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Abstract The lattice Boltzmann method (LBM) is a relatively new method for fluid flow
simulations, and is recently gaining popularity due to its simple algorithm and parallel scal-
ability. Although the method has been successfully applied to a wide range of flow physics,
its capabilities in simulating turbulent flow is still under-validated. Hence, in this paper, a 3D
LBM code was developed to investigate the validity of the LBM for turbulent flow simula-
tions through large eddy simulations (LES). A GPU enabled LBM code was developed, and
validated against a benchmark test case involving the flow over a square cylinder in square
channel. The flow results showed good agreement with literature, and speedups of over
150 times were observed when two GPUs were used in parallel. Turbulent flow simulations
were then conducted using LES with the Smagorinsky subgrid model. The methodology
was first validated by computing the fully developed turbulent channel flow, and comparing
the results against direct numerical simulation results. The results were in good agreement
despite the relatively coarse grid. The code was then used to simulate the turbulent flow
over a square cylinder confined in a channel. In order to emulate a realistic inflow at the
channel inlet, an auxiliary simulation consisting of a fully developed turbulent channel flow
was run in conjunction, and its velocity profile was used to enforce the inlet boundary con-
dition for the cylinder flow simulation. Comparison of the results with experimental and
numerical results revealed that the presence of the turbulent flow structures at the inlet can
significantly influence the resulting flow field around the cylinder.
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1 Introduction

In Computational Fluid Dynamics (CFD), one of the most challenging tasks is to accurately
and efficiently simulate turbulent flow. The main aspect about turbulent flows that make
them difficult to predict is that it contains a wide range of length and time scales. Although
it is possible to resolve all scales of motion by employing an extremely fine mesh through a
direct numerical simulation (DNS), the resulting computational costs can become astronom-
ical for practical flows. Therefore, it is more common to use turbulence models to simplify
the computation. The most widely used and practical method of such is the Reynolds Aver-
aged Navier-Stokes (RANS) approach, where the unsteadiness of the flow is modeled. This
approach has proven to work well for certain flows, but the fact that a wide range of physics
is accounted for by predetermined models make them non-ideal for a universal represen-
tation of turbulent flows. Large eddy simulations (LES) on the other hand, attempts to
resolve the large scale motions, and use subgrid scale models to incorporate the effects of
the small scale motions. This approach is more realistic than the RANS approach, since the
features of the small eddies in a flow are relatively universal, and independent of the flow
geometry.

The lattice Boltzmann method (LBM) is a numerical technique derived from the Boltz-
mann equation and kinetic theory, and is being recognized as an alternative to the methods
based on the Navier-Stokes equations for flow computations. Contrary to the conventional
CFD methods that solve the Navier-Stokes equations, the LBM employs discretized par-
ticle velocity distribution functions based on microscopic fluid physics to emulate the
hydrodynamic flow field. In the LBM, fictitious particles are assumed at each node on the
computational domain, where the particles are allowed to advect along restricted directions,
and collide with other particles. The movement and collision rules are designed such that
“coarse graining” the particle distributions will recover the weakly compressible Navier-
Stokes equations. Recently, the LBM has been gaining popularity, due to its algorithmic
simplicity, as well as its suitability for running on many-core systems such as the graphics
processing unit (GPU).

In the context of LBM applied to turbulent flows, there have been some notable work
on some fundamental and complex flows using LES [1–11], following the pioneering work
by Hou et al. [12], who successfully incorporated the Smagorinsky subgrid model [13] to
the LBM framework. However, investigations involving the application of LBM for LES on
the GPU are still at an early stage, and further evaluation of its accuracy and efficiency is
necessary.

Hence, this paper aims to investigate the validity of the LBM for simulating the incom-
pressible turbulent flow over bluff bodies. This paper is organized as follows: §2 outlines
the LBM algorithm; §3 consists of a validation study of our GPU code in terms of accuracy
and performance; §4 presents the results from simulating the turbulent flow over a square
cylinder confined in a channel.

2 The Lattice Boltzmann Method

The LBM is based on the lattice Boltzmann equation (LBE), which can be written as [14]:

fi(�r + �ci, t + 1) = fi(�r, t) + �i (1)
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where f (�r, t) is the probability distribution function of the particle populations at site �r , and
� is the collision operator. For this study, the D3Q19 lattice, which consists of the following
discrete velocities, was employed:

�ci =
⎧
⎨

⎩

(0, 0, 0), i = 0
(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1, 2, . . . , 6
(±1,±1, 0), (±1, 0, ±1), (0,±1, ±1), i = 7, 8, . . . , 18,

(2)

For the collision operator, the standard Bhatnagar-Gross-Krook (BGK) model was used.
The BGK collision operator can be written as:

�i = −ω(fi(�r, t) − f
eq
i (�r, t)), (3)

where f represents the distribution functions, f eq represents the local equilibrium dis-
tribution functions, and ω is the relaxation rate. ω defines the viscosity of the fluid,
as:

ν = c2

3

(
1

ω
− 1

2

)

δt. (4)

c is the lattice speed, which is defined as δx/δt , where δx is the lattice spacing, and δt is
the time increment, and is unity for uniform lattice structures. f

eq
i can be written as:

f
eq
i = ρti

(

1 + 1

c2
s

�ci · �u + 1

2c2
s

Qi : �u �u
)

. (5)

ti is a constant weighting to take into account the different magnitudes of the lattice vectors,
cs is the speed of sound of the model, and the tensor Qi is defined as:

Qi = �ci �ci − c2
s I (6)

where I is the identity matrix.
The incompressible Navier-Stokes equations can be recovered from the LBE through the

Chapman-Enskog analysis, which is essentially a formal multi-scaling expansion [14, 15]:

∂

∂t
= ε ∂

∂t1
+ ε2 ∂

∂t2
+ · · · (7)

∂

∂x
= ε ∂

∂x1
+ · · · . (8)

The expansion parameter, ε, is the Knudsen number, defined as the ratio between the mean
free path of a gas molecule and a macroscopic length scale [16]. Using this technique, the
particle distribution function, fi , can be expanded about the local equilibrium function, f eq

i ,
as:

fi = f
eq
i + εf

neq
i . (9)

Here, f
eq
i is defined from Eq. 5, and must satisfy:

q−1∑

i=0

f
eq
i = ρ (10)

1

ρ

q−1∑

i=0

�cif
eq
i = �u, (11)
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where q is the number of discrete velocities associated with the node. The non-equilibrium
distribution function, f

neq
i = f 1

i + εf 2
i + O(ε2), has the following constraints to ensure

conservation of mass and momentum in the collision operator:

q−1∑

i=0

f k
i = 0 (12)

q−1∑

i=0

�cif
k
i = 0. (13)

for both k = 1 and k = 2. Equation 3 can be Taylor expanded, and rewritten in the
consecutive order of ε as [17]:

f 0
i = f

eq
i : O(ε0) (14)

(
∂t0 + �ci · ∇)

f 0
i = − 1

τ
f 1

i : O(ε1) (15)

∂t1f
0
i +

(
2τ − 1

2τ

)
(
∂t0 + �ci · ∇)

f 1
i = − 1

τ
f 2

i : O(ε2) (16)

Using the constraints shown in Eqs. 10–13, and summing the first order expansion (15) for
all i, the continuity equation can be obtained as:

∂ρ

∂t
+ ∇ · ρ �u = 0. (17)

Next, by multiplying �ci to both sides of Eqs. 15 and 14 and combining them, the momentum
equation is derived as:

∂(ρ �u)

∂t
+ ∇ ·

(

�0 + 2τ − 1

2τ
�1

)

= 0, (18)

where �0 and �1 are momentum flux tensors defined as:

�0 =
q−1∑

i=0

�ci �cif
0
i = pδαβ + ρuαuβ (19)

�1 =
q−1∑

i=0

�ci �cif
1
i = ν

(∇α(ρuβ) + ∇β(ρuα)
)
. (20)

p is the pressure, and is related to density as:

p = c2
s ρ = 1

3
ρ. (21)

The resulting momentum equation becomes:

ρ

(
∂ �u
∂t

+ �u.∇�u
)

= −∇p + ρν∇2 �u, (22)

which is identical to the Navier-Stokes equations, given that the density fluctuations are
small enough [14].
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2.1 Smagorinsky subgrid model for the lattice Boltzmann method

In order to model the unresolved scales of motion at high Reynolds numbers, subgrid mod-
els are often employed. For LES, the subgrid models are applied after a spatial filtering
operation, defined as [18]:

w(x) =
∫

w(x)G(x, x′)dx′ (23)

where w is a spatially dependent quantity, and G the kernel function. Based on this filtering
function, the filtered particle distribution function, f i , can be defined as:

f i(x) =
∫

fi(x)G(x, x′)dx′. (24)

Thus, the filtered LBE becomes:

f i(�r + �ci, t + 1) = f i(�r, t) + �i. (25)

From here, it is assumed that the filtered particle distribution will relax towards a local
filtered equilibrium distribution, which only depends on the local filtered macroscopic
variables (ρ and �u) [12]. Hence,

�i(f (�r, t)) = �i(f (�r, t)), (26)

where the equilibrium distribution function, f eq , is:

f
eq

i = ρti

(

1 + 1

c2
s

�ci · �u + 1

2c2
s

Qi : �u �u
)

. (27)

For subgrid closure, the Smagorinsky model [13], which relates the eddy viscosity to the
local strain rate tensor, was used. The governing equation for this model is:

νtotal = ν0 + C�2
∣
∣
∣S

∣
∣
∣ , (28)

where νtotal is the total effective viscosity, ν0 is the molecular viscosity, � is the filter size,

C is the Smagorinsky constant, and
∣
∣
∣S

∣
∣
∣ is related to the magnitude of the filtered strain rate

tensor as: ∣
∣
∣S

∣
∣
∣ =

√
2S : S, (29)

where

S = 1

2
(∇�u + (∇�u)�). (30)

In the LBM, the viscosity of the fluid is governed by the relaxation time. Hence, the
Smagorinsky subgrid model can be implemented by locally adjusting the relaxation time in
the LBE. From Eq. 4,

νtotal = cδx
2τtotal − 1

6
. (31)

Combining this with Eq. 28,

τtotal = 3

cδx

(
ν0 + C�2

∣
∣
∣S

∣
∣
∣

)
+ 1

2

= τ0 + 3

cδx
C�2

∣
∣
∣S

∣
∣
∣ , (32)
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where τ0 is the relaxation time obtained from the molecular viscosity. The filtered strain
rate tensor can be computed directly from the non-equilibrium momentum flux tensor, �1

[12]. Using Eq. 29, it can be seen that Eq. 20 can be written as:

�
1 =

q−1∑

i=0

�ci �cif
1
i = −2ρτtotalcδx

3
S. (33)

Taking the tensorial magnitude, and defining Q1/2 =
√

�
1 : �

1
,

Q1/2 =
√

2τtotalρcδx

3

∣
∣
∣S

∣
∣
∣ (34)

Substituting (32) into (34) leads to a quadratic equation for
∣
∣
∣S

∣
∣
∣, which can be solved to

obtain:
∣
∣
∣S

∣
∣
∣ = −τ0ρcδx +

√

(τ0ρcδx)2 + 18
√

2ρC�2Q1/2

6ρC�2
. (35)

Substituting (35) into (32) and assuming δx = � (implicit filtering), the final expression
for τ becomes:

τtotal = τ0

2
+

√

(τ0ρc)2 + 18
√

2ρCQ1/2

2ρc
. (36)

Contrary to the finite volume Navier-Stokes solvers that require finite difference schemes

to compute
∣
∣
∣S

∣
∣
∣, the LBM allows direct computation of

∣
∣
∣S

∣
∣
∣ using local variables.

3 Validation and Performance Evaluation

The LBM was implemented on the GPU using NVIDIA’s CUDA, and validated using the
benchmark case involving the 3D flow over a square cylinder in a channel. This problem
was chosen for its simple and well defined geometry, as well as its abundance in simula-
tion results. The results obtained from the GPU LBM code were compared against those
summarized by Schäfer and Turek [19]. For this study, two NVIDIA Tesla M2070 GPUs
were used in parallel. Although this GPU does not have graphics outputs, it has features
such as ECC-protected memory and a larger device memory, making them ideal for large
scale general purpose calculations. The technical specifications of this GPU are given in
Table 1. The ECC feature was enabled for all test cases run in this study. The two GPUs
were connected by PCIe x16 Gen2 to the Intel E5607 CPU at 2.26GHz, running Linux ker-
nel 2.6.32, with CUDA version 5.0 and nvcc release 5.0 version 0.2.1221. Details on the
GPU implementation can be found in [20].

The geometry of the simulation domain consisted of a square cylinder confined in
a channel with a square cross section. The height and width of the channel was 4.1d ,

Table 1 Technical
Specifications for the NVIDIA
Tesla M2070 [21]

Compute Capability 2.0

Peak Single Precision Floating Point Performance 1030 GFLOPS

CUDA Cores 448

Memory Size 6 GB

Memory Bandwidth (ECC off) 150 GB/ s
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where d is the diameter of the cylinder. The cylinder was placed so that its center is 5.0d

from the inlet, and 2.0d from the bottom wall. The total length of the channel is 25.0d . The
four side walls of the channel, as well as the cylinder walls, were set to be no-slip walls.
A schematic of the geometry is shown in Fig. 1. The inflow condition is specified with a
prescribed velocity profile as:

Uin = 16Umyz(H − y)(H − z)/H 4, Vin = 0,Win = 0, (37)

where H is the height of the channel. The Reynolds number, defined as Re = Ud/ν, where
U = 4/9Um, was set to 20, where the flow is expected to be steady. The summary parame-

ters used for validation are the lift and drag coefficients, defined as CD = 2Fx/(ρU
2
dH)

and CL = 2Fy/(ρU
2
dH), respectively.

Simulations were conducted using a uniform mesh with 10 nodes along the side of the
cylinder, resulting in a total of 420,250 (= 4.1 × 4.1 × 25 × 103) nodes by reference to
Fig. 1. The moment extrapolation method [22] was used to apply the velocity inflow condi-
tion as well as the constant pressure outflow condition. Bounce back conditions were used
to model the no-slip walls, and the lift and drag forces were computed based on the momen-
tum exchange method [23]. The characteristic velocity, U , was set to 0.04c, and the outlet
density was set to 1.0. Simulations were run for 20,000 time steps, which corresponds to
80 non-dimensional time units (t̃ = Ut/d). The strong scalability of the multi-GPU imple-
mentation was also measured by running the simulations on one and two GPUs. Further
increasing the number of GPUs can be achieved by coupling CUDA with OpenMPI, but
due to the limited availability of the hardware, this study only concerns the use of up to two
GPUs. Table 2 summarizes the numerical results obtained, as well as the total run time and
execution speed in million lattice updates per second (MLUPS).

Both CD and CL were well within the range of values presented in [19]. In terms of per-
formance, the current GPU implementation resulted in impressive execution speeds, with

Fig. 1 Domain geometry and boundary conditions for 3D laminar flow over a square cylinder confined in a
channel
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Table 2 Numerical results for flow over a square cylinder at Re=20

GPUs CD CL time [s] MLUPS

Uniform
1

7.614 0.0658
21 441

2 12 788

Schäfer and Turek [19] 7.50 − 7.70 0.06 − 0.08

441 MLUPS and 788 MLUPS for one and two GPUs, respectively. For reference, a serial
code on the CPU was implemented, which showed an execution speed of 4.7 MLUPs when
run on Intel E5607 CPU at 2.26GHz, compiled with the GNU g++ compiler with O2 opti-
mization. This showed that speedups of two orders of magnitude were obtained from the
GPU. The multi-GPU code showed a strong scaling efficiency of over 90 %, suggesting that
the inter-GPU communication is mostly hidden by the computation. The scaling efficiency
is expected to improve if a larger domain was used, or if the domain was split in a more
sophisticated way that would minimize the amount of communication at the zone interface.
In this study however, it was sufficient to prove that the code was capable of managing two
GPUs in a reasonably efficient manner.

4 LES Using the LBM

This section is concerned about the performance of the LBM for turbulent flow simulations
using LES. First, the popular benchmark case of the fully developed turbulent flow in an
infinite channel was simulated using a periodic domain. The time averaged velocity and
RMS velocities were compared against DNS results to assess the validity of the LES-LBM
code in simulating turbulent flows. Then, the LES-LBM code was used to predict the flow
over a square cylinder confined in a channel. For both cases, the Smagorinsky subgrid scale
model with implicit grid filtering was used for turbulence modeling.

4.1 Turbulent channel flow at Reτ = 180

4.1.1 Problem description

The fully developed turbulent flow in a plane channel is one of the most fundamental cases
for studying the nature of turbulence, and has been extensively studied both experimentally
and numerically. It is an ideal benchmark test case for turbulence models, since DNS data
is available for lower Reynolds numbers. For this flow, it is customary to define the flow in
terms of the shear Reynolds number:

Reτ = uτ δ

ν
, (38)

where δ is half of the channel height, H , and uτ is the friction velocity. The friction velocity
is related to the wall shear stress, τw , by:

uτ =
√

τw

ρ
. (39)
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Since the flow is fully developed, the stream-wise forces must balance, as:

− ∂p

∂x
δ = τw. (40)

Combining (39) and (40),

− ∂p

∂x
= ρu2

τ

δ
. (41)

The effect of the pressure gradient can be incorporated into the LBM framework by
introducing an additional step after the collision step, as [24]:

f̃ ∗
i = f̃i + wiδt

3

c2

∂p

∂x
ci · x̂. (42)

For this study, the shear Reynolds number was set to 180. The dimensions of the compu-
tational domain were set according to the comprehensive work by Moser et al. [25], with

2πH in the stream-wise direction,
2

3
πH in the spanwise direction and H in the vertical

direction. In this work, 62 nodes were allocated along H , yielding a mesh of 400×130×62
nodes in the stream-wise, spanwise and vertical directions, respectively. The upper and
lower surfaces of the domain were set to be no-slip by using the bounce back scheme, and
the stream-wise and spanwise boundaries were set to be periodic. uτ was set to 0.005c,

which leads to a
∂p

∂x
of 4.03 × 10−7. The standard Smagorinsky model with C = 0.01

was used for the subgrid scale model. For simplicity of implementation on the GPU, wall
damping was omitted. The flow was initialized with a uniform stream-wise velocity, and
a cubical obstruction was placed to initiate turbulence. The obstruction was removed after
several thousand time-steps, and the simulation was run for a total of 3 million time steps.
An additional run with 6 million time steps was also run to check for statistical convergence.

4.2 Results

The instantaneous flow field is shown in Fig. 2 in terms of spanwise and stream-wise veloc-
ities. Both quantities were normalized based on uτ . The figure shows that the simulated
flow is unsteady with significant 3D flow structures as indicated by the spanwise velocities
even after three million time steps, which shows that the turbulence is self-sustaining.

Fig. 2 Spanwise and stream-wise velocity contours on spanwise cross section. Both velocity components
normalized based on uτ
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Fig. 3 Mean streamwise velocity
profile in wall normalized units.
Symbols: present work; dotted
line: DNS [25]

The LES-LBM results were quantitatively compared against DNS results presented by
Moser et al. [25] in terms of time averaged flow statistics (Figs. 3–4). For the mean stream-
wise velocity profile, the LES-LBM simulation predicted a notably lower velocity compared
to the DNS results. However, the profile clearly shows the transition from the viscous sub-
layer to the log-law region, despite the coarse grid (minimum y+ of 2.2). Since the wall
shear stress is supposed to balance the pressure gradient, the under-prediction of mean
streamwise velocity profile in Fig. 3 is a result of under-prediction of mass flow rate, likely
caused by a combination of coarse meshes used and omission of a wall-damping func-
tion in the standard Smagorinsky’s subgrid scale (SGS) model. The RMS profiles were in
reasonable agreement with the DNS results. The peak location of the streamwise velocity
fluctuations showed some discrepancy, but the cross-stream and spanwise velocity compo-
nents showed very good correspondence. Although it would be interesting to investigate
how much the results will improve with a finer grid, the present results were deemed
adequate to validate the LES-LBM code in simulating wall-bounded turbulent flow.

4.3 Turbulent flow over a square cylinder in a channel at Red = 3000

4.3.1 Problem description

In the previous section, it was shown that the LES-LBM is capable of simulating the fully
developed turbulent channel flow problem. In this section, the LES-LBM was used to pre-
dict the flow over a square cylinder confined in a channel. The Reynolds number, defined
as Re = Uind/ν, where Uin is the average inlet velocity, was 3000, and the blockage ratio,

Fig. 4 RMS velocity profiles in
wall normalized units. Blue:
u′ +; orange: v′ +; green: w′ +.
Symbols: present work; dotted
line: DNS [25]
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defined as d/H , where H is the channel height, was 20 %. This particular flow configu-
ration was studied experimentally by Nakagawa et al. [26], and numerically using a finite
volume method based LES by Kim et al. [27].

In the experimental work by Nakagawa et al. [26], the unsteady turbulent velocity
field was measured using laser Doppler velocimetry (LDV). The time-averaged and phase-
averaged statistics were summarized for various cylinder aspect ratios (width to height).
Their experimental setup consisted of a closed water channel with streamwise, cross-stream,
and spanwise dimensions of 30d, 5d , and 35d , respectively. A rectangular cross-sectioned
cylinder was installed on the centerline, where the distance between the test section inlet
and the front side of the cylinder was 3d . The flow was generated by a constant head tank,
and the water was allowed to pass through a contraction before entering the test section
with a mean velocity of Uin. The stream-wise and cross-stream velocity components were
measured using a two-color four-beamed LDV.

Kim et al. [27] then conducted a numerical study in order to verify the experimental
results of Nakagawa et al. [26]. They solved the three-dimensional incompressible Navier-
Stokes equations, which were filtered by a box filter, on a non-uniform staggered Cartesian
grid, using the finite volume method with the fractional time-stepping method for time
integration. Their domain dimensions were made identical to that used in [26], except for the
spanwise dimension, which was set to 1d with periodic boundary conditions. At the inlet,
a uniform mean velocity profile with a thin boundary layer was imposed, and ‘jittered’ by
using random numbers that are 6 % of Uin in RMS magnitude. A convective condition was
employed to model the outlet. For turbulence modeling, a dynamic subgrid scale model,
which uses two filters to correlate the subgrid scale stresses with the resolved turbulent
stresses [28], was used.

In this study, the LES-LBM was used on a uniform grid, with the standard Smagorin-
sky model for subgrid closure. The stream-wise and cross-stream dimensions of the domain
were set to 20d and 5d , respectively. Two separate cases with spanwise dimensions of 1d

and 3d were conducted, to evaluate its effect on the results. The cylinder location with
respect to the inlet location was made identical to [26] and [27] (Fig. 5). Bounce-back condi-
tions were used to apply no-slip conditions on the channel and cylinder walls, and the outlet
was set to have constant pressure. For the inlet condition, instead of prescribing a predeter-
mined velocity profile, a time accurate velocity profile based on a fully developed turbulent
channel flow was used. This was done by running an infinite channel flow simulation in

Fig. 5 Domain geometry and boundary conditions for 3D turbulent flow over square cylinder confined in
a channel. Lines A and B indicate the periodic coupling for the infinite channel flow domain, and line C
indicates the inlet location for the cylinder flow domain
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parallel with the square cylinder simulation. At each time step, the velocity profile from
the channel flow simulation was extracted, and prescribed as an inlet velocity condition for
the square cylinder simulation, to allow for an accurate emulation of turbulent inflow in the
channel.

To achieve this, the following method was used. For a 3D Cartesian grid, let the nodes
be indexed by (i, j, k). Assuming the steam-wise coordinates for the lines B and C in Fig. 5
are i = B and i = C, respectively, the distribution functions at the inlet of the cylinder flow
domain can be written as:

fi(C, j, k) = f
eq
i (ρ = ρ(C + 1, j, k), �u = �u(B, j, k)) . (43)

This ensures that the velocity is prescribed based on the channel flow solution, while the
density (pressure) is set to be consistent with the cylinder flow domain.

4.3.2 Results for turbulent channel flow

Prior to simulating the flow over a cylinder in a channel, the fully developed channel flow at
the Reynolds number of interest was studied. Since the Reynolds number based on the diam-
eter of the cylinder is 3000, the equivalent Reynolds number based on the channel height
(ReH ) is 15000. The stream-wise dimension was set to H , and the spanwise dimension was
set to 0.2H and 0.6H , where H = 200 nodes. For example, in the case of z = 0.6H (or 3d),
the grid size for the channel flow domain in Fig. 5 is 4,800,000 nodes (= 200 × 200 × 120
in the stream-wise, vertical and span-wise directions, respectively). Turbulence was initi-
ated by placing a cubical obstacle in the channel, similar to the previous section. The main
challenge in this simulation was that since the Reynolds number is specified in terms of the
channel height, the shear Reynolds number (Reτ ) is unknown. This means that the pressure
gradient required to drive the flow cannot be derived a priori. Hence, in this study, a pro-
portional controller, which dynamically adjusts the pressure gradient to achieve the desired
flow rate, was used.

The controller was designed to adjust the pressure gradient dynamically, based on the
current flow rate in the channel. Letting the current cross-sectionally averaged stream-wise
velocity be ucurrent , the target stream-wise velocity to be utarget , the stream-wise pressure
gradient for the next time step to be ∂p/∂x|next , the current stream-wise pressure gradient
to be ∂p/∂x|current , and the initial estimate for the stream-wise pressure gradient to be
∂p/∂x|init , ∂p/∂x|next was adjusted as:

∂p

∂x
|next = ∂p

∂x
|current + utarget − ucurrent

utarget

KP

∂p

∂x
|init (44)

where KP is a constant. In this study, the above correction was applied every 1000 time
steps, with KP set to 0.05.

utarget was set to 0.06c, and the simulation was run for a total of 5 million time steps. The
average cross-sectional stream-wise velocity and the applied pressure gradient was plotted
for each time step for the z = 1d case (Fig. 6). It can be seen that the flow rate approaches
the target value in the first 2 million time steps, but does not completely converge to a
singular value. This behavior was expected, since the turbulent flow is random in nature,
and applying a constant pressure gradient does not lead to a constant flow rate. Therefore,
to obtain the pressure gradient that achieves the desired average flow rate, the time averaged
value of the final 3 million time steps was taken.

In terms of the resulting flow field, it was confirmed that the turbulent flow was self-
sustaining, with coherent structures developing in the near-wall regions for both cases
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Fig. 6 Cross-sectionally
averaged stream-wise velocity
and stream-wise pressure
gradient, plotted against time
steps

(Fig. 7). Qualitatively, the general flow structures near the wall are similar, but the z = 3d

case displayed a higher concentration of the stream-wise vortical structures. This observa-
tion is reasonable considering the larger range of wavelengths that are allowed to exist in
the spanwise direction for the z = 3d case.

Fig. 7 Vorticity and velocity plots for fully developed turbulent channel flow at ReH = 15000. Isosurface
plots show the stream-wise vorticity (red: ωx = 6.67; blue: ωx = −6.67), normalized based on Uin and
H . Contour plot shows the stream-wise velocity magnitude, normalized based on Uin. Left: z = 1d; right:
z = 3d
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Fig. 8 Mean stream-wise
velocity profiles in wall
normalized units. Symbols:
present work; dotted line:
log-law. Blue: z = 1d; orange:
z = 3d

In Fig. 8, the mean stream-wise velocity profiles for the two cases were plotted, and
compared against the log-law profile, defined as:

u+ = 1

κ
ln(y+) + B, (45)

where κ = 0.41 and B = 5.2. It was found that the z = 3d case showed better agreement
with the log-law profile than the z = 1d case. It was interesting to see that although the
z = 1d case showed qualitatively acceptable results, the mean velocity profile displayed

Fig. 9 Instantaneous stream-wise (top) and spanwise (bottom) velocity components. Black vertical line
shows the boundary between the channel flow domain and the cylinder flow domain
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an obvious discrepancy for y+ > 100, where the velocity gradient rose sharply above the
log-law profile.

4.3.3 Results for flow over a square cylinder

In the previous section, a dynamic controller was developed to simulate the fully devel-
oped turbulent channel flow at ReH = 15000. The resulting flow fields showed reasonable
agreement with the log-law, and the pressure gradient required to achieve the desired flow
rate was obtained. With this knowledge, it is possible to simulate the flow over a square
cylinder confined in a channel, as outlined in Section 4.3.1 (Fig. 5). Consistent with the
channel flow domain shown in Fig. 5, in the case of z = 0.6H (or 3d), the grid size for
the cylinder flow domain is 19,200,000 nodes (= 800 × 200 × 120 in the stream-wise, ver-
tical and span-wise directions, respectively). Simulations were run for a total of 2 million
time steps, where turbulent statistics were collected after 1 million time steps. Similar to
the previous section, the effect of the spanwise dimension was analyzed by setting up two
simulations with spanwise dimensions of 1d and 3d . Simulations were also run with a sim-
plified inlet condition, where the inlet velocity is set to Uin, to investigate its influence on the
results.

The qualitative validity of the present setup was evaluated by observing the instantaneous
flow fields. Figure 9 shows the instantaneous stream-wise and spanwise velocity compo-
nents at a spanwise cross section. The channel flow and the cylinder flow domains are
connected, to highlight the smooth transfer of the flow conditions at the domain boundary.
Careful observation shows that the flow field in the inlet region of the cylinder flow domain

Fig. 10 Time averaged velocity
profiles along the cylinder wake
line. Solid lines: present work
(turbulent inlet); dotted line:
present work (uniform inlet);
broken line: LES by Kim et al.
[27]; symbols: experimental
by Nakagawa et al. [26].
Blue: z = 1d; orange: z = 3d.
a) mean stream-wise velocity; b)
RMS stream-wise velocity
fluctuations; c) RMS
crosss-tream velocity fluctuations
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Fig. 11 RMS stream-wise velocity fluctuation profiles at four cross-stream locations. Solid lines: present
work (turbulent inlet); dotted line: LES by Kim et al. [27]; symbols: experimental by Nakagawa et al. [26].
Blue: z = 1d; orange: z = 3d. a) x = 1d; b) x = 3.5d; c) x = 6d; d) x = 8.5d; measured from back the
face of cylinder

is almost identical to that of the inlet region of the channel flow domain, which further
validates the consistency of the present inlet boundary condition.

The time averaged flow field was compared against previous studies. Figure 10 shows the
mean velocity profiles along the wake line of the cylinder. Note that Kim et al. [27] did not
present the turbulent statistics along the wake line. From Fig. 10a, it can be seen that with
the turbulent inlet condition, the z = 1d cases significantly over-predicted the recirculation
length and maximum negative velocity, while the z = 3d cases showed good correspon-
dence with both experimental [26] and numerical [27] results. The over-prediction of the
recirculation zone in the z = 1d cases also affected the stream-wise velocity fluctuations,
where it displayed a peak value that is higher by more than 50 % of the experimental value
(Fig. 10b). In comparison, the z = 3d case showed only a 10 % over-prediction in the peak
value. From Fig. 10c, it was found that both cases showed good agreement with the exper-
imental results. The results obtained from the uniform inlet condition (dotted lines) also
showed good correspondence with experimental results. In general, the uniform inlet cases
produced better results compared to the z = 1d case with the turbulent inlet, but the z = 3d

case with the turbulent inlet showed highest correspondence with literature.
The cross-sectional velocity profiles at 1d, 3.5d, 6d , and 8.5d , were also compared in

Figs. 11 and 12. For clarity, only the turbulent inlet condition cases are shown. It was found
that the z = 1d case consistently over-predicted the turbulent fluctuations, while the z = 3d

case displayed excellent correspondence with experimental results. This showed that the

Fig. 12 RMS cross-stream velocity fluctuation profiles at four cross-stream locations. Solid lines: present
work (turbulent inlet); dotted line: LES by Kim et al. [27]; symbols: experimental by Nakagawa et al. [26].
Blue: z = 1d; orange: z = 3d. a) x = 1d; b) x = 3.5d; c) x = 6d; d) x = 8.5d; measured from back the
face of cylinder
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Table 3 Force coefficients and Strouhal numbers for flow over square cylinder in a channel at Red = 3000

CD C′
D C′

L St

Present

z = 1d, Turbulent inlet 3.40 0.50 1.97 0.136

z = 3d, Turbulent inlet 3.10 0.29 1.96 0.133

z = 1d, Uniform inlet 2.67 0.48 1.75 0.120

z = 3d, Uniform inlet 2.72 0.39 1.87 0.118

Kim et al. [27] (LES) 2.76 0.49 2.06 0.124

Nakagawa et al. [26] (exp.) − − − 0.13

turbulent inlet boundary condition may have detrimental effects if the spanwise dimension
is not large enough. Comparison with the LES results from Kim et al. [27] indicated that for
both the stream-wise and cross-stream fluctuations, the present results with z = 3d showed
better agreement in the near wake region (x = 1d).

The force coefficients and the Strouhal numbers were compared against literature
(Table 3). The table shows that the z = 3d turbulent inlet case was in excellent agreement
with experiment [26] in terms of Strouhal number. The z = 1d turbulent inlet case in com-
parison, showed a reasonable lift prediction, but overpredicted the drag forces and Strouhal
number. The z = 1d uniform inlet case showed the closest correspondence with the LES
results by Kim et al. [27]. This was not surprising, considering they used the same domain
dimensions. It was also observed that for the uniform inlet case, increasing the spanwise
dimension to 3d only resulted in minor changes in the results. Furthermore, considering that
Kim et al. enforced the inlet condition as a mean velocity profile with fluctuations created
by random numbers, it can be inferred that the Strouhal number is significantly affected by
the presence of physically coherent turbulent structures at the inlet.

5 Conclusions

In this study, the LBM was implemented on the GPU, and the effectiveness of using LBM
to simulate incompressible turbulent flow over bluff bodies was investigated. Preliminary
simulations in the laminar regime showed that the LBM code is accurately capturing the
flow physics involved with flows over bluff bodies, and that the multi-GPU code allows for
speedups of over 150 times compared to a serial run by using two GPUs in parallel. The
results from the fully developed turbulent channel flow simulation were in good agreement
with DNS results, corroborating that the LBM is a viable tool for conducting LES. Finally,
from the simulation of the turbulent flow over a square cylinder in a channel showed that
having an auxiliary flow domain consisting of a periodic channel flow allows for a physi-
cally realistic inflow condition. Comparisons of the current results with literature suggested
that accounting for the turbulent structures at the inlet location can significantly improve
the results.
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19. Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow

around a cylinder. Notes on Numer. Fluid Mech. 52, 547–566 (1996)
20. Koda, Y.: Lattice Boltzmann method for simulating turbulent flows. Master’s Thesis. University of

Waterloo (2013)
21. NVIDIA: Tesla M-Class GPU Computing Modules. http://www.nvidia.com/docs/IO/105880/

DS-Tesla-M-Class-Aug11.pdf (2011)
22. Mussa, A., Asinari, P., Luo, L.: Lattice Boltzmann simulations of 2D laminar flows past two tandem

cylinders. J. Comput. Phys. 228(4), 983–999 (2009)
23. Lallemand, P., Luo, L.: Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184(2),

406–421 (2003)
24. Mei, R., Luo, L., Shyy, W.: An accurate curved boundary treatment in the lattice Boltzmann method. J.

Comput. Phys. 155(2), 307–330 (1999)
25. Moser, R., Kim, J., Mansour, N.: Direct numerical simulation of turbulent channel flow up to Re= 590.

Phys. Fluids 11, 943 (1999)
26. Nakagawa, S., Nitta, K., Senda, M.: An experimental study on unsteady turbulent near wake of a

rectangular cylinder in channel flow. Exp. Fluids 27(3), 284–294 (1999)
27. Kim, D., Yang, K., Senda, M.: Large eddy simulation of turbulent flow past a square cylinder confined

in a channel. Comput. Fluids 33(1), 81–96 (2004)
28. Yang, K., Ferziger, J.: Large-eddy simulation of turbulent obstacle flow using a dynamic subgrid-scale

model. AIAA J. 31(8), 1406–1413 (1993)

http://www.nvidia.com/docs/IO/105880/DS-Tesla-M-Class-Aug11.pdf
http://www.nvidia.com/docs/IO/105880/DS-Tesla-M-Class-Aug11.pdf

	The Lattice Boltzmann Method Implemented on the GPU to Simulate the Turbulent Flow Over a Square Cylinder Confined in a Channel
	Abstract
	Introduction
	The Lattice Boltzmann Method
	Smagorinsky subgrid model for the lattice Boltzmann method

	Validation and Performance Evaluation
	LES Using the LBM
	Turbulent channel flow at Re=180
	Problem description

	Results
	Turbulent flow over a square cylinder in a channel at Red=3000
	Problem description
	Results for turbulent channel flow
	Results for flow over a square cylinder


	Conclusions
	Acknowledgments
	References


