMs agree quite well with measurements along the y-traverses at planes 5 and
6, indeed everywhere (Fig. 9). Although the WNF–LSS RSM predicts the double inflection
shape of the ū profile along the y-traverses at stations 5 and 6, it overpredicts ū, implying a
slight underprediction of secondary flows.

Examination (Fig. 10) of the streamwise velocity profiles in wall-units (ū+ := u−1
τ ū vs

n+ := uτ n ν−1, where n is the wall-normal distance and uτ := √ρ−1 τ̄w is the friction-
velocity defined by the mean wall streamwise shear-stress τ̄w := τ̄xn) highlights the
nonequilibrium conditions which prevail in the boundary-layers at the exit of the duct’s tran-
sition section (station 5; Fig. 10) but also further downstream (station 6; Fig. 10). In addition
to the outer flow data (Fig. 9) near-wall data were reported by Davis and Gessner [19, Fig.
16, p. 374] including both Pitot probe and hot wire measurements. These data, which are not
available in digital or tabulated form, were digitized from [18, Fig. 5.47, p. 118]. This does
introduce some uncertainty, especially in estimating the derivative dn+ ū+ which is required
for the computation of the log-law diagnostic function (n+ dn+ ū+)−1 [60]. Nonetheless,
different sets of data (near-wall Pitot and hot wire, outer flow tabulated data, RSM compu-
tational results) yield similar conclusions (Fig. 10) concerning the validity of the log-law
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Fig. 9 Comparison of measured [19] streamwise (x-wise) velocity ū, along the y-wise (z = 0 symmetry
plane) and the z-wise (y = 0 symmetry plane) directions, at 5 experimental measurement stations, with
computations (10× 106 points grid discretizing the entire duct; Table 2) using (Section 2.1) the GV [35], the
WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for turbulent flow in a C-to-R
transition duct (ReB = 390000, M̄CL � 0.09; Table 3; contour plots GLVY RSM)

in the overlap region [60]. Along the major axis (y-wise; z = 0 symmetry plane; Fig. 10),
where the influence of the secondary-flow vortices [19, Fig. 7, p. 371] is strongest [18, pp.
50–51], differences in the level of ū+(y+) are observed (Fig. 10) because of a ∼ 10 % dif-
ference between measured and predicted values of the skin-friction coefficient cfB at this
location (s = s 1

4
; Fig. 8). This discrepancy in level does not affect the derivative dy+ ū+ and

hence the log-law diagnostic function (y+ dy+ ū+)−1 which in presence of a log-law region
should be approximately equal to the observed von Kàrmàn constant [60]. At the exit of the
duct’s transition section (station 5; Fig. 10) along the major axis (y-wise; z = 0 symmetry
plane; Fig. 10), both measurements and computations clearly indicate that a log-law region
is completely absent. Further downstream, (station 6 on the major axis; Fig. 10) both exper-
imental data and RSM computations agree that there is no clearly defined log-law region
where (y+ dy+ ū+)−1 is reasonably constant, implying that the flow has not yet recovered
to equilibrium conditions at station 6, 2 inlet diameters (2DCSG1 ) downstream of station 5
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Fig. 10 Comparison of measured [19] streamwise (x-wise) velocity-profiles in wall-units and log-law diag-
nostic functions [60], ū+(y+) and (y+ dy+ ū+)−1 along the major axis (z = 0 symmetry plane), ū+(z+) and
(z+ dz+ ū+)−1 along the minor axis (y = 0 symmetry plane), at the last 2 experimental measurement sta-
tions, with computations (10 × 106 points grid discretizing the entire duct; Table 2) using (Section 2.1) the
GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for turbulent flow in
a C-to-R transition duct (ReB = 390000, M̄CL � 0.09; Table 3)
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(exit of the transition section; Fig. 10). Notice also how much more severe (but also more
precise) a test the log-law diagnostic function is, compared to the visual observation of the
semi-logarithmic plots of ū+(y+) (Fig. 10). Along the minor axis at the exit of the duct’s
transition section (station 5; z-wise; y = 0 symmetry plane; Fig. 10) again both experimen-
tal data and computations agree that there is no clearly defined log-law region, although
departure from equilibrium is less pronounced than along the major axis (station 5; y-wise;
z = 0 symmetry plane; Fig. 10). Even at the downstream station 6 along the minor axis (sta-
tion 6; z-wise; y = 0 symmetry plane; Fig. 10) where the semi-logarithmic plot of ū+(z+)

seems to indicate the presence of a log-law region, the diagnostic function (z+ dz+ ū+)−1

reveals that this zone, if at all present, is still very limited. These observations (Fig. 10)
imply that the flow remains at nonequilibrium conditions at station 6 (2DCSG1 downstream
of the exit of the duct’s transition section) where the observed secondary vortices [19, Fig.
7, p. 371] still influence the flow.

Differences between turbulence closures in predicting the wall-normal velocity v̄ along
the y-traverses at the z = 0 symmetry plane (where w̄ = 0 by symmetry) appear already at
station 3 (Fig. 11). The GLVY and GV RSMs predict v̄ quite accurately at stations 3 and 4,
where the linear LS k–ε model and to a lesser extent the WNF–LSS RSM, slightly overesti-
mate it near the sidewall (y − yw � 0.4RCSG1 ; Fig. 11). At station 5, the 3 RSMs perform
quite well in the outer part of the boundary-layer (y − yw � 0.2RCSG1 ; Fig. 11) but under-
estimate the magnitude of v̄ near the sidewall (y − yw � 0.2RCSG1 ; Fig. 11) by ∼50 %
at the peak. They are nonetheless in much better agreement with experimental data than
the linear LS k–ε model which predicts levels that are 5-fold lower (y � 0.4RCSG1 ; sta-
tion 5; Fig. 11). At station 6, 2 inlet diameters further downstream, the v̄ velocity along the
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Fig. 11 Comparison of measured [19] wall-normal velocity v̄, along the y-wise (z = 0 symmetry plane)
direction, at 4 experimental measurement stations, with computations (10 × 106 points grid discretizing the
entire duct; Table 2) using (Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS

[51] linear k–ε model, for turbulent flow in a C-to-R transition duct (ReB = 390000, M̄CL � 0.09; Table 3;
contour plots GLVY RSM)
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y-traverse is severely underestimated in magnitude by the 3 RSMs (Fig. 11) which under-
predict the strength of the secondary flows at this station. Nonetheless, the 3 RSMs largely
outperform the linear LS k–ε, which completely fails, returning negligibly small levels of v̄

at station 6 (Fig. 11). The pair of contrarotating vortices observed at stations 5 and 6 near
the intersection between the z-symmetry plane and the sidewall [19, Fig. 7, p. 371] induces
velocities away from the sidewall (v̄ < 0 on the near-sidewall along the y-traverse; Fig. 11),
whose measured peak value remains approximately constant (∼−0.1) between stations 5
and 6 (Fig. 11). The failure of the RSM computations to correctly predict the relaxation of
the flow in the straight constant cross-section duct between stations 5 and 6, possibly reveals
an inadequacy of the models. Nonetheless, grid-resolution on the cross-section at these sta-
tions is rather poor (Fig. 1), containing only a few cells across the vortices [19, Fig. 7, p.
371]. For this reason, computations using locally finer meshes with an unstructured solver
are required to determine computational grid-convergence of the flow in the contrarotating
vortex pair region, and this will be the subject of future work. The wall-normal velocity w̄

along the z-traverses at the y = 0 symmetry plane (where v̄ = 0 by symmetry) is very well
predicted at all stations by all 4 turbulence closures (Fig. 12).

All 3 RSMs predict quite accurately the streamwise Reynolds-stress u′u′ along the z-
traverse on the y = 0 symmetry plane at station 5 (Fig. 13), and also, despite a slight
underestimation, at station 6 (Fig. 13) further downstream. Along the y-traverse on the z = 0
symmetry plane, except for station 1 (Fig. 13) near the computational inflow where the mea-
sured Reynolds-stresses were interpolated onto the grid and applied as boundary conditions,
the 3 RSMs predict correctly the profile shape but underestimate by ∼50 % the outer peak
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Fig. 12 Comparison of measured [19] wall-normal velocity w̄, along the z-wise (y = 0 symmetry plane)
direction, at 4 experimental measurement stations, with computations (10 × 106 points grid discretizing the
entire duct; Table 2) using (Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS

[51] linear k–ε model, for turbulent flow in a C-to-R transition duct (ReB = 390000, M̄CL � 0.09; Table 3;
contour plots GLVY RSM)
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Fig. 13 Comparison of measured [19] streamwise (x-wise) velocity-variance u′u′, along the y-wise (z = 0
symmetry plane) and the z-wise (y = 0 symmetry plane) directions, at 3 experimental measurement stations,
with computations (10×106 points grid discretizing the entire duct; Table 2) using (Section 2.1) the GV [35],
the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for turbulent flow in a C-to-R
transition duct (ReB = 390000, M̄CL � 0.09; Table 3; contour plots GLVY RSM)

value at stations 5 and 6 (Fig. 13). All 3 RSMs predict quite accurately the in-plane diagonal
Reynolds-stresses v′v′ (Fig. 14) and w′w′ (Fig. 15), with the exception of v′v′ at station 6
along the y-traverse on the z-symmetry plane (Fig. 15) where the outer peak value is under-
estimated by ∼50 %. The predictions of the diagonal Reynolds-stresses (u′u′, v′v′, w′w′)
by the GLVY and GV RSMs are in very close agreement (Figs. 13–15), and also with those
predicted by WNF–LSS RSM (Figs. 13–15) except at station 6 along the y-traverse on the z-
symmetry plane where the GLVY and GV RSMs are in closer agreement with measurements.
Expectedly, the linear k–ε model completely fails in predicting the Reynolds-stress tensor
anisotropy, yielding unsatisfactory results for the diagonal Reynolds-stresses (Figs. 13–15),
because of the pathological shortcomings of the Boussinesq hypothesis [82, pp. 273–278].
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Fig. 14 Comparison of measured [19] y-wise velocity-variance v′v′, wall-normal along the y-wise (z = 0
symmetry plane) direction and transverse along the z-wise (y = 0 symmetry plane) direction, at 3 experimen-
tal measurement stations, with computations (10×106 points grid discretizing the entire duct; Table 2) using
(Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for
turbulent flow in a C-to-R transition duct (ReB = 390000, M̄CL � 0.09; Table 3; contour plots GLVY RSM)

The prediction of the shear Reynolds-stress w′u′ along the z-traverse on the y-symmetry
plane (where u′v′ = 0 by symmetry) at stations 5 and 6 by the 3 RSMs is quite satisfactory
(Fig. 16). On the contrary, the LS [51] linear k–ε model does not reproduce as well the
shape of the w′u′ profile at station 5 (Fig. 16), a deficiency which does not appear to have a
substantial influence on the prediction of the streamwise mean-velocity profile ū (z-traverse,
station 5, Fig. 9). The prediction of the shear Reynolds-stress u′v′ (Fig. 16) along the y-
traverse on the z-symmetry plane (where u′w′ = 0 by symmetry) should be analyzed in
relation to the prediction of the streamwise mean-velocity ū (Fig. 9). At station 6, along
the y-traverse on the z-symmetry plane, all turbulence models underestimate by ∼50 % the
outer peak of u′v′ at y − yw � 0.45RCSG1 (Fig. 16). The grid-resolution issues mentioned
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Fig. 15 Comparison of measured [19] z-wise velocity-variance w′w′, transverse along the y-wise (z =
0 symmetry plane) direction and wall-normal along the z-wise (y = 0 symmetry plane) direction, at 3
experimental measurement stations, with computations (10 × 106 points grid discretizing the entire duct;
Table 2) using (Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear
k–ε model, for turbulent flow in a C-to-R transition duct (ReB = 390000, M̄CL � 0.09; Table 3; contour
plots GLVY RSM)

above not withstanding, notice that the GLVY and GV RSMs predict reasonably well u′v′
at station 6 for 0 � y − yw � 0.3RCSG1 (Fig. 16), and this is obviously related to the
satisfactory prediction of ū by these models (y-traverse, station 6; Fig. 9). On the contrary,
the linear LS k–ε model which strongly overpredicts u′v′ in this range (y-traverse, 0 �
y − yw � 0.3RCSG1 , station 5; Fig. 16) fails to correctly predict the streamwise mean-
velocity ū at this location (Fig. 9). Notice that the WNF–LSS RSM which performs much
better than the LS k–ε model in predicting the shear Reynolds-stress u′v′ (y-traverse, 0 �
y−yw � 0.3RCSG1 , station 6; Fig. 16) also predicts the correct double inflection shape of the
ū-profile (y-traverse, station 6; Fig. 9), albeit less accurately than the GLVY and GV RSMs.
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Fig. 16 Comparison of measured [19] shear Reynolds-stress, u′v′ along the y-wise (z = 0 symmetry plane)
and u′w′ the z-wise (y = 0 symmetry plane) directions, at 3 experimental measurement stations, with com-
putations (10 × 106 points grid discretizing the entire duct; Table 2) using (Section 2.1) the GV [35], the
WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for turbulent flow in a C-to-R
transition duct (ReB = 390000, M̄CL � 0.09; Table 3; contour plots GLVY RSM)

Despite the grid-convergence issues raised above (which can only be resolved by addi-
tional calculations on much finer grids), the systematic comparison of the computations
of the Davis and Gessner [19] C-to-R duct configuration with the experimental data
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(Figs. 8–16) yields useful conclusions. The linear LS k–ε model, handicapped by Boussi-
nesq’s hypothesis [82, pp. 273–279] fails to predict with sufficient accuracy the regions of
the flowfield that are dominated by secondary flows (Figs. 8–16). The 3 RSMs performmuch
better, capturing several complex features of the flow (Figs. 8–16), although they are not
sufficiently accurate on the 10 × 106 points grid used (Table 2) in predicting all the details
of the flow near the intersection of the sidewall with the z = 0 symmetry plane (Figs. 8–
16). As for the Gessner and Emery [39] square duct case (Section 3.1), the GLVY and GV

RSMs (which yield very similar results) perform sometimes better than the WNF–LSS RSM,
especially near the sidewall in the region of strong secondary flows.

3.3 Diffusing 3-D S-Duct [80]

The previously studied square duct (Section 3.1) and C-to-R transition duct (Section 3.2)
test-cases have a straight centerline (x-axis of the coordinates system). Furthermore, the
diverging part of the C-to-R transition duct (from station 2 to midpoint of the transition
section; Fig. 8) was sufficiently long to avoid separation. The S-duct test-case [79, 80]
includes these 2 features, viz it has a serpentine centerline (S-duct) combined with substan-
tial (52%) area increase, from inflow to outflow [80], inducing a large region of separated
flow near the duct floor, immediately after the beginning of the S-bend (Fig. 17). The ser-
pentine centerline of the S-duct lies on the xz-plane (no off-plane skewing; Fig. 18) and
consists of 2 circular arcs of opposite curvature smoothly joined at a common tangency
point [80, Fig. 2, p. 670]. Planes ⊥ to the centerline define stations of circular cross-section,

Fig. 17 Level plots of Mach number M̆ and of turbulent kinetic energy k on the y = 0 symmetry plane of the
Wellborn et al. [80] diffusing S-duct (ReCLA = 2.6×106, M̄CLA � 0.6; Table 3) obtained from computations
(2× 106 points grid discretizing the entire duct; Table 2) using (Section 2.1) the GV [35], the WNF–LSS [29]
and the GLVY [28] RSMs, and the LS [51] linear k–ε model
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Fig. 18 Comparison of measured [80] wall-pressure coefficient Cp (based on centerline quantities at plane
A), plotted against the curvilinear coordinate sCL along the duct centerline (planes ⊥ to the centerline define
stations of circular cross-section), at 3 azimuthal locations, with computations (2×106 points grid discretizing
the entire duct; Table 2) using (Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the
LS [51] linear k–ε model, for turbulent flow in a diffusing S-duct (ReCLA = 2.6 × 106, M̄CLA � 0.6; Table
3; contour plots GLVY RSM)

with varying radius, whose dependence on the angular coordinate (equivalently the curvi-
linear length) along the centerline [80, (2), p. 670] defines the geometry of the duct. The
origin of the curvilinear coordinates along the centerline sCL is at the beginning of the S-
bend, which also corresponds to x = 0. The inlet-diameter isDCSGA = 2RCSGA = 0.2042 m
(this is also the diameter at the first measurement plane A, located at x = − 1

2DCSGA , 1
inlet-radius upstream of the beginning of the S-bend; Fig. 18) while the exit diameter is
DCSGE = 0.2514 m (this is also the diameter at the last measurement plane E, located
at x � 5.61DCSGA , 0.61 inlet-diameters downstream of the exit of the S-bend located at
x = 5DCSGA ; Fig. 18).
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The flow [80] is subsonic (centerline Mach number at measurement plane A M̄CLA �

0.60) and the centerline Reynolds number isReCLA � 2.6×106 (ReCLA = ūCLADCSGA ν̄−1
CLA

,
where ūCLA is the centerline velocity and ν̄CLA is the kinematic viscosity at centerline).
Available field measurements, taken at 5 axial planes ⊥ to the centerline (circular cross-
section; Fig. 18), using calibrated 3-hole and 5-hole pneumatic probes [79, 80], provide
pressures (total and static) and the mean-flow velocity vectors. Wall-pressure measurements
are also available [79, 80], both around the circumference of 4 of the measurement planes
(Fig. 19), and streamwise, at 3 angular locations (Fig. 18).

The computations were run on a 2×106 grid (Table 2) discretizing the entire duct without
symmetry conditions (Fig. 1). Based on previous grid-convergence studies [26], on a similar
2S-duct configuration (for the twice longer 2S-duct [26] computations with the GV RSM

on meshes of 2.3 × 106 and 6.2 × 106 yielded quite similar results), this grid (Table 2) is
sufficient to obtain accurate results for comparison between the different models (Section 2.1).
The computational domain (−0.98DCSGA � x � 9.8DCSGA ) starts approximately
1 inlet-diameter (DCSGA ) upstream of the start of the S-bend and extends approximately
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Fig. 19 Comparison of measured [80] wall-pressure coefficient Cp (based on centerline quantities at plane
A), at 4 experimental measurement stations (planes ⊥ to the centerline whose intersection with the duct
defines circular cross-sections), plotted against the azimuthal location along the circumference, with com-
putations (2 × 106 points grid discretizing the entire duct; Table 2) using (Section 2.1) the GV [35], the
WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model, for turbulent flow in a diffusing
S-duct (ReCLA = 2.6×106, M̄CLA � 0.6; Table 3; sCL is the curvilinear coordinate along the duct centerline;
contour plots GLVY RSM)
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5 inlet-diameters (5DCSGA ) downstream of the S-bend exit, thus avoiding any interaction
between the uniform outflow pressure boundary-condition and computed results at the last
measurement station E (Fig. 8). The grid is uniform in the streamwise (x) direction (the
i = const grid-surfaces are ⊥ x planes) and consists of 2 blocks (Fig. 1; Table 2). The inner
block (H�; Table 2) is an H-grid of x-wise varying square cross-section with uniform yz-
spacing, introduced to avoid the axis-singularity of an axisymmetric-type grid. The outer
block (O�; Table 2) is stretched geometrically near the wall with ratio rk (Table 2). For the
investigated flow conditions, the first node at the walls is located at 
n+

w � 4
10 (Table 2), n

being the wall-normal direction.
At inflow (Table 3) total conditions (ptCLi

= 111330 Pa, TtCLi
= 296.4 K) were

assumed at the centerline, corresponding to the Mach (MCLi = 0.60) and Reynolds
(ReCLi = 2.6 × 106) number values reported in the measurements [79, 80]. A turbulent
intensity TuCLi

= 0.63% was applied at the centerline; Wellborn et al. [79, p. 29] report this
value from measurements of Reichert [62] on the same facility. In the absence of experi-
mental data, a turbulent lengthscale �TCLi

= 50 mm was assumed at the centerline, with
reference to the duct radius (RCSGA = 0.1021 m). The initial inflow boundary-layer thick-
ness and Coles-parameter [30] were adjusted, independently for each model (Table 3), to
match the experimental boundary-layer data at the first measurement plane A. Finally the
outflow pressure was also adjusted, independently for each model (Table 3), to obtain the
correct M̆CLA � 0.60 (Table 4).

Computational results for the integral axisymmetric [25] boundary-layer thicknesses and
associated shape-factors at the first measurement plane A (Fig. 8), where the flow is still
practically axisymmetric, are in good agreement (Table 4) with those determined from the
experimental data [80, Table 2, p. 671]. Following Wellborn et al. [79] the approximate
(linearized; δ � RCSG) definitions of the axisymmetric integral boundary-layer thicknesses
[79, (V.1–V.2), p.29], as expressed by Fujii and Okiishi [25], were applied. The definitions
given by Wellborn et al. [79, (V.1–V.2), p.29] concern compressible integral thicknesses,
but the actual shape-factor values (∼1.38) imply that the thicknesses provided in the exper-
imental database [79, 80] are kinematic (the corresponding compressible value would be
∼ 1.65), as defined in the associated study (from which the inlet turbulent intensity was
determined), on the same experimental facility, by Reichert [62, (V.7–V.8), p. 67]. This is
implied by the statement that ”comparisons indicate little deviation from a conventional
turbulent boundary-layer” [79, p. 29].

All 4 turbulence closures predict separation near the duct floor (Fig. 17) in agreement
with experiment [80], but differ in the location of separation and reattachment, in the extent
(x-wise) and thickness (z-wise) of the separated flow region, and in the predicted struc-
ture of the recirculating flow (Fig. 17). The GLVY and GV RSMs yield very similar results
(Fig. 17), and are in quite satisfactory agreement with available measurements (Figs. 18–
24). The WNF–LSS RSM predicts separation further downstream (with respect to the GLVY

and GV RSMs; Fig. 17) and the linear LS k–ε model, which is known to underestimate flow
detachment [35], separates a little further downstream still. Even more important, there are
noticeable differences in the separated flow structure (Fig. 17) between the GLVY and GV

RSMs on the one hand, and the WNF–LSS RSM and the linear LS k–ε model on the other.
The GLVY and GV RSMs predict a much thicker (z-wise) low-speed region with a stronger
recirculation zone near the wall just downstream of separation (Fig. 17). This flow structure
contains strong mean-velocity gradients producing high levels of turbulent kinetic energy
k, which presents 2 local maxima, one in the post-separation wake-region (dark blue levels,
GLVY and GV RSMs; Fig. 17) and another near the wall in the pre-reattachment region (light
green levels of k, GLVY and GV RSMs; Fig. 17). On the other hand, the WNF–LSS RSM and
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Fig. 20 Comparison, at 3 measurement planes (planes ⊥ to the centerline define stations of circular cross-
section), of experimental [80] contours of pressure coefficient Cp (based on centerline quantities at plane
A; contour step 0.025), with computations (2 × 106 points grid discretizing the entire duct; Table 2) using
(Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model
(ReCLA = 2.6 × 106, M̄CLA � 0.6; Table 3)
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Fig. 21 Comparison, at 4 measurement planes (planes ⊥ to the centerline define stations of circular
cross-section), of experimental [80] contours of normal-to-the-plane (streamwise) velocity V̆⊥ (made nondi-
mensional by the centerline velocity at plane A, V̆CLA ; contour step 0.05), with computations (2× 106 points
grid discretizing the entire duct; Table 2) using (Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY

[28] RSMs, and the LS [51] linear k–ε model (ReCLA = 2.6 × 106, M̄CLA � 0.6; Table 3)
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Fig. 22 Comparison, at 4 measurement planes (planes ⊥ to the centerline define stations of circular cross-
section), of experimental [80] contours of total pressure coefficient Cpt (based on centerline quantities at
plane A; contour step 0.05), with computations (2 × 106 points grid discretizing the entire duct; Table 2)
using (Section 2.1) the GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε
model (ReCLA = 2.6 × 106, M̄CLA � 0.6; Table 3)
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Fig. 23 Comparison, at 2 measurement planes (planes ⊥ to the centerline define stations of circular
cross-section), of experimental [80] vectors (unknown scale) of in-plane (secondary) velocity V̄‖ (made
nondimensional by the centerline velocity at plane A, V̆CLA ), with computations (2 × 106 points grid dis-
cretizing the entire duct; Table 2) using (Section 2.1) the GLVY [28] RSM (ReCLA = 2.6× 106, M̄CLA � 0.6;
Table 3)

the linear LS k–ε model predict a thinner (z-wise) low-speed region, with weak recirculation
near the wall, and lower levels of k (Fig. 17).

The GLVY and GV RSMs’ predictions compare quite well with experimental wall-
pressure data (Figs. 18, 19), correctly predicting the pressure-plateau on the duct floor
(φEXP = 170 deg; Fig. 18) and the significant z-wise extent of the low-speed region indi-
cated by the presence of the pressure-plateau at duct midplane (φEXP = 90 deg; Fig. 18).
This large separated flow region induces substantial flow blockage [16, pp. 310–311], accel-
erating the flow in the duct’s ceiling area (φEXP = 10 deg; Fig. 18). The satisfactory
agreement of the GLVY and GV RSMs’ predictions with measurements near the duct ceil-
ing (φEXP = 10 deg; Fig. 18) indicates that the GLVY and GV RSMs yield a satisfactory
prediction of the blockage induced by the large separation on the duct floor (Fig. 17). Near
the beginning of the S-bend, at planes A (one inlet radius RCSG1 upstream) and B (approx-
imately one inlet diameter DCSG1 downstream), all 4 turbulence models are in excellent
agreement with measurements (Fig. 19), correctly predicting in plane B the circumferen-
tial pressure-gradient that drives the boundary-layer fluid along the duct’s circumference
(Fig. 23) from ceiling (higher pressure due to the streamwise-concave wall; Fig. 19) to floor
(lower pressure due to the streamwise-convex wall; Fig. 19). At plane C, in the separated
flow region (Figs. 17, 18), the GLVY and GV RSMs are again in excellent agreement with
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Fig. 24 Comparison, at 2 measurement planes (planes ⊥ to the centerline define stations of circular
cross-section), of experimental [80] vectors (unknown scale) of in-plane (secondary) velocity V̄‖ (made
nondimensional by the centerline velocity at plane A, V̆CLA ), with computations (2 × 106 points grid dis-
cretizing the entire duct; Table 2) using (Section 2.1) the GLVY [28] RSM (ReCLA = 2.6× 106, M̄CLA � 0.6;
Table 3)

measurements, correctly predicting the circumferential evolution of Cp (Fig. 19) both in
level and shape. The WNF–LSS RSM predicts the correct shape of the circumferential evo-
lution of Cp at plane C, but largely overestimates its value by ∼50 %, whereas the linear
LS k–ε model which overestimates Cp even more fails to predict the inversion the circum-
ferential pressure-gradient (Fig. 19) from channel mid-height (φEXP � 110 deg) to floor
(φEXP � 180 deg). At plane D, where the flow reattaches in the experiment (Fig. 18),
the GLVY and GV RSMs again provide the best prediction, compared to the WNF–LSS RSM

and the linear LS k–ε model, but they slightly overestimate Cp , especially near the floor
(130 deg � φEXP � 180 deg; Fig. 19).

Field pneumatic-probe measurements of Cp (Fig. 20) at plane B indicate a slight static-
pressure distortion which is not predicted by the computations (Fig. 20) and is not observed
in the wall-pressure measurements (Fig. 19). At plane C, the GLVY and GV RSMs are in rea-
sonable agreement with measurements, correctly predicting the flow acceleration near the
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ceiling (Fig. 20) induced by the floor-separation blockage (Figs. 17, 18). The WNF–LSS RSM

which predicts separation downstream of experiment (Figs. 17, 18) severely overestimates
Cp at plane C (Fig. 20), the linear LS k–ε model performing worse. At the near-reattachment
plane D, the GLVY and GV RSMs are in good agreement with measurements, substantially
outperforming the WNF–LSS RSM and the LS k–ε closure (Fig. 20).

The velocity field, at each measurement plane, can be decomposed into a plane-normal
component V⊥PLN and an in-plane (parallel) component V‖PLN, V = V⊥PLN + V‖PLN,
where PLN ∈ {A, B, C, D, E}. The plane-normal mean-velocities V̆⊥ (Fig. 21) indicate the
regions of separated and low-speed flow, which also correspond to the high-loss regions
(low Cpt ; Fig. 22). The GLVY and GV RSMs are in overall satisfactory agreement with
measurements (Figs. 21, 22) correctly predicting the backflow region at plane C and the flow
blockage at the reattachment plane D and at the exit plane E (Fig. 21). As a consequence,
the GLVY and GV RSMs also predict correctly the high level of loss in the backflow region
(low Cpt ; plane C; Fig. 22) and the subsequent streamwise evolution of the high-loss region
(planes D and E; Fig. 22). On the contrary, the linear LS k–ε model, and to a lesser extent
the WNF–LSS RSM, underpredict both backflow (Fig. 21) and losses (Fig. 22), predicting a
less thick low-speed high-loss region everywhere (Figs. 21, 22).

The GLVY RSM (whose results are very close to those obtained with the GV RSM;
Figs. 17–22), predicts quite satisfactorily the structure of secondary (in-plane V‖) flows
(Figs. 23, 24). At plane B (Fig. 23), the circumferential pressure-gradient (Fig. 19) drives the
boundary-layer flow from ceiling to floor along the duct walls (Fig. 23). At the separated-
flow plane C (Fig. 23) this downward flow interacts with the large separation at the duct’s
floor (Fig. 17) forming 2 contrarotating vortices (Fig. 23), which lift off the floor as they
are convected downstream (planes D and E; Fig. 24).

The differences in predictive accuracy between the 4 turbulence models (Figs. 17–
22) is directly related to differences in the secondary-flow structure (Fig. 25). At plane
B, where the flow is still attached (Fig. 21), all 4 turbulence closures yield quite similar
results (Fig. 25). At the separated-flow plane C, GLVY and GV RSMs predict a thick low-V̆‖
region (Fig. 25), with distinct tails roughly marking the centers of 2 contrarotating vortices
(Fig. 23), in good agreement with measurements. The WNF–LSS RSM predicts too thin a
low-speed region (Fig. 25) and the 2 tails are less sharp, these 2 defaults being even more
pronounced for the linear LS k–ε model. The differences between the GLVY and GV RSMs
on the one hand and the WNF–LSS RSM and the linear LS k–ε closure on the other, are much
more pronounced at the reattachment plane D (Fig. 25), where the 2 vortices have lifted
off the floor in the GLVY and GV RSMs predictions (Fig. 25), in quite satisfactory agree-
ment with measurements (Fig. 24), whereas they are more diffuse and closer to the wall in
the WNF–LSS RSM predictions, which also underestimate the 2 symmetric high-V̆‖ regions
near the duct floor (plane D; Figs. 24, 25). These high-V̆‖ regions are simply absent in the
linear LS k–ε model predictions (Fig. 25). At the exit plane E, the GLVY and GV RSMs
predict sharp regions of low speed (Fig. 25) which correspond to the centers of the vor-
tices (Fig. 24), with regions of high-V̆‖ near the ducts floor (Figs. 24, 25) and in the region
between the 2 contrarotating vortices (Fig. 25), in good agreement with measurements. The
vortices predicted by the WNF–LSS RSM and the linear k–ε model are closer to the duct
floor and their centers are less sharp (Fig. 25).

For the Wellborn et al. [80] test-case as for the previous ones (Sections 3.1 and 3.2),
the GLVY and GV RSMs yield very similar results, and are in quite satisfactory agreement
with measurements, showing that properly calibrated RSM–RANS closures can predict flows
with large separation and wall-curvature effects. The GLVY and GV RSMs considerably
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Fig. 25 Level plots of the module of in-plane (secondary) velocity V̄‖ (made nondimensional by the center-
line velocity at plane A, V̆CLA ), at 4 measurement planes (planes ⊥ to the centerline define stations of circular
cross-section), computed (2 × 106 points grid discretizing the entire duct; Table 2) using (Section 2.1) the
GV [35], the WNF–LSS [29] and the GLVY [28] RSMs, and the LS [51] linear k–ε model (ReCLA = 2.6× 106,
M̄CLA � 0.6; Table 3)

outperform the WNF–LSS RSM, and this is again attributed to the C
(RH)
φ coefficient-function

used (Table 1), because predictions of the Wellborn et al. [80] test-case using the GV and
GV–DH (cf Section 3.1) RSMs are very similar one with another [77, Figs. 11–12, pp. 1153–
1154], implying that the turbulent diffusion closure is less influential than pressure-strain
redistribution in this flow. On the other hand, the improvement of the WNF–LSS RSM over
the linear LS k–ε model for this separation-dominated flow is weak.
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4 Conclusions

In the present work, 3 wall-normal-free RSMs were assessed through comparison with
experimental data for complex 3-D duct flows, highlighting the impact of the closure
used for the velocity/pressure-gradient tensor �ij (7) and for turbulent diffusion by the

fluctuating velocities d
(u)
ij (5) on the predictive accuracy of the models.

The Gessner and Emery [39] square duct flow is dominated by turbulence-anisotropy-
driven secondary flows whereas the Davis and Gessner [19] C-to-R transition duct flow
combines pressure-driven secondary flows in the transition section with turbulence-
anisotropy-driven secondary flows in the straight constant cross-section exit part. Therefore,
these test-cases are particularly useful in evaluating the predictive accuracy of turbulence
closures for secondary flows where streamwise vorticity is important. Finally, the Wellborn
et al. [80] diffusing S-duct contains a large region of separated flow and tests the ability of
the turbulence models to accurately predict 3-D separation and reattachment in presence of
blockage due to confinement and of secondary flows.

Results with the baseline LS [51] linear k–ε closure were included as a reference for com-
parison with the more advanced differential RSMs. The underlying Boussinesq’s hypothesis
pathologically returns negligible levels of normal-stress anisotropy [82, pp. 273–279] and
for this reason the LS k–ε predicts negligibly weak (∼0) secondary velocities both in the
square-duct [39] and in the straight exit part of the C-to-R duct [19]. Furthermore, in the S-
duct [80] test-case, the LS k–ε model, which has been calibrated for equilibrium shear flows,
severely underestimates separation. For all of the 3 test-cases the LS k–ε closure compares
very poorly with experimental data.

The WNF–LSS RSM [29] adopts the Launder-Shima [52] closure for the homogeneous
part of �ij and is therefore calibrated in zero-pressure-gradient flat-plate boundary-layer
flow. As a consequence, it underestimates separation in the S-duct [80] test-case. On the
other hand it has the differential RSMs’ inherent ability to predict normal-stress anisotropy
and performs quite well for the C-to-R duct [19] but underestimates the centerline velocity
peak in the developing square-duct flow [39]; this inadequacy was traced to the cumulative
influence of the homogeneous rapid redistribution isotropisation-of-production closure (7)
C

(RH)
φ (Table 1) and the Daly-Harlow turbulent-diffusion model (Table 1).
For all of the 3 test-cases that were examined [19, 39, 80], the GLVY [28] and GV [35]

RSMs yield very similar results in quite satisfactory agreement with measurements, imply-
ing that the extra terms in the �ij closure (7) used in the GLVY RSM (Table 1) have little
influence for the secondary and/or separated 3-D flows studied in this paper; however, these
extra terms were found to substantially improve the apparent transition behaviour of the
model. The coefficient-function C

(RH)
φ used in the GLVY and GV RSMs (Table 1) was cali-

brated with reference to flows with large separation [31, 35]. As a result, the GLVY and GV

RSMs perform quite well in the S-duct [80] flow. They predict quite satisfactorily the other
2 test-cases [19, 39] as well, although they underpredict the strength of the secondary flow
velocities and the level of the Reynolds-stress tensor anisotropy.

The results presented in the paper suggest that RSM RANS has the potential to predict
complex 3-D flows with streamwise vorticity and separation. Further improvements in the
prediction of the Reynolds-stress tensor anisotropy might be achieved by the use of a dif-
ferential model for the full Reynolds-stress-dissipation tensor εij [28, 56]. Furthermore, the
turbulence structure in separated and reattaching/relaxing flows exhibits strong hysteresis
[20] whose inclusion in the model should be investigated [59].
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Of course, variable resolution approaches [23, 48, 58], where only a part (unresolved
[43, 44, 67, 76]) of the turbulent fluctuations is modelled, are a promising alternative for
the simulation of realistic high-Reynolds number flows, with necessarily higher (in order-
of-magnitude) computational costs because of the required time-consistency and of the
simulation-time necessary for the convergence of statistics. All of these approaches are
based on underlying transport-equation models for the unresolved stresses [12, 13] and
can also benefit from the development of advanced RANS models of high predictive accu-
racy and equally from efficient and robust high-order-accurate solvers for Reynolds-stress
transport [6].

Acknowledgments The present work was initiated within the DGA-funded research project CACV with
Dassault-Aviation. The computations were performed using HPC ressources allocated at GENCI–IDRIS

(Grants 2013– and 2014–020218) from ICS–UPMC (ANR–10–EQPX–29–01). The authors are listed alpha-
betically.

References

1. Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith, B.T.: The Fortran
2003 Handbook. Springer, New York (2009). doi:10.1007/978-1-84628-746-6

2. AERODYNAMICS: aerodynamics (a library and software package for computational aerodynamics).
http://sourceforge.net/projects/aerodynamics (2015). (version 1.0.3)

3. Aloui, F., Berrich, E., Pierrat, D.: Experimental and numerical investigations of a turbulent flow
behavior in isolated and nonisolated conical diffusers. ASME J. Fluids Eng. 133, 011201 (2011).
doi:10.1115/1.4003236

4. Anxionnaz-Minvielle, Z., Cabassud, M., Gourdon, C., Tochon, P.: Influence of the meandering channel
geometry on the thermo-hydraulic performances of an intensified heat exchanger/reactor. Chem. Eng.
Processing 73, 67–80 (2013)

5. Atkins, H., Casper, J.: Nonreflective boundary conditions for high-order methods. AIAA J. 32, 512–518
(1994)

6. Ben Nasr, N., Gerolymos, G.A., Vallet, I.: Low-diffusion approximate Riemann solvers for Reynolds-
stress transport. J. Comp. Phys. 268, 186–235 (2014). doi:10.1016/j.jcp.2014.02.010

7. Bradshaw, P.: Compressible turbulent shear layers. Ann. Rev. Fluid Mech. 9, 33–54 (1977)
8. Bradshaw, P.: Turbulent secondary flows. Ann. Rev. Fluid Mech. 19, 53–74 (1987)
9. Brundrett, E., Baines, W.D.: The production and diffusion of vorticity in duct flow. J. Fluid Mech. 19,

375–394 (1964)
10. Chakravarthy, S.R.: Relaxation methods for unfactored implicit upwind schemes. In: AIAA Paper 1984–

0165 (1984)
11. Chang, D., Tavoularis, S.: Numerical simulation of turbulent flow in a 37-rod bundle. Nucl. Eng. Des.

237, 575–590 (2007)
12. Chaouat, B., Schiestel, R.: A new partially integrated transport model for subgrid-scale stresses and

dissipation rates for turbulent developing flows. Phys. Fluids 17(6), 065106 (2005)
13. Chaouat, B., Schiestel, R.: From single-scale turbulence models to multiple-scale and subgrid-scale

models by fourier transform. Theor. Comp. Fluid Dyn. 21, 201–229 (2007)
14. Chassaing, J.C., Gerolymos, G.A., Vallet, I.: Reynolds-stress model dual-time-stepping computation of

unsteady 3-D flows. AIAA J. 41(10), 1882–1894 (2003)
15. Craft, T.J., Launder, B.: Principles and performance of TCL-based second-moment closures. Flow Turb.

Comb. 66, 355–372 (2001)
16. Cumpsty, N.A.: Compressor Aerodynamics. Addison Wesley Longman, Essex[GBR] (1989)
17. Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13, 2634–2649 (1970)
18. Davis, D.O.: Experimental investigation of turbulent flow through a circular-to-rectangular transition

duct. PhD, University of Washington, Seattle [ WA, USA].(also NASA–TM–105210) (1991)
19. Davis, D.O., Gessner, F.B.: Experimental investigation of turbulent flow through a circular to rectangular

duct. AIAA J. 30(2), 367–375 (1992)
20. Délery, J.M.: Experimental investigation of turbulence properties in transonic shock/boundary-layer

interactions. AIAA J. 21, 180–185 (1983). (also AIAA Paper 1981–1245, 1981)

http://dx.doi.org/10.1007/978-1-84628-746-6
http://sourceforge.net/projects/aerodynamics
http://dx.doi.org/10.1115/1.4003236
http://dx.doi.org/10.1016/j.jcp.2014.02.010


Flow Turbulence Combust (2016) 96:45–93 91
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