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Abstract Three-dimensional tomographic time dependent PIV measurements of
high Reynolds number (Re) laboratory turbulence are presented which show the
existence of long-lived, highly sheared thin layer eddy structures with thickness of the
order of the Taylor microscale and internal fluctuations. Highly sheared layer struc-
tures are also observed in direct numerical simulations of homogeneous turbulence
at higher values of Re (Ishihara et al., Annu Rev Fluid Mech 41:165–180, 2009). But
in the latter simulation, where the fluctuations are more intense, the layer thickness is
greater. A rapid distortion model describes the structure and spectra for the velocity
fluctuations outside and within ‘significant’ layers; their spectra are similar to the
Kolmogorov (C R Acad Sci URSS 30:299–303, 1941) and Obukhov (Dokl Akad
Nauk SSSR 32:22–24, 1941) statistical model (KO) for the whole flow. As larger-scale
eddy motions are blocked by the shear layers, they distort smaller-scale eddies lead-
ing to local zones of down-scale and up-scale transfer of energy. Thence the energy
spectrum for high wave number k is EX(k) ∼ Bk−2p. The exponent p depends on the
forms of the large eddies. The non-linear interactions between the distorted inhomo-
geneous eddies produce a steady local structure, which implies that 2p = 5/3 and a
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flux of energy into the thin-layers balancing the intense dissipation, which is much
greater than the mean 〈ε〉. Thence B ∼ 〈ε〉2/3 as in KO. Within the thin layers the
inward flux energises extended vortices whose thickness and spacing are comparable
with the viscous microscale. Although peak values of vorticity and velocity of these
vortices greatly exceed those based on the KO scaling, the form of the viscous range
spectrum is consistent with their model.

Keywords High Reynolds number turbulence · Intermittency ·Thin shear layers ·
Tomographic experiments ·Local distortion model

1 Introduction

Numerical simulations of homogeneous turbulence at very high Reynolds number
(of the order of 1000 based on the Taylor microscale), reviewed by Ishihara, Gotoh
and Kaneda (IGK) [1], were used in the preceding paper (referred to as IKH—see
[2]) to analyse the general form and detailed statistics of the flow near and within the
‘significant’ thin layer structures. These are identified as where the average vorticity
in the structure is much greater than the rms vorticity. Typically they are sheared
with an average velocity ‘jump’ across them of the order of the rms velocity of the
turbulence (uo). But in these computational studies it was not practical, given the
amount of spatial data, to track such structures with time.

In Section 2 of this follow-up paper laboratory experiments are conducted in a
turbulent flow driven by oppositely rotating discs at high enough Reynolds numbers
(Re) to study the unsteady structure of eddy motions down to scales comparable with
the Kolmogorov microscale. In the central region between the discs the turbulence is
approximately homogeneous. Turbulent flows in this kind of experimental apparatus
have been studied before (e.g. [5–7]), but the 2 m high apparatus used here enables
a very wide range of scales (of order of 1000) to be measured and visualized with
a three-dimensional time varying digital PIV system, whose measuring volume is
large enough to observe how the structures move and distort with time. In order
to ensure the generality of the results small scale velocity statistics were measured
and compared with those in other homogeneous and inhomogeneous experiments.

The layers studied here are similar to those that occur outside turbulent shear
layers, such as jets and wakes [8]. But in these interior thin-shear layers significant
levels of turbulent energy exist on both sides of the layer, leading to small-scale mo-
tions entering the layers. Such thin layers also occur in rapidly developing turbulence
in the near wakes of bluff bodies, whose spectra are quite similar to that of fully
developed turbulence [9]. Extensive analysis of conditional sampling of the velocity
fields relative to the location of the thin layers have been performed for experimental
flows by Westerweel et al. [8] and in direct simulations [10], which enabled the
conditional one point and two point moments to be studied inside and outside the
thin layers. The same level of conditional analysis has not yet been performed for
thin layers within turbulent flow regions. Previous studies of the dominant coherent
structures in homogeneous turbulence have been at lower Reynolds numbers and
came to different conclusions, namely that the dominant structures are elongated
vortices, some of which may merge [11, 12]. Flat thin structures soon break up into
Kelvin Helmholtz instabilities in such flows (e.g. [13]). But in the turbulent flow
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studied here at higher Reynolds number (160 < Rλ < 500) the turbulence integral
scale is much larger than the Taylor microscale, so that external eddy motions inhibit
such instabilities and maintains the shear layers [14, 15]. The level of small scale
fluctuations within the layers depends on Rλ, so that the internal structure and
thickness of the experimental thin layers described here differ from the numerical
simulations of IKH at even higher Rλ(> 1000).

In Section 3 of this paper we derive from local kinematic and dynamical models,
the spatial Fourier description and physical scaling of typical eddies and velocity
fluctuations outside and within the significant thin layers. Thence we derive their
statistics in local and in fixed coordinates. This analysis, based on previous studies of
interactions between large and small fluctuating flow fields (e.g. [16–18]), is applied
to how external eddies larger than the layer thickness are ‘blocked’ as they impact
on the thin shear layer [19, 20]. The mechanism whereby such layers remain sharp
was analysed by Hunt et al. [15]. The straining associated with the impacting (and
separating) motions of large eddies distorts smaller scales sufficiently strongly that
the linearized inhomogeneous ‘rapid distortion theory’ of Hunt [21] is valid. It is
generalized here to derive, first, the local Fourier transforms over the spacing LS be-
tween such layers, where LS is the order of the integral length scale L, and then, using
the method of stationary phase, a general asymptotic form of the spatially averaged
spectrum E(lin)

X (k) proportional to k−2p for the small scale eddies for kL � 1, in terms
of the large scale straining, but independently of the small scale eddies’ arbitrary
unknown spectra.

Following Obukhov [4] and Townsend [16], (OT)’s model of non-linear trans-
fer of energy between larger and smaller scales is applied to this spectrum
of semi-organised inhomogeneous eddy motion. Based on the observation that
the local turbulence structure is in local equilibrium, the OT model leads to a
unique form of self similar inertial range spectrum E(non−lin)

X (k) ∼ k−2p, with the
value of 2p = 5/3, as discovered by Kolmogorov [3] and Obukhov [4] (KO).
This corresponds to a dynamically stable distribution of eddies, whereas other
kinds of groups or forms of eddies, whose spectra have different values of 2p,
either grow or decay.

In this locally inhomogeneous situation the net transfer of energy towards the
smallest scale eddies near the interface causes a net flux F� of energy into the thin
layers. This determines the magnitude of the external ‘inertial range’ turbulence and
the very high dissipation rate in the thin layer which greatly exceeds that in the
exterior region. By considering the whole energy balance between the turbulence
inside and outside the thin layer, the ‘inertial range’ energy spectrum outside the
layer E(k) can be expressed in terms of the average dissipation rate 〈ε〉 over the
whole flow. This is consistent with KO theory. Thus in this region for a characteristic
equilibrium statistical structure tends to form quite fast. This conceptual structure
differs from those where particular types of eddy dominate the flow structure, such
as the quasi-steady spiral vortex mechanisms proposed by Lundgren [22] and Horiuti
and Ozawa [23], which also imply a specific value of 2p.

The visco-inertial dynamics of the fluctuations within the thin layers triggered by
the external eddies are estimated using locally linear concepts. This leads to typical
magnitudes for the peak vorticity and velocity of the elongated microscale eddies,
which are shown to be much greater than those estimated from the KO model. These
determine the raised values of the peak and average values of the dissipation rate in
the significant thin layers.
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This paper does not focus on the weaker and smaller isolated structures, such as
weak vortices and streaks, that exist between the significant thin layers, and which
largely determine the average second and third order moments. Because of their
random intermittent distribution in space and time (e.g. [24, 25]), it is likely that the
overall spectrum is determined by the spectra of these individual structures. Also
semi organized dynamics in these weaker structures are similar in some respects to
those near thin layers. So the detailed study of this paper may provide a basis for
describing the whole flow field.

Our ideas about the effects of the significant shear layers on the dynamics and
kinematics have been derived from many previous studies. Observations of large,
almost discontinuous velocities have been noted previously as being inconsistent
with a smooth distribution of eddy motions decreasing in strength as their size
decreases [26–28]. The consequences for turbulence eddy structure were discussed
by R. Betchov and H. Liepmann at the famous conference on turbulence at Marseille
(CNRS 1962), when they argued that experiments and theory were needed to
develop a model of turbulence that accounted for the formation and dynamics of
thin intermittent regions with high dissipation and shear (see also [29]). Later exper-
iments and analysis [30, 31] have shown that sharp continuous interfaces occur at the
edges of turbulent regions, with high vorticity and significant impacts on the nearby
velocity and scalar fluctuations [8, 15]. IGK were the first to show that they also occur
widely within turbulent flows at high Reynolds number.

Many experiments and analyses have described turbulent flows in terms of
evolving and interacting coherent structures and how they are distributed, in terms
of Eulerian and/or conditional statistics (e.g. [32–34]), and contrasted this with repre-
sentation in terms of distributions of standard functions, such as Fourier series [35].

In the model developed here the moments and spectra are also determined by
the ensemble of flow structures of a particular type, which in this case are thin shear
layers with internal smaller scale vortices. The analysis of the simulations in IKH
shows that the significant thin layers are neither highly curved, nor space filling. This
observation is used in the scaling analysis and modeling of the layers.

Some previous studies of coherent structures have indicated how they affect the
transfer of energy between different scales of eddy motion, whether upwards or
downwards or both. Energy transfer mechanisms between large and small scale eddy
motions can be examined in physical space by analysing the vorticity dynamics of
individual eddy structures within straining regions and their statistical ensembles
(e.g. [16, 29, 35]). This approach enables the significant upscale transfer of energy
to be modeled which is not included in the statistical physics approach developed by
Kraichnan [36] and others. The implications for scalar fluctuations of interactions be-
tween different scales and coherent patterns of scalars were simulated and analysed
by considering three point moments [37]. Numerical simulations based on Eulerian
analyses of the dynamics of the Fourier components of homogeneous turbulence (e.g.
[38, 39]) have shown that the maximum net energy transfer is primarily caused by
interactions between eddies which are just larger and just smaller than each other.
This is consistent with the Richardson and KO statistical cascade concept. Previous
simulations of three-dimensional turbulence have shown that upscale energy transfer
is comparable to downscale, though the latter is on average larger (IGK). Aoyama
et al. [40] showed that there are separate, but adjacent zones (on scales comparable
with the integral scale L) where the energy transfer is predominantly upwards or
downwards. The modeling of Section 3 shows that this transfer is associated with
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inhomogeneity of the different scales of turbulence near the interface, which has not
been noted in previous studies based on the usual statistical analysis.

The conditional data and new analysis given in IKH provides methods for studying
non-ideal aspects of high Reynolds number turbulence. When eddies have significant
helicity, both up and down scale transfer are reduced [41]. One of the reasons why
KO theory has been so useful for describing the statistical structure of the small scales
of turbulence is that, although it is an equilibrium theory, it applies even when the
overall flows is quite inhomogeneous and far from equilibrium (e.g. [42]). But the
limitations of this approximation need more investigation. Also certain aspects cor-
responding to the KO statistics, e.g. second order spectrum, are observed experimen-
tally when other aspects, such isotropy and higher order spectra, are inconsistent with
the theory [43]. The new model presented here and the simulations of the fluxes of
energy (IKH), help explain the important property of turbulence that it adjusts much
faster in space and time than is predicted by the slow, down-scale cascade model of
Richardson and KO.

2 Tomographic PIV Measurements of Significant Structures

2.1 Experimental apparatus and calibration

In a number of previous experiments, fine scale turbulent structures have been
measured in the flow between two counter-rotating disks or impellers (see e.g. [5–
7, 44, 45]). The apparatus in the Cambridge University Engineering Department is a
large 2m diameter dodecahedral perspex water mixing tank, as shown in Fig. 1. Note
xyz coordinates (with x horizontal and parallel to laser and y vertical).

Two eight vane 0.8 m diameter impellers, at a separation distance of 1.25 m are
counter-rotated causing the fluid nearest the impellers to spin in opposite directions,
establishing a strong shear plane in the centre of the tank. Two secondary toroidal
recirculation regions are formed, which stretches the flow in the central region.
Radial baffles were fitted on the outside wall to remove any net rotation, and further
increase turbulence production. The Reynolds number based on impeller radius, RI ,
and rate of rotation, �I , is Re = �I R2

I/ν which ranged from 4 × 104 to 3 × 105. The
apparatus achieves its two main objectives of generating high Reynolds numbers
turbulence with constant energy injection at the largest scales; and secondly a closed

Fig. 1 Schematic diagram of
the experimental apparatus
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geometry which permits the spatial evolution of flow structures to be studied within
the measuring volume before being transported away by the mean flow.

Here, the size of the tank is such that the Kolmogorov micro-length scales (η =
(ν3/ 〈ε〉1/4) and time scales (τ = (ν/ 〈ε〉)1/2) are large enough to be approximately
resolved with the PIV measuring techniques. A total of four PIV experiments
were conducted at different resolutions to characterise the flow and assess spatial
resolution limitations. For brevity only two of these are presented in this paper,
denoted as cases D1 and D4. A single Tomographic PIV case was conducted,
denoted as case T1. For full details of the PIV setup, camera calibration, tomographic
reconstruction, and cross-correlation algorithms the reader is referred to [46].

Before investigating the nature of the fine scale flow structures it is necessary
to characterise the flow in terms of both statistical turbulent properties and typical
length and time scales, over the range of Reynolds number of the experiments.

Some typical flow properties are listed in Table 1. Since measurements were
confined to a central volume the average rate of dissipation, 〈ε〉, had to be estimated
using a scaling argument method (defined as 〈ε〉 = Au3/	 using a constant value
of A = 0.5, [47], and a value of the integral length scale 	 = 130 mm estimated
from the velocity correlation function). These values agree with estimates using other
methods [48]. This enabled the Kolmogorov microscale, η, and Taylor microscale λ

to be calculated. For Rλ = 162, λ/η ∼ 25, and for Rλ = 458, λ/η ∼ 42. Thus there are
large separations of scales so that high Reynolds number processes could be studied.

The relative spatial resolution is defined as the interrogation window size h
normalized by η, i.e. h/η. The 50 % window overlap gives a vector spacing, 
x/η, of
half this value. With increasing Reynolds number, there is a reduction in resolution.
However, for the lower Reynolds number runs in the D4 and T1 cases, a resolution

x/η ∼ 3 is achieved, which as discussed in [46], means that, since 
x/λ < 4, the
flow structures and the internal fluctuations are approximately resolved.

Because of the high value of the Reynolds number, the rms velocity is found to
increase linearly with the impeller rotation frequency, and is about 30 % of the peak
swirl velocity.

Table 1 Experimental properties

Case �I RI Re Rλ urms η 〈ε〉 τ ν × 106 x/η h/η

(mm/s) (mm/s) (mm) (m2/s3) (ms) (m2/s)

D1-1 56.0 3.77 × 104 240 17.4 0.536 2.01 × 10−5 243 1.18 6.71 13.4
D1-2 112 7.55 × 104 334 33.6 0.327 1.45 × 10−4 90.5 1.18 11.0 22.0
D1-3 223 1.51 × 105 479 69.1 0.191 1.26 × 10−3 30.7 1.18 18.9 37.8
D1-4 335 2.26 × 105 581 102 0.143 4.01 × 10−3 17.2 1.18 25.2 50.4
D1-5 447 2.94 × 105 651 131 0.120 8.67 × 10−3 11.8 1.22 30.0 60.0
D4-1 112 8.06 × 104 335 31.7 0.326 1.21 × 10−4 95.6 1.11 1.67 3.34
D4-2 223 1.61 × 105 501 70.8 0.178 1.36 × 10−3 28.6 1.11 3.05 6.10
D4-3 335 2.42 × 105 548 84.7 0.156 2.32 × 10−3 21.9 1.11 3.49 6.98
D4-4 447 3.22 × 105 700 138 0.108 1.01 × 10−2 10.5 1.11 5.04 10.1
T1-1 28.0 1.86 × 104 162 7.98 0.972 1.94 × 10−6 787 1.20 1.09 2.18
T1-2 56.0 3.72 × 104 224 15.3 0.595 1.38 × 10−5 295 1.20 1.79 3.58
T1-3 112 7.45 × 104 323 31.8 0.344 1.23 × 10−4 98.7 1.20 3.10 6.20
T1-4 223 1.49 × 105 458 64.1 0.204 1.00 × 10−3 34.6 1.20 5.24 10.5
T1-5 335 2.23 × 105 555 94.1 0.153 3.18 × 10−3 19.4 1.20 6.99 14.0
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(a) (b)

Fig. 2 a rms velocity ratios and b Velocity gradient ratio. Components by colour and fill colour as
indicated, case by symbol:×, D1; ©, D4; �, T1; − − −, mean component value averaged over all
cases and runs

Figure 2a shows that the turbulence structure between the rotors is anisotropic,
but the anisotropy does not vary with the Reynolds number. The ratio of radial and
axial velocity components is ∼1.5, which agrees well with values in other experiments
(e.g. [6]). However at the smallest scales the turbulence is approximately statistically
isotropic to the extent as seen by the isotropy of the mean squared velocity gradients,
shown in Fig. 2b. However there is some degree of scatter because the eddy motions
at the microscales are not fully resolved.

To test whether the small-scale flow structure was statistically the same as in other
high Re flows, including those with large-scale anisotropy, the two-point longitudinal
structure function 
u2 was measured and compared with the well established
Kolmogorov’s [3] two-thirds law, plotted (for the D1 case) logarithmically in Fig. 3.
The results agree approximately with those of previous experiments when the
spacing is a fraction of the integral scale i.e. where r ∼ (1/3)	 [49, 50].

Fig. 3 Longitudinal second
order structure function.
Colours representing cases:
T1, black; D1, grey. Symbols
representing run number:
×, D1-1; ©, D1-5; �, T1-1;
�, T1-5; − − −,〈[
u]2〉 /u2 = C2(〈ε〉 r)2/3/u2
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2.2 Study of coherent structures

Having characterised the Reynolds number scaling and nature of the statistically
steady flow, and demonstrated the consistency of the PIV data, the latter will now
be used to investigate the Taylor-scale coherent flow structures. In this paper only a
few sample structures have been analysed. More detailed statistics are in [48].

In the present investigation coherent structures are defined as continuously
connected regions where the enstrophy, �, is greater than the rms value, � > �rms.
Enstrophy is defined here as � = (1/2)ω · ω using local vorticity ω. In Fig. 4 not
only the regions of high enstrophy but also the regions of low enstrophy are shown.
Note that where the vorticity is less intense it is also distributed in isolated patches.
These are small scale, but typically bigger than the Kolmogorov microscale. See
Fig. 4.

(a)

(c) (d)

(b)

Fig. 4 Isosurfaces of enstrophy for a range of threshold levels (from [48]) showing that the most
vorticity fluctuations (greater than rms value) occur in large isolated structures, while weaker
fluctuations occur in smaller scale patches that are isolated from each other and that are distributed
approximately uniformly
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To analyse a range of coherent structures, examples were selected at different
Reynolds numbers and shown in Movies 1, 2 and Fig. 5. Iso-surfaces of enstrophy
and dissipation rate across a range of coherent threshold values are plotted across
a range of threshold levels, n×(mean value), with the colour indicating the level n.
To aid viewing, the threshold level is increased, allowing a range of iso-surface levels
to be compared on the same plot. The enstrophy and dissipation rate use variable
grey tones to show the distribution of different levels of enstrophy and dissipation.
A number of shapes can be identified from Fig. 5 with a predominance of short tube-
like and ribbon-like structures for both enstrophy and dissipation. The diameter and

(a) (b)

(c) (d)

(e) (f)

Fig. 5 The three-dimensional structure of thin shear layers. Dissipation (blue-green) and enstrophy
(red-yellow) iso-surfaces. Threshold values are set to n× (“mean value”) (n = 1, 2, 3, 4). a–d Rλ =
162, λ/η = 25, t/τ = 6.69, 12.38, 19.07, 31.78; e, f Rλ = 458, λ/η = 42, t/τ = 431.9, 435.7
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thickness of these range between 2 to 20 grid points. The results in Fig. 6 show that
the velocity differences across the significant layers are comparable with the rms
velocity fluctuation for the whole flow region.

A time series of the three-dimensional measurements of the structures in case
T1-1 from t/τ = 0 to 41.8 are shown in Movie 1 (Online Resource 1). Here 41.8τ

corresponds to 10.8λ/urms. (See Table 1.) Movie 1 shows that the lifetime of high
shear region is enough longer than characteristic time-scale of deformation of the
region. The first four images in Fig. 5 are from Movie 1 and have been chosen to
illustrate the nature of the thin shear-layer regions. The Reynolds number for this
case is Rλ = 162. A time series of the flow in case T1-4 (a higher Reynolds number
case; Rλ = 458) from t/τ = 0 to 964 are shown in Movie 2 (Online Resource 2). The
last two in Fig. 5 are from Movie 2. Here 964τ corresponds to about 250(λ/urms).
Note that fluctuations within the structures are visible for the low Re case, but not
for the high Re case—see below.

The ribbon-like structures are defined using around 4 to 51 grid points (up to the
maximum domain size). Accounting for spatial resolution reduction at high Reynolds
numbers indicates that the thickness variations vary between 2η to 140η, and their
greatest lengths are as much as 360η. The wrinkled surface of the majority of the
structures may be caused by large and small-scale deformations.

In example fields selected in the analysis of this section the majority of structures
appear to be oriented in the z-direction (see Figs. 1, 4 and 5). Note that the data used
in Fig. 2 include not only those in Figs. 4 and 5 but also those for the other cases,
which may be less anisotropic than the former. Note also that the smaller volume
size in the z-direction severely truncates structures exceeding this size. For example,
if tube-like structures are aligned with the z-direction their length will be shortened,
but if these are aligned in one of the other two directions they may look ribbon-like
structures (i.e. with very different breadths and lengths) or sheet-like structures (with
breadths comparable to lengths).

A few simple observations can be made immediately. The regions occupied by
the significant structures shown are very long in comparison with their thickness.
Although these measurements only show a thick ‘slice’, and so we cannot know their
extent beyond the measurement volume, they appear to extend unchanged through
the volume and hence it is, at least, plausible that their third dimension is also large
in comparison with the thickness (it seems rather unlikely that the tubes of enstrophy
terminate very quickly or change direction very suddenly outside the region of
interest). Hence they appear to be ‘ribbon like’. More detailed plots combining
enstrophy and dissipation [48] show that they consist of sheets of high dissipation rate
with embedded vortex structures. A dynamical argument favouring sheets/ribbons is
that these structures persist even in the presence of significant fluctuations outside
and right across their interiors. The data shows stretching and compression evident
in different parts of the shear layers. By contrast interior fluctuations tend to disrupt
typical axisymmetric vortices (e.g. [52, 53]).

� Fig. 6 Change in velocity components across the thin shear-layer regions. The three instantaneous
velocity components, normalized by their rms values, are shown as they vary along a line marked on
Fig. 5. The components are u1 (x-direction), solid line; u2 (y-direction), dashed line; u3 (z-direction),
dasheddotted line (from [51])
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The thickness of the structures can be estimated from these and other images
as about 10 − 12η for the low Reynolds number case. This corresponds to approxi-
mately 0.5λ, where λ is the Taylor microscale. For the higher Reynolds number case,
the thickness is about 20 − 25η, i.e. again about 0.5λ.

The advection term confirms the direction of movement of the structures. Video
sequences (as in Fig. 5) show that as the sheets are advected by the turbulence the
structures maintain their overall shear-layer structure as they advect through the
volume, although there are occasions when they become more convoluted. Their
longevity is consistent with the low values of the enstrophy dissipation outside the
layers. Figure 6 shows the change in the three instantaneous velocity components
along a line through the shear layer. The line along which this is examined is shown in
the previous figures for each case. The instantaneous velocities have been normalized
by the rms value of that component for the whole flow. In all cases there are large
velocity jumps across the shear layers with magnitudes of approximately two to three
times the rms velocity.

Therefore given the thickness of the layers discussed earlier, very large gradients
occur across these regions. These scale with the rms velocity divided by the Taylor
microscale. Also, the dissipation rate must also scale with these values, which is
consistent with the usual definition of the Taylor microscale. Note that the ratio of
the global rms velocity to the Kolmogorov microscale velocity is about 6 and 11 in
the low and high Reynolds number cases respectively. The appropriate scale for the
velocity jumps is indeed the rms velocity rather than the Kolmogorov velocity, since
the jump is very large in terms of the Kolmogorov velocity and also the two Reynolds
number cases show approximately the same jump in terms of the rms velocity. If
scaled with the Kolmogorov velocity there would be a factor of 2 difference. The
unusual shapes of the velocity trace in the higher Reynolds number case ((e) and
(f)) is because they are derived from measurements taken on cross sectional lines
cut through more than one sheet. In the case of (e) the vorticity of the sheets is of
opposite sign (though that is not apparent from the enstrophy). As such, the velocity
jump across the first sheet is offset by that through the second, leading to no net jump
across the pair through a region of high velocity exists between them. In the last case
there are two sheets of the same sign leading to an increase, a drop and then another
increase, giving an overall jump for the pair.

3 A Model for Thin Shear Layer Structures and High Reynolds Number
Turbulence Statistics

3.1 Concepts and theoretical mechanisms

Here a new model is developed for the quasi-universal small scale motions associated
with significant thin shear layers in high Re turbulence whose sizes vary between
those strongly affected by viscous stresses on the microscale �v , to those that are
dominated by large-scale inertial forces on the energy containing scale L, as shown
in IKH and Section 2.2. The average separation distance of these non-overlapping,
thin layer structures is LS, which is of the order of the smallest energy input scale
L. (Larger scales of energy input exist in most environmental and geophysical flows.
See Figs. 7, 8 and Section 3.4.)
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There is no evidence that there is a ‘fractal’ distribution of these structures
(e.g. [54]), as occurs in many other intermittent dissipative processes. But between
the significant structures there is a random distribution of moderate to low amplitude
disturbances on all scales less than L, whose peak values of vorticity and small-scale
velocity are much less than those in the thin shear layers. The dissipation rate is also
randomly distributed over all these scales, but does not have the extreme intermittent
values found in the significant thin layers, as shown in IKH and Section 2.2.

The significant structures have a characteristic, persistent and common form for
the local velocity and scalar distribution, which may be described qualitatively (e.g.
in terms of the form of their boundary or of a dominant instability mode) or quanti-
tatively, by defining profiles relative to some part or point in the structure as it moves
through the flow, such as the ‘edge’ of a thin layer (e.g. [10]) or the centre of a vortex.
By definition, if the structures are broadly repeatable the quantities can be defined
statistically and can be analysed dynamically. This approach differs from the usual
statistical and dynamical analysis of turbulence, where the variables are described
in terms of idealized (e.g. Fourier, trigonometrical, step functions etc.) or empirical
functions that are overlapping (usually space filling) which are defined in fixed or uni-
formly moving frames (e.g. [32, 55]). However, these classical analytical methods can
be applied locally in the frame of moving structures, as we show here. Many previous
models of turbulence (e.g. [22]) are based on the same methodology; but their choice

L1 L2 

l1

l2
l ~ 

LMs ~LS  ~ L 
Separation  
between  
thin layers

Overall scale

Fig. 7 Typical distribution of different types and scales of large eddy structures in turbulent flows
corresponding to different types of forcing or boundary conditions on large scale instability. Each
type has scale Lm (1 ≤ m ≤ Ms) ranging from macroscales 	 ∼ L1 to the scale of the separation
LS(= LMs ) between the thin shear layers with thickness � defines the largest inertial scale eddies
(note Ms ranges from 1 in typical homogeneous laboratory flows to ∼2 in shear flows, to 3–5 in
geophysical flows and greater in astrophysical flows). Note that � is of the order of the Taylor
microscale, λ ∼ Re−1/2 L, where Re is the Reynolds number of the eddies of scale L
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Fig. 8 Characteristic structure and length scales of the inertial range eddy motion in the outside re-
gion Ro adjacent to the thin shear layers showing downscale and upscale eddy distortion mechanisms.
The non-linear interactions and distortions of these eddies lead to a net downscale transfer by eddies
smaller than k−1. This determines the local equilibrium spectrum of eddies. Note that the layers are
moving at a velocity 〈v〉I averaged across the layer. The small scale energy transferred into the layers
is dissipated through the generation of intense elongated microscale vortices—‘a spaghetti-sandwich’
picture of turbulence

of characteristic model does not correspond to thin layer structures observed in the
DNS at very high Re (IKH).

The flow fields observed and measured in the numerical simulations of IKH,
and in the laboratory experiments of Section 2, show that thin shear layers form in
high Reynolds number turbulence, with a significant velocity jump across them. The
laboratory experiments show that they have a repeatable and persistent statistical
structure within and outside them. Their thickness � is much less than LS. Typically
the velocity jump across the layer 
u is of order uo (= urms). On the scale of their
thickness � the layers are approximately flat, although they have significant curvature
where they roll up at the ends of the layers. Although they move and change their
shape, this basic structure persists over a time scale large compared with the Taylor
microscale time scale that is of order �/uo (see Section 2.2).

Other characteristic structures also exist over these scales, such as billows or
rolled-up thin shear layers [22, 23]. Models of strain theory [56] and the measure-
ments presented here indicate that these can form at the edges of thin shear layers.
But on the evidence presented in IKH and in Section 2, there is no wide spread rolling
up of the significant thin layers into spiral vortices with a number of turns sufficient
to affect the dynamics or the spectra [57].

Within high Reynolds number turbulent flows small-scale structures are formed
by internal dynamics, and/or resistive boundaries and/or body forces [32]. Because
the time scales of large eddy structures (away from boundaries) TL tends to be larger
than or comparable with the time over which the flow develops (TD) [58, 59], the
large scales of turbulence are always affected by their initial or boundary conditions.
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Therefore they cannot have a completely universal structure, even asymptotically
(despite the suggestion in [60]).

However there are well-identified mechanisms that lead to small scales having a
number of common forms, despite the different and persistent forms of large-scale
eddy structures. As Betchov [61] and subsequent authors have suggested [29, 37], this
arises because large scale straining motions in general deform the vorticity of small
scale eddy motions, which becomes amplified and concentrated in elongated tubes
and extended sheets. However Betchov and others did not emphasize or explain that
the most significant sheets are also shear layers, i.e. having vorticity mostly of one
sign. Studies of isolated turbulent structures show that unless there is a finite mean
value of the vorticity in such structures, they cannot persist and therefore only have
a small effect on the flow [62]. As Batchelor and Townsend [63] first proposed, there
might be a self-replicating pattern of vertical sheets with energy dissipation concen-
trated in the sheets. These are effectively thin shear layers because the integrated
vorticity in the sheet is finite and varies slowly along the layers. But there has not,
until now, been clear experimental evidence that the shear layers tend to be thicker
and much wider than the diameters of the most intense vortex tubes in the flow. The
fact that the most intense tubes are generally positioned within the layers has not
previously been established computationally or explained.

What is the reason for the persistence of vortical layers in high Reynolds number
turbulence? Since the vortical layers block or filter external fluctuations [19], they
also distort and amplify smaller scale eddies near the layer. The blocking also
strengthens the mean shear of the layer and therefore contributes to their persis-
tence [15]. By contrast when individual vortex tubes with diameter � are generated
a region with high amplitude, randomly oriented fluctuations, e.g. outside the thin
layers, they only interact with these fluctuation over a distance of order � unlike sheet
structures which affect the flow over a distance L in general. Also as they distort and
amplify external eddies; they also trigger waves within the vortex, which leads to their
destruction [52, 64]. In high Reynolds number flow such vortices can only persist if
they are shielded from small-scale fluctuations, as occurs within the viscous-inertial
thin layers, described in IKH and in Section 3.3.

Because of the high value of Re, the dynamics is assumed to be effectively inviscid
in Ro outside the significant thin shear layers, where eddy structures with scale L
impact and depart from the layers (see Fig. 8). Note that the layers, and the regions
Ro are moving through the flow at a local velocity 〈v〉I . Straining by larger scale
eddies distort smaller eddies (with length scales �e and velocity ue significantly less
than 
u), as they impact on the shear layer are similar to the distortion of eddies
approaching a bluff body [65]. The dominant eddy motion and thence the form of the
spatial energy spectrum near the interface is derived from [21] using an asymptotic
analysis of the Fourier transform taken across the domain Ro.

Essentially a vortex sheet or thin shear layer acts like a solid plane for weak
fluctuations that travel outside the layer at the same speed as the mean flow (e.g.
[19, 66]). When a large eddy is being transported and impinges on the plane surface,
it is distorted in a similar way to eddies being advected onto a bluff body [20].
Experiments with vortex rings by for example Chu and Falco [67] demonstrate the
mechanism.

Near the interface, the small scale amplified eddies interact non-linearly, which
amplifies the small-scale turbulence near the interface, e.g. as in the experiments
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Fig. 9 Schematic diagram of a typical wave packet initially of wave-length �o with velocity ue
distorted by a larger eddy with velocity Ue and scale L impacting on the thin shear layer. The large
eddy forms a boundary layer of thickness �i as it moves over the thin shear layer. Note how as the
vorticity component ωs is stretched and the normal length scale is reduced, the contribution to the
transform of ω̃s(k2) becomes greatest in physical space where k−1

2 ∼ nc. This distortion determines
the power law form of its velocity spectrum (integrated over space) E(k) ∝ k−2p when kL � 1,
where 2p depends on the form of the large eddy. Note that the energy of the small scale turbulence
varies with distance n from the interface

cited by Hunt [20]. But the analysis demonstrated that only certain types of interac-
tion lead to a quasi-equilibrium form of the average energy spectrum. This also leads
to the conclusion that there must be a flux of energy into the thin layer at the inter-
face. As the larger scale eddies separate from the interface, the smaller scale eddies
are elongated and lead to local upscale transport. Although strong external eddies
(or external forcing) with velocities greater than u could break through the layers
(e.g. [15]), this is a rare event. Evidence of these processes was presented in IKH and
Section 2.2. A local dynamical and statistical analysis is developed based on these
mechanisms and these geometrical assumptions. The results are compared with the
predictions of KO theory for second and some third moment statistics in the inertial
range.

In Section 3.3 the order of magnitude of the fluctuating vorticity within the layers
is estimated in terms of the external fluctuations of the impacting eddies as they
are amplified by the shear in the layer, but damped by viscosity. The non-Gaussian
characteristics [68] of the fluctuations and the marked differences between average
and peak values are estimated by considering the sheltering mechanism which only
allows larger external fluctuations to penetrate the layer [19, 69]. The smallest length
scale of the typical microscale structures within the significant thin shear layers agrees
with the usual KO estimate, defined in terms of the kinematic viscosity ν, and the
average rate of dissipation for the whole flow (〈ε〉). But our analysis of the local
mechanisms in these layers shows that the characteristic magnitudes of vorticity
and velocity scales are much larger than the KO estimates, in agreement with the
simulation results in IKH.
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3.2 Inertial range interactions

3.2.1 Large eddy distortions near the thin shear layers

The analysis (following [21]) calculates how small scale eddy motions u(x, t) with
typical velocity ue, and length scales �e are distorted and advected by quasi-steady
larger motions U(x) of scale L where �e 
 L, as they impact on and are blocked by
the thin shear layers with thickness � (see Figs. 8 and 9). Through local dynamics
they maintain their sharply defined structure [15]. Note that L is less than the largest
outer scale 	 associated with motions that advect the whole layer (see Fig. 7). The
local analysis in Ro is in the frame of the moving layer using the local coordinate
system x(s, n, ζ ) where the thin shear layer (n < 0) lies below the plane at n = 0. The
rms value of U is Ue (averaged in a region outside the layer). The total velocity of the
large scale and small scale motion in the frame relative to the mean interface (which
undulates on a scale z0 less than �) is

u∗ = U + u = (Us, Un, Uζ ) + (us, un, uζ ) (1a)

(see Fig. 8). Note that the notation differs from Section 2 where fixed coordinates are
used. The large scale flow field U(x), defined outside the layer (i.e. n > 0), is denoted
for two- or three-dimensional motions by U(2)(s, n) or U(3)(s, n, ζ ). Because of the
shear stresses, a turbulent boundary layer forms with thickness �i relative to the large
eddies (as is observed in convective turbulence) as they impact on the interface [70].
If the small scale fluctuations have a small enough amplitude (i.e. ue < Ue) then on
the time scale of the distortion of the small eddies L/ue, they do not affect the large
scale blocking motions. The effect of the blocking and shearing on u is represented by

U = U(H) + 
U, (1b)

where U(H) is the large scale motion away from the thin layer and 
U is the
perturbation. As with other blocked eddy motions [20], outside the surface boundary
layer where n � �i, the perturbations 
U are incompressible and approximately
irrotational, and tend to zero away from the interface where n ∼ L. They have to be
matched to conditions near the interface. Thus, for n > �i,

∇ · 
U = 0, ∇ ∧ 
U = 0, (1c)

but as n/L → 0, where U → 0,


U · n = −U(H) · n and 
U ∧ n ∼ U(H) ∧ n. (1d)

Thus for a two-dimensional straining flow outside the boundary layer, since L � �i,

U(2) � (Usp + s,−n, 0), (2a)

where Usp is the large scale velocity at a local stagnation point (SP) where s = n =
ζ = 0. Here  is the strain rate  ∼ Ue/L. If U(x) is three-dimensional, (n > �i)

U(3) = (Usp + 1s, 2n, 3ζ ), where 1 + 2 + 3 = 0. (2b)

In the special case of axisymmetric strain, (n > �i)

1 = 3 = −(1/2)2. (2c)
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In the scaling analysis 2 is denoted by . Depending on its sign, if  ≥ 0 or < 0
the large scale eddy motion are like a stagnation or a separation point flow. Below
n = 0, over the time scale larger than �/ue there is a persistent thin shear layer, with
thickness �. Fluctuations within the layer of scale �v cause fluctuations on edge of the
layer, so that the interface near n = 0, has ‘roughness’ modulations also of scale �v ,
which are analysed in Section 3.3 (see [71]). Applying the boundary conditions (1d)
to match Eq. 2a where n ≥ �i, an approximation for U(2) is

U(2) = (sG1(n/L),−nG2(n/L), 0), (3a)

where

G1 = d
dn̂

(n̂ G2) and n̂ = n/L. (3b)

Zilitinkevich et al. [70] showed that the profile of the tangential velocity component
Us, as each large eddy impacts on the interface, is logarithmic, i.e.

G1 ∝ ln(n/z0), (3c)

where z0 ∼ �v . But when n/L � 1/10, the mean profile is affected by the external
eddies and (as in the convective problem)

G1 ∼ (1 − β(n/�i)
−q), where 0 < q < 1. (3d)

Since �i ∝ L, combining these formulae (as in boundary layer models), leads to the
approximate expressions,

G1 � (n/L)α and G2 � (n/L)α/(1 + α), where 0 ≤ α ≤ 1. (3e)

Here α = 0 is irrotational flow and α = 1 corresponds to a stagnation layer with
constant eddy viscosity. Typically α ∼ 1/2. The magnitude of these profile terms
depend on the relative boundary layer thickness �i/L.

3.2.2 Small eddy distortions

Now consider a small scale eddy packet with a typical internal scale k−1
o ∼ �o and

velocity uo ∼ ue, initially located at no, being distorted as it moves in the large scale
flow field with velocity Uo towards the plane n = 0. The overall size of the eddy
packet is assumed to be comparable to L and large compared to �e, when the eddy’s
initial location is no. This process of distortion is similar to that experienced by
eddies when a uniform flow Uo = (−Uno) impinges on a bluff body of scale L [21].
Since the normal velocity (−Un) decreases towards the surface as the travel time

τ(n) increases, the scale of the fluctuations decrease normal to the plane. As the
parallel components Us, Uζ increase, the scale in these directions increase and small
elongated vortices form parallel to the interfaces [72]. The linear distortion of the
fluctuating vorticity ω of the eddy is determined by the large scale strain, if at each
point |ω| ≤ |�|. But over the life of the eddy, because the non-linear effects are
relatively weak for components with greater distortion [56], the conditions for the
linear strain to dominate for the largest component of ω is that |ω| ≤ L/�o ∼ Uo/�o

which is satisfied since ue 
 Uo. Far from the layer where n ∼ L ∼ no,

ωoi(x, t) = R
{
ω̂oi exp

(
i[κ1os + κ2o(n − Uot) + κ3oζ(−κ2oUot)])}. (4a)
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Near to the plane, the magnitude of the local vorticity ωi in terms of ωoi is determined
by the distortion γij(x) which is determined by the stretching of vortex lines by the
large scale flow, i.e.

ωi(x, t) = γij(x)ωoj exp
(
i[−κ2oUo
τ(n) + κ1o(−
s)]), (4b)

where the ‘drift’ time lag is 
τ(n) = (1/Uo)
∫ no

n (Uno/Un − 1)dn, and the displace-
ment parallel to the interface is


s =
∫ no

n
(Us/Uo)dn, (4c)

so that in the impinging region where  < 0 and |s| 
 L for planar strain,

γ11 � 1/γ22 � Uno/Un ∼ (L/n)σ2D , (5a)

where σ2D = 1 + α, and for axisymmetric strain,

γ11 � γ33 � 1/
√

γ22 � (L/n)σ3D , (5b)

where σ3D = (1 + α)/2. Thus in general 1/2 < σ < 2 as the shear and strain vary.
(Note that although the straining by the large flow U is both rotational and irro-
tational, the latter determines the rapid growth of the distorted vorticity. But the
former tends to isotropise the fluctuations [56, 73].)

3.2.3 Fourier transform and energy spectra

The conditional Fourier transforms (F.T.) of the vorticity fluctuations ω̃ are calcu-
lated for an ensemble of small scale eddies in a typical impaction region Ro outside
a thin layer. Subsequently we consider the ensemble of all such regions. In previous
studies of impinging turbulence (e.g. [21]), the wavenumber or frequency spectra
were defined for homogeneous directions or steady conditions, not for coordinates
with high non-uniformity, where the methodology was reviewed by Farge et al. [74].
The analysis (and flow visualization) shows that the F.T. and spectra for high wave
numbers where |κ | � κo, are the greatest for those wave numbers directed normal to
the plane i.e. k = |κ| ∼ |κ2|. For each value of α depending on shear and strain, this
is evaluated for the largest vorticity components, i.e. ω1 in plane strain (or ω1, ω3 in
axisymmetric strain). We consider for each type of strain / shear a conditional F.T.
denoted by superscript (c) where ω̃1(κ2) is the Fourier Transform of ω1 in the normal
direction (for a function defined in a domain of scale LS ∼ L) [21, 75]. Thus in the
impinging region

ω̃2(κ2) ∼ 1/2π

∫ ∞

0
γ11ω̃o1 exp (i[−κoUo
τ(n) + κon + κ2n]) dn (6)

for a typical small eddy where κ2o ∼ κ1o ∼ κo, and κo L � 1. For the high wave
numbers κ2 � κo, there are rapid variations with n of exp(−iκoUo
τ(n)) near the
interface (see Fig. 9). Thence the main contribution at a given κ2 comes from the
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integral near n = nc(κ2), where the local scale on which ωc varies is comparable to
κ2

−1, which is the method of stationary phase. Thus nc is determined by

κ2 = κo − κoUo

(
d
τ

dn

)

n=nc

whence κ2 = κo(Uno/Unc) ∼ κo(L/nc). (7a)

Thence for κ2/κo � 1, i.e. nc(κ2) ∼ L(κo/κ2)
1/(1+α),

ω̃1(κ2) ∼ ω̃o1/(2πκo)

∫ ∞

−∞
(L/nc)

(1+α) exp

[

− i
2
κoUo

(
d2
τ

dn2

)

n=nc

n′2
]

dn′, (7b)

where

(
d2
τ

dn2

)

n=nc

= dUn/dn
U2

n
∼ (L/nc)

(2+α) ∼ (κ2/κo)
(2+α)/(1+α). (7c)

Thence

|ω̃1(κ2)| ∼ |ω̃o1(κo)/2π | 2(L/κo)
1/2(κ2/κo)

pω , (7d)

where for planar straining

pω = 1 − 2 + α

2(1 + α)
= α

2(1 + α)
. (7e)

Note that the exponent pω is determined both by the vortex straining and the wave
length compression.

Note that a small proportion of the incident small scale eddies are not governed by
this model where their length scales �e are very small compared to �o, with a velocity
scale ue, so that their vorticity ωe can be greater than and not correlated with the
large scale strain , i.e. �e ≤ ue LS/Ue. Such eddies are not affected significantly by
the large scale strain. But this contribution to the dynamics of the energy spectrum is
small. However, eddies with initial vorticity ωe comparable with or smaller than the
large scale strain (), are selectively organized and highly distorted, so that they con-
tinue receiving energy from the strain even when their vorticity exceeds  [56]. Note
that the components of velocity that are reduced by the linear distortion begin to be
amplified by the non-linearities and the smaller scale eddies become more isotropic.

Thus most of the small scale vorticity near the interface results from the distorted
forms of intermediate scale eddies originally with scale �o � no as they are advected
by the large scale motions. As shown above this leads to a self similar structure with
a small scale ‘power law form’ of the amplitude of the Fourier Transform and spec-
trum, where the exponent pω only depends on the geometry of the distortion [57, 74].
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Thus over the range of shear profiles i.e. 0 < α < 1, it follows from Eq. 7e that for
plane straining

0 < 2pω <
1
2
. (8)

By the same analysis, the critical value of nc ∼ κ−1
2 is the same for axisymmetric

strain. But the vortex stretching is weaker, as n/L → 0 and the change in γ11 leads to

2pω = 1/(1 + α), (9a)

so that

1
2

< 2pω < 1. (9b)

For very high wave numbers Fourier Transforms of the velocity fluctuations ũ
induced by the vortex stretching in the directions (s, ζ ), parallel to the interface, are
significant in all three velocity components (see below) so that outside the interface
(0 < n � L),

|ũ| ∼ |ω̃|/|κ2|, (10a)

where ũ and ω̃ are larger near κ2 ∼ n−1. The conditional form of the velocity F.T. is
simply related to the vorticity energy spectrum for strained components in Eq. 7d,
so that for κ2 L � 1,

|̃u|2 (κ2) ∼ κ−2
2 |ω̃|2 (10b)

for L−1 
 κ2 < �−1 in the domain Ro. Thence from Eq. 7 for a wave packet with
initial scale �o ∼ k−1

o , when k � �−1
o > L−1 the energy is greater where the other

wave numbers |κ1|, |κ3| are of order ko. Hence the three-dimensional F.T. is related
to the one-dimensional F.T. by |ũ1|2(k) ∼ L2

o|ũ|(κ2) where |κ2| ∼ k. The main
contribution to the conditional energy spectrum for three-dimensional high wave
numbers is therefore

E(c)
X (k) ∼ B(c)

X k−2p (10c)

for an impinging wave packet with scale �o ∼ k−1
o and domain scale L, where

−2p = 2pω − 2. B(c)
X is determined by the spectrum of the wave packet and, via the

exponent p, the form of straining by larger eddies. Thus

B(c)
X = E0

(c)(ko)L2p. (10d)

Since �o � L, the order of magnitude of E0
(c) ∼ u2

0 L.
Depending on the form of the large scale shear, the exponent p changes; for plane

straining,

2 ≥ 2p ≥ 3/2 (11a)

and for axisymmetric straining

3/2 ≥ 2p ≥ 1. (11b)

As small three-dimensional eddies on scale �e 
 L are advected into the stag-
nation regions their energy u2 is increased by a factor of approximately (no/n) [16].
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Even though each Fourier component of the small scale normal velocity un is blocked
by the thin shear layer, because the large scale straining keeps reducing the normal
length scale of the distorted eddies and amplifying the vorticity, the result is that the
mean square of un increases monotonically towards the interface (see [21], Figs. 10
and 11). Thence the rate of increase of small scale energy production in an eddy as
it approaches the interface is of the order of Un∂u2/∂n ∼ (uo

3/L)(L/n)(1−α), which
becomes very large near the interface. Also the smallest length scale (in the normal
direction) of the most energetic component ωe decreases in proportion to (n/no).

So far we have considered large scale motions impacting on the interface i.e.
Un < 0, which are regions of down-scale energy transfer. But as indicated in Fig. 8
the large scale eddy motions must also separate from the interface i.e. Un > 0.
In this part of the flow field the vorticity components that have been stretched
parallel to the surfaces (ω1(n), ω3(n)) from a position n from the surface as they
move away to a position ns are then compressed by the convergence of the stream
lines of the large eddies, i.e. ω1(n)/ω1(ns) ∼ Un(n)/Un(ns) ∼ (ns/n)α , i.e. the reversal
of the impacting process. To the first approximation (in ue/Uo) these eddies are
reversibly distorted as they are advected into adjacent separation zones, which is
why these zones are regions of negative production of small scale energy and upscale
energy transfer. This physical model broadly explains that the zones of local up and
down scale energy transfer are adjacent to each other near the thin layers and also
why they are approximately in balance as observed in data-analysis by Aoyama
et al. [40]. The average value (in the zone Ro) of (∂un/∂n)2, is greater than u2

e/�
2
e

in the impinging eddies which have a singular distortion as n → 0, and less in the
convergent separating flow zones where eddy scales are less than k−1 [15]. Near
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Fig. 10 Schematic diagram for the non-linear inhomogeneous (Obukhov-Townsend) model of how
the distorted eddies (of scale ǩ−1) larger than the scale k−1, i.e. ǩ−1 > k−1 located at n ∼ k−1 with
velocity ǔ(ǩ) interact with smaller eddies of scale k̂−1 < k−1 with velocity ǔ(k̂) centered at k̂−1. As a
result of the correlation between the shear stress unus and the local streamwise fluctuation, us, there
is a local flux of energy F� directed to the interface of the thin layer leading to local equilibrium and
persistence of the eddy structure
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Fig. 11 Characteristic profiles and energy spectra of the components of the velocity field over
the inertial and viscous range outside and inside the significant thin viscous layers. a (i) Typical
velocity profile of a distorted small scale eddy ue(n) outside the thin shear layer where their energy
contributes to the inertial range spectrum. (ii) Profile of characteristic microscale vortices within the
thin shear layer uv(n). (iii) Coarse grained tangential velocity profile across the thin layer, 〈Us(n)〉.
[Note the magnitude of all these velocity components are of the same order, uo. But, because of
the different length scales and spatial distributions their spectra are different] b Energy spectra of
the velocity (near the thin shear layers) (i) E(k) ∼ 〈ε〉2/3k−5/3 for k � �−1

v , the local equilibrium
spectrum (solid line) in the inertial range, with ‘cut-off’ at k ∼ �−1

v resulting from the interface
layer. (ii) E(c)(k) conditional spectra (+, −) of the distorted eddies that are not in equilibrium.
(iii) Ev�(k) ∼ (u2

o/L)k−2 for k � �−1 spectrum in the inertial and viscous range associated with the

vorticity of the thin shear layer (◦). (iv) Ev�(k) ∼ (
u2

o
L ��v) exp(−k�v) for k � �−1

v , spectrum in the
viscous range associated with the microscale vortices (×). Note that the component of the spectrum
(i) dominates in the inertial range while component (iv) dominates in the viscous range k > �−1

v

where �v ∼ �/(Rλ
1/2) ∼ (ν3/ 〈ε〉)(1/4)

the upwind interfaces, where the large scale flow defined in fixed coordinates is
directed into the shear layer, the impacting fluctuations are larger than at downwind
interfaces. Hence the energy transfer into the thin shear layers is also greater near
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the upwind interface, which leads to greater energy within the thin shear layer on the
upwind side (as shown in IKH).

The correlation between the stretching of vortex lines and the strain within the
stagnation/separation of zones adjacent to thin shear layers also determine the
skewness SK of the velocity derivatives. The finite and approximately constant value
of SK is one of the main characteristics of all homogeneous turbulent flows [35, 76].
In the former zones, where ∂Un/∂n < 0 (in notation of Fig. 9), 〈(∂un/∂n)2〉 as
the average value in the zone is amplified, it exceeds u2

o/�
2
o [21] and in the latter

∂Un/∂n > 0, 〈(∂un/∂n)2〉 is less than
(
u2

o/�
2
o

)
. So that over a region including both

kinds of zone, from the definition in Eq. 1a, 〈(∂u∗
n/∂n)3〉 ∼ 〈(∂un/∂n)2(∂Un/∂n)〉 < 0

(see Section 2.2.1 and Fig. 9a of IKH).
Therefore the skewness of the derivatives in the zone outside the thin shear layer

Sk = 〈(∂u∗
n/∂n

)3〉/〈(∂u∗
n/∂n

)2〉3/2 ∼ −1 (12)

as the numerical and experimental data shows Sk
∼= −1, with weak dependence on

Reynolds number [77].

3.2.4 Non-linear energy transfer near the interface

The linear mechanism for the distortion of small scale eddies by larger impinging
eddies reaches a maximum near the interface at n = 0. This distortion is reversed as
the large eddy motions separate from the interface. However, during this reversible
distortion process there is a non-linear interaction between the small eddies of
decreasing scale near the interface, as noted in the computations of energy transfer
between wave numbers given in Fig. 23 of IKH. As shown below this determines the
net transfer of fluctuating energy into the thin viscous layers F� and also reduces the
small scale anisotropy. The wind tunnel measurement by Britter et al. [65] of tur-
bulence approaching a bluff body confirmed the theory of Hunt [21] that the energy
containing motion of the incident turbulence become very anisotropic, but the degree
of anisotropy of small scale velocity components of scale n at a distance n is within
a factor of about 2. Experiments of vortices propelled onto rigid surfaces (e.g. [67])
demonstrate this distortion and quasi-isotropisation process.

The period over which this distortion of the small scales occurs is of the order
of �e/ue which is less than that of the large scale eddies (∼L/uo). Because the
energy and length scales of the distorted eddies are distributed inhomogeneously
near the interface, a modification is needed of the Obukhov [4] and Townsend [16]
model for the spectrum in terms of non-linear energy transfer T(k) from eddies
of wave number ǩ less than k with characteristic velocity ǔ(k), to the smaller
eddies, with wave number k̂ greater than k with characteristic velocity û(k). In this
locally inhomogeneous flows outside the thin layers, denoted by suffix X, these
characteristic eddy velocities are defined by the square root of the energy spectra
in Eq. 10c integrated over 0 to k, and from k to ∞, respectively. As the previous
analysis has shown the distortion and therefore the non-linear interactions differ
between the forms of the large impacting eddies. We denote the energy spectrum
of different classes of distorted eddy as E(c)

X . The distribution and magnitude of
the quasi-independent eddy motions associated with scales k−1, are approximately
determined by their power law spectra when p is not an integer [57]. In the case
of impinging eddies (like motion in spiral eddies) the transforms are dominated by
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eddies û(k) at over a restricted range of space, in this case n ∼ 1/k. The eddy concept
here is similar to that used in the analysis of Section 3.3 of IKH.

The transfer of energy from larger to smaller scales and the form of the spectra
are approximately determined by the weakly non-linear model based on the linear
concept that the strain rate (∂ǔ/∂n) of larger scale eddies with scale ǩ amplifies the
energy of the smaller scale fluctuation û with scales k̂ less than k−1. Following [4]
and [16] the rate of energy transfer per unit mass to eddies with scale less than k−1

for this range of eddy motions outside the thin shear layers is denoted by T(c)
X (k)

T(c)
X (k) ∼ ∂ǔ

∂n
· û2 ∼

[∫ k

0
ǩ2 E(c)

X (ǩ) dǩ

]1/2

·
∫ ∞

k
E(c)

X (k̂) dk̂. (13a)

This model is extended here, as a conditional model, for certain classes of large and
small scale eddy motion in the highly inhomogeneous flow near an interface.

The average transfer over the ensemble of all the impact regions is denoted by
TX(k). Note that in the RDT approximation (as bluff body experiments have demon-
strated [65]) the length scale k̂−1 of the strained eddies can be of the same order as the
length scale of the straining flow, in this case ǩ−1. The simulations by [38] showed that
this is the optimum size relation of û and ǔ for eddy transfer. It is now assumed that
(following [56], and Section 3.2.3) as the eddies become distorted non-linearly, the
form of the non-linear energy spectrum E(non−lin)

X (k) is approximately unchanged, i.e.

E(non−lin)

X (k) ∼ E(lin)

X (k), (13b)

where E(lin)

X (k) is the energy spectrum given by the linear model.
Note that if E(c)

X (k) ∝ k−2p is substituted into Eq. 13, then the integral over ǩ con-
verges if 2p < 3 and the integral over k̂ converges if 1 < 2p. If these conditions are
satisfied then the energy transfer T(c)

X (k) is dominated by the nonlinear interactions
that are local in the wavenumber space. (Note that in the linear (RDT) model in
Section 3.2.2, it is assumed that the distant (in the wavenumber space) interactions
are dominant.) It is assumed in the present model that the approximations for the
energy transfer T(c)

X (k) and the spectrum E(c)
X (k) based on the linear model may

be approximately extrapolated to the nonlinear regime. In the present model it
is assumed that since the turbulence is three-dimensional, its anisotropy does not
significantly affect the form of the eddy transfer process.

These interactions between eddies on different scales determine the forms of the
spectra near the interface. From Eq. 13 it follows that (only considering the physically
significant cases where 3 > 2p > 1)

T(c)
X (k) ∼ B(c)

XT
· k3/2(5/3−2p), where B(c)

XT
= (

B(c)
X

)3/2 (14a)

and B(c)
X is the dimensional variable in Eq. 10d depending on the larger scale straining

eddies and the energy of the small scale eddies.
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From the definition of T(c)
X (k), the rate of change of energy spectrum for unsteady

turbulence is related to E(c)
X (k, t) (averaged over all the small eddies in one type of

large eddy impact region)

d
dt

∫ k′′

k′
E(c)

X (k)dk − (
T(c)

X (k′′) − T(c)
X (k′)

) = 0. (14b)

Since Eq. 14 shows that, depending on whether the value of the exponent 2p is
less or greater than 5/3, either the energy is building up (

( d
dt

)
E(c)

X (k) > 0) at high
wave numbers in the straining region near the interface or is decreasing. For either of
these types of eddy interaction where 2p �= 5/3 the local turbulent structure would
be rapidly changing and would not persist. This would not be consistent with the
numerical and experimental observation or the model concept that the turbulence
is in a state of locally quasi-equilibrium, when averaged over all the large structures
impinging/separating from the interfaces in the frame moving with the thin layer.

Thus for the dominant eddy structure, which determines the mean statistics, the
transfer function TX(k) is constant for all wave numbers in the inertial range outside
the thin layer, which is denoted by TXeq, i.e.

T(c)
X (k) = TX(k) ∼ TXeq when 0 < n 
 L. (15a)

This is consistent with Eq. 13.
Therefore the value of p for the dominant range of eddy structures that produce

small scale turbulence with the greatest persistence is

2p = 5/3 (15b)

and from Eq. 15a, for the persistent structure over all impact regions, the coefficient
in the spectrum is

BXT = TXeq, (15c)

and from Eqs. 10c and 14a

EX(k) ∼ (TXeq)
2/3k−5/3. (15d)

This implies from Eq. 11a that the inertial range spectrum in the exterior region
is determined by plane structures and their interactions with the thin layers. Also
these non-linear interactions of the distorted inhomogeneous small scale eddies near
the interface tend to make these motions isotropic during the time scale of the large
eddies because many of these interactions are on the same time scale (see Section 2).

The main contribution of the down-scale transfer to the small scale vorticity
and velocity fluctuations of scale k−1, occurs in a small region extending from the
interface to a distance where n ∼ k−1. Consequently as energy is transferred to higher
wave numbers, it is also effectively transferred to smaller scales near the interface.
In the space with dimension of order L near the interface, the quasi-linear rapid
straining of the smaller eddy motion by the large eddies impinging increases the en-
ergy of the eddy motions and affects the non-linear transfer from the large to smaller
eddy scales. But there is neither an equivalent increase in viscous dissipation outside
the thin layers (shown in IKH), nor energy advection of excess energy away from
the external region outside the interface is the region of upscale transport (IGK).
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Consequently there is a net transport of energy to the thin layers. By considering the
mean turbulent energy equation per unit mass (e.g. [76]), in the moving frame

F� = Fn(n = 0) = −
〈

u∗
n

(
u∗

i
2

2
+ p∗

)〉

, (16a)

where u∗
i

2/2 is the kinetic energy of the fluctuation relative to the interface (i.e. the
large eddies and the small eddy motion) and is the fluctuating pressure (normalized
on density).

Studies of two-point cross correlation in sheared and shear-free turbulent bound-
ary layers at very high Reynolds number [20, 78] have shown that the blocking mech-
anism at the surface determines that the length scale of the normal components of
eddy motion is of order n, the distance from the resistive interface at n = 0; i.e. eddies
centered at higher n, with length scale n are inducing fluctuations at the interface [16].

Thus the flux of energy to the interface Fn has contributions from eddies of all
scales up to order L. The dominant eddy structure producing this flux is the product
unusus of the local Reynolds shear stress unus and the fluctuation us is the direction
of the impinging eddies at the interface (Figs. 9 and 10). Both these terms are finite
as n → 0 at the interface and are continuous and us are continuous since they match
the fluctuation within the thin layer (see Section 3.3). Note that F� depends on the
mean value of the product.

This correlation can be estimated and related to the spectrum by considering how
locally unus and us vary near the interface. The large scale impinging flow field u leads
to a positive shear flow near the surface where s > 0 and ∂us/∂n > 0 (Fig. 9). This
distorts the small-scale eddy motion, which induces a positive Reynolds stress (i.e.
unus < 0), and thence the amplification of both us

2 and the shear dǔs/dn of eddies
larger than n. Note that where s < 0, unus changes sign.

The distortion of the eddy scale motions, u, in the shear flow near the interface
(defined in Section 3.2.1) affects the non-linear transfer of energy from eddies of
scale ǩ−1 to smaller eddies of scale k̂−1. This determines the magnitude of F� and its
connection with the energy spectra.

The RDT model for the Reynolds stress co-spectrum Esn(k) in terms of E(k) for
homogeneous turbulence in a uniform large scale shear dus/dn, shows that in the
inertial range [79],

Esn(k) ∼ −E(k)
dUs

dn
τ̂ (k). (16b)

Here τ̂ (k) is the short relaxation time for eddies of scale k−1, which is estimated from
the physical arguments of KO theory, i.e.

τ̂ (k) ∼ [
E(k)k3]−1/2

.

Thence the co-spectrum is a small perturbation from the KO isotropic homogeneous
turbulence. This model leads to

Esn(k) ∼ −〈ε〉1/3 dUs

dn
k−7/3 (16c)

(Wyngaard [42]).
This quasi-homogeneous result can be applied where dus/dn is a variable quantity.

Then the rms of the co-spectrum E′
sn(k) of the Reynolds stress of the small scale
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eddies û(k̂) is proportional to the rms gradient of the larger scale eddies ǔ(ǩ) (as
previously estimated in Eq. 13a), where

dǔ
dn

(k) ∼
[∫ k

0
ǩ2 EX(ǩ)dǩ

]1/2

. (16d)

Thus from Eq. 16b

E′
sn(k) ∼ EX(k)

[
EX(k)k3]−1/2

[∫ k

0
ǩ2 EX(ǩ)dǩ

]1/2

∼ EX(k). (16e)

By considering its contribution to the energy flux F� from all eddy scales, and because
of the correlation (already explained) between unus and us in the shearing region
near the interface, it follows that

F� ∼ −〈unus · us〉 ∼ 〈(unus)
2〉1/2 · 〈u2

s 〉1/2 ∼
∫ ∞

L−1
E′

sn(k̂)dk̂ · (TXeq · L
)1/3

, (16f)

where from Eq. 15d 〈u2
s 〉3/2 ∼ [∫ ∞

L−1 E(k̂)dk̂]3/2 ∼ TXeq · L. Substituting Eq. 16f into
Eq. 15d shows that the quasi-equilibrium energy spectrum (15d) is determined by the
energy flux into the thin layers and not by local dissipation in Ro outside the layers.
Thence

F� ∼ TXeq · L. (16g)

By considering the balance of energy across the thin layers, which are in approxi-
mate equilibrium, it follows that the average rate of dissipation within the thin layer
per unit area, ε� is related to F� by F� ∼ ε��. So that from Eqs. 15c and 16g TXeq is
equivalent to the spectrum coefficient BXT and to the dissipation rate over the whole
flow field 〈ε〉, i.e.

TXeq ∼ BXT ∼ ε��/L ∼ 〈ε〉 . (17)

Note that (as in the simulated turbulence, see Table 2 of IKH) the mean dissi-
pation in the thin layer ε� is therefore significantly greater (by O(Re1/2)) than in the
quasi-homogeneous region. Table 2 of IKH also shows that TXeq/ 〈ε〉 is greater on the
side of the significant thin shear layer where the mean velocity points into the layer
(i.e. upwind side) and less on the side it points outwards. But on both sides TXeq/ 〈ε〉
is much less than inside the layer. Thus BT is the average value of energy transfer
over all the eddy structures, so that Eqs. 16 and 10b lead to the average magnitude
and form of the inertial range spectrum outside the thin layer E(k). It follows that
the magnitude of the inertial range spectrum associated with regions of scale L
around the significant shear layers can be expressed in terms of the relevant physical
variable TXeq, i.e.

EX(k) ∼ (TXeq)
2/3k−5/3. (18a)

But from Eq. 16 this is equivalent to the model of KO in which the spectrum is
expressed in terms of the average rate of dissipation 〈ε〉, i.e.

EX(k) ∼ 〈ε〉2/3 k−5/3. (18b)
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Thus the model proposed here shows how the linear distortion of the local turbu-
lent eddy structures, together with their weakly non-linear interactions and selection
mechanism close to the interface (as seen in Fig. 23 and in Table 2 of IKH), deter-
mines the quasi-equilibrium local form of the inertial range second order spectrum
outside the thin layer. Table 2 of IKH also shows that there is significant eddy transfer
to small scales within the thin layer. Satisfying these results also agree with Eq. 18b
for the inertial range. But note that the magnitude of high order moments are likely
to differ more from the homogeneous KO model.

Note also that the model does not assume that the velocity or vorticity field near
the interface are approximately isotropic. Measurements show that the spectrum (18)
is valid over wave number where the fluctuations are not isotropic (to within a factor
of 2 or 3) [43].

3.3 Dynamics of thin shear layers and viscous microscale eddies

3.3.1 Overall structure of the layers

We now consider an idealized model for the main features of the significant thin
layers of thickness �. It is observed that their curvature is small compared to 1/�,
and that they extend over distances large compared to �, typically of order LS, i.e.
comparable with the distance between neighbouring layers (see Fig. 7). The layers
are moving with the large scale flow 〈U〉 (defined over LS) and there is in general a
mean velocity jump 
U� (in the s direction—as in Fig. 9) across these layers, where
|
U�| = 
U� is of the order of the rms velocity uo and 
U� changes slowly with s
(over distances of order L).

The thickness of the layer is determined partly by impact and shearing between
large scale impinging eddies with velocity U ∼ uo and scale L, which leads to a
inertial-viscous shear layer e.g. [80] with thickness � ∼ LRe−1/2; such as the viscous
shear layer around a high Reynolds number vortical eddy. Note that the rate of dis-
sipation in such layers associated with the mean velocity is ε̄� ∼ ν · uo

2/�2 ∼ u3
o/L ∼

〈ε〉. Thus ε̄� is of the same order as that of the mean dissipation in the turbulence
outside the thin layers, i.e. ε̄� ∼ 〈ε〉. This is much less than the high dissipation rate
generated by the flux of the energy of the external eddies (ε�), which is considered
below.

Note that the diffusion outwards of the high gradient of mean velocity within the
thin layer is inhibited by the counter gradient effects of straining by the large external
eddies-provided they are not so strong that they deform or destroy the interface
[8, 15, 81]. Because the external straining is asymmetric, being greater on the upwind
side, the external flow is also asymmetric. The interface between the external and in-
ternal flow structure has a finite thickness �i, which is observed to be significantly less
than � [31, 71], and is determined by the internal fluctuations, which are considered
below.

3.3.2 Fluctuations and structures within the thin layers

In high Reynolds numbers turbulence, when external eddies with scale �e moving
with a velocity ue in a larger scale flow relative to the large scale velocity U approach
a thin shear layer with thickness � significantly less than �e, they may or may
not induce significant fluctuations within the layer. If the eddy velocity ue (in the
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direction parallel to the layer) is approximately equal to U (the typical difference
being of order ue), the large scale fluctuations within the layer are much less than
ue—the sheltering effect [19, 69]. However, fluctuations on the scale of � develop on
the interface, which are then amplified by the mean shear in the layer (
U�) and
in turn induce fluctuations across the whole layer [82]—as has been observed and
simulated in boundary layers.

Linear analysis and computations of the distortion of the vorticity of non-normal
fluctuations shows they grow as a result of the strain  ∼ 
U�/�, the compressed
and extended length scales �c and Le decrease and increase respectively (e.g. [73,
83]) until asymptotically the smallest scales reach the limiting viscous scale �v where
viscous diffusion of vorticity balances the strain rate, where

�v ≈
( ν



)1/2
,  = 
U�/� ∼ (uo/L)Re1/2 ∼ (〈ε〉 /ν)1/2. (19a)

Thence in terms of 〈ε〉 , ν ;

�v ∼ (ν3/ 〈ε〉)1/4 ∼ L · Re−3/4 ∼ L · Rλ
−3/2. (19b)

This estimate is for straining by the shear flow leading to vorticity components ωs, ωn

in the s, n plane. The length of the vortical structure in the ζ direction, normal to
the directions is not significantly changed by this mechanism. Because the vortices
are flattened into strips by the straining, they then tend to ‘roll-up’ non-linearly and
rapidly into vortices with radius �v (e.g. [56]). Significant vorticity fluctuations are
also caused by the upward deflection and subsequent ‘horse-shoe’ distortion of the
vortex lines of the mean shear [84]. The velocity induced by the horse-shoe structure
locally amplifies the vorticity ωζ , up to the visco-inertial limit. This is why, as seen in
the simulations (Fig. 3 of IKH), the amplified micro scale vortices in the thin layers lie
in all directions.

The magnitude of the vorticity fluctuations is estimated based on stretching of the
vortex lines with length Le up to the visco-inertial limit and their initial vorticity ω�o

(produced by external fluctuations), which is of order of the mean vorticity of the
layer, i.e. ω�o ∼ 
U/� ∼ ωo Re1/2. This is much larger than ωo ∼ uo/L, the vorticity
of the large scale eddies. The typical initial scales of the fluctuations are comparable
with the layer thickness, � since much larger scale internal fluctuations are not
amplified in the shear layer. The planar distortion leads to Le ∼ � exp(t) ∼ � · �/�c

for �c > �v .
Thence, the greatest lengths Lv of the micro vortices are of order � · �/�v , i.e.

Lv ∼ � · Re1/4 ∼ L · Re−1/4. (20a)

Therefore the microscale vortices are shorter than the external scale of large eddies
LS, but greater than the layer thickness by O(R1/2

λ ), which correspond to a factor of
about 10 for the simulations (IKH) and experiments (Section 2; [51]).

For such isolated vortices |ω| = ωv is proportional to the length of the fluid volume
of the structure in the direction of ω (e.g. [76]), i.e.

ωv ∼ ω�(�/�v) ∼ ω� Rλ
1/2 ∼ ωo Rλ

3/2. (20b)
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Note that the magnitude of the vorticity of certain fluctuations (ωv) can exceed
that of the mean vorticity in the layer (ω� ∼ uo/�), because non-linear terms in the
equation may not limit the growth of ωv [56].

Thence from Eq. 20b the peak vorticity ωv is greater by a factor Rλ
1/2 than the

mean vorticity of the layer ω�, which is of the order of the rms vorticity of the
whole domain ωrms = (2�/3)1/2 (Table 1). ωv is much greater than the integral scale
vorticity, ωo by O(Rλ

3/2), i.e.

ωv ∼ ωo Re3/4 ∼ ω� Re1/4 ∼ ωkol Re1/4. (20c)

The fluctuating vorticity component ωζ parallel to the mean vorticity in the shear
layer is of the same order as Eq. 20c for positive values (i.e. with the same sign as the
local mean vorticity). But the length scale of the fluctuations in this directions are of
the order of the “horseshoe” type of eddies which are of the order of the thickness
of the layer, i.e. �. These structures do not appear to be associated with elongated
vortices in the flow direction. (See Fig. 3 of IKH).

The rms value of the microscale vorticity fluctuation averaged across the layer,
ω

(Inside)
rms , is of the order of ωv/δ̃

2
v , where δ̃v is the normalised distance between

vortices, i.e. δ̃v = (δ±/�v) (δ± is defined in IKH as the distance between the nearest-
neighbor positive/negative ωy peaks that satisfy a certain threshold |ωy| > γω

(Inside)
rms ).

By contrast the KO microscale vorticity in the quasi-homogeneous regions outside
the layer is determined by weak fluctuations distorted by large scale straining until
limited by viscosity, so that ω� ∼ ωkol ∼ (〈ε〉 /ν)1/2 (see [29]).

The corresponding peak velocity difference uv is of the order of the velocity jump
across the thin layer or the rms velocity of the energy containing eddies. It is much
greater than the homogeneous estimate ukol for microscale vortices by O(Rλ

1/2), i.e.

uv ∼ ωv�v ∼ uo ∼ ukol Rλ
1/2, (20d)

where ukol ∼ (〈ε〉 ν)1/4. The average (i.e. local, rms) value of the smallest scale vortic-
ity fluctuations in the layer is of the same order as ωv since the spacing is of order �v .

The intense vortices in these layers dissipate energy locally at a rate

εv ∼ ν(uv/�v)
2 ∼ (u3

o/L)Rλ, (21a)

which is a factor Rλ greater than the average over the whole flow. This is related
to the average dissipation across the layer ε�, in terms of the distance between the
vortices, i.e.

ε� ∼ εv/(δ̃
2
v/4) ∼ εv (21b)

since δ̃v ∼ 2 for typical vortices (see Section 3.2 of IKH).
These estimates can be compared with the simulations in IKH, summarised in

Table 2, and also with the experimental results in Section 2. (Note that the order
of magnitude theoretical estimates do not agree closely with all the detailed data,
but that they are consistent with the overall structure of the turbulent flow.) The
thickness � of the significant thin layers where the rms vorticity ω

(Inside)
rms is 3.3 times

greater than the rms vorticity ωrms for the whole flow is about 4λ, where λ is the
Taylor microscale given in Table 1 of IKH. Within the thin layers, the thicknesses of
the microscale vortices �v are computed to be about 10η, where η = (ν3/ 〈ε〉)1/4. The
strengths of the peak vortices ωv , defined in Fig. 18 of IKH as γωInside, vary over a
factor of 2. But there are some vortices with much greater magnitude.
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Table 2 Characteristics (measured by IKH in the DNS of homogeneous turbulence at Rλ = 1131)
of a strong thin shear layer and strong microscale vortices within the thin layer. For comparison
with coherent structure model in Section 3.3.2, the mean vorticity across the layer ω� ∼ |〈ω〉Inside|,
fluctuations of vorticity ω

(Inside)
rms ∼ 3.3ωrms. Note that the Kolomogorov microscale variables are

ωkol ≡ (〈ε〉/ν)1/2 ∼ 1.73ωrms and ukol ≡ (〈ε〉ν)1/4 ∼ 0.0585uo

�v : ∼ 10η, � : ∼ 4λ, Lv : ∼ 3λ ∼ 0.1L
ωv : 5.6ωrms − 35ωrms, ω� : 0.78ωrms, ωo(∼ uo/L) : 0.014ωrms,
uv : � 3.4uo, εv : � 85〈ε〉, ε� : ∼ 10〈ε〉

The thickness estimate broadly confirms Eq. 19b, and supports the concept that �v

is determined by a quasi-linear mechanism, driven by random forcing by the exterior
eddies over a wide range of amplitude. The model predicts (as explained below
Eq. 20d) that the ratio of ω

(Inside)
rms to ωv depends on the normalised spacing δ̃v which

is not very sensitive to γ (Fig. 18 of IKH). Typically δv ∼ 2�v . This implies that

ω(Inside)
rms ∼ ωv/δ̃

2
v ∼ ωrms Rλ

1/2/δ̃2
v .

Thus if Rλ ∼ 103 and δ̃v ∼ 1, the model implies that ω
(Inside)
rms /ωrms is about 30. Since

the computations show that this ratio is about 3, it indicates that δ̃v is about 3 for
typical vortices.

The peak velocities in the vortices, denoted δw/uo in Fig. 16a of IKH, have a
wide range of amplitude, because of the random external forcing. By integrating the
probability density function in Fig. 13a from δw/uo equal to 0.3 to 3, it follows that
the probability of a microscale vortex in a ‘significant’ thin shear layer having a mag-
nitude of order uo is about 0.3. This is broadly a confirmation of the prediction (20d).

3.3.3 Spectra and moments associated with signif icant thin layers

The velocity energy spectrum E(k) in the high wave number range is determined by
the inertial range eddies and the fluctuations generated by the intense vortices within
the thin layer. But the contributions of these fluctuations are very small outside the
thin layer because of the sheltering by the layer’s vorticity. The velocity fluctuations
in the normal direction induced by the vortices lead to elongated shearing motions
or ‘streaks’ within the thin layer on the scale Lv ; but as linear theory and DNS simu-
lations of eddy structure in shear layers (reviewed by Hunt and Carruthers [73]). Lee
et al. [83] show that for low wave numbers between the large scale 1/Lv and the small
viscous scale of order 1/�v , the spectra are self-similar and typically proportional to
k−q where q = 1 or 2, depending on the initial form of the disturbances. (These were
analysed for neutral and stratified flows by [85]). She and Jackson [86] introduced a
model based on the spectral analysis of measurements that q ∼ 1, for the terms that
is a correction to the −5/3 and concluded that there might be a double structure of
internal vortices and coherent structures. q = 1 is the low wave number exponent in
many confined turbulent shear flows exhibiting a ‘streaky’ structure (e.g. [87, 88]).

There are also significant fluctuations, 
u′, in the jump velocity across the thin
layer, with magnitude of order uo. Consequently there are fluctuations of this order
in the external region over the scale L.

Let E(c)
v� (k) and E(c)

X (k) be the conditional energy spectra over the ‘local’ space
external and within the thin layer (i.e. with volume L3), associated with the impinging
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eddies and with the highly anisotropic internal layer fluctuations, respectively. Since
the small scale motions in these local spaces are approximately independent of each
other, the spectra for the significant layers (denoted by { }) over the whole domain
are the average of the conditional spectra over all thin layers, i.e.

{E(k)} ∼ EX(k) + Ev�(k). (22a)

There is a cut-off of EX where k−1 is smaller than �vi, the thickness of the interface
between the thin layer and the external flow. The spectrum for the fluctuations in
the thin layer Ev� extends to the smallest viscous scales of order �v . Since �vi ∼ �v ,
this means that both spectra cover the viscous range of wavenumbers, but are not
dependent on flow in the same regions of space (see Fig. 11).

An approximate model for EX(k) for the impacting motions of the external
eddies is

EX(k) ∼ 〈ε〉2/3k−5/3 exp[−CX(k�vi)
mX ]. (22b)

where CX and mX are non-dimensional positive constants, and the exponential
decay term for k > �−1

v and the parameter mX depend on how the external
fluctuations at the edge of the thin layer adjust to the fluctuations within the layer,
which could not be resolved in the simulations in IKH.

Another model is appropriate for Ev�(k), to account for the visco-inertial eddy
motions in the layers plus the contribution of the random jump velocities (
U�)
across the shear layers and the internal velocity profile, i.e.,

Ev�(k) ∼ (uo)
2 L

[
(�/L)CI H(k� − 1)/(kL)q + Cs(kL)−2] exp[−Cv(k�vi)

mv ], (22c)

where H( ) is the step function and Cv, mv are non-dimensional positive constants
which need not be specified for the following discussion. Note that the total energy of
the internal fluctuations is confined within the layers. Hence the geometrical factor
(�/L) is introduced to model the spectra over the space of order L. CI , the coefficient
for internal fluctuations, which include peak values of order uo, is at most of order 1.
It is multiplied by a step function H( ), since its magnitude is reduced for k < �−1 and
since the internal fluctuations do not extend outside the layer as a result of shielding
by the vorticity at the edges of the layers (e.g. [69]). The coefficient Cs for the spectra
of fluctuations across the layer (which contribute to the spectra for wavenumbers
over the range L−1 to �−1) is of order 1—as with all fluctuating vortex sheets.

Note that the velocity fluctuations associated with the fluctuating net shear across
the layer induce a k−2 spectrum (as usual for step functions) in the external inertial
range flow region, where k�v 
 1. For k � 1/�v there is a viscous scale cut off. Thus
the two contributions in the inertial wave-number range (outside the thin layers),
where L−1 < k < �−1, which come from the impinging turbulence and the shear layer
fluctuations, i.e. from Eq. 22

EX(k) ∼ (uo)
2 L(kL)−5/3 and Ev�(k) ∼ (uo)

2 L(kL)−2. (23)

Note that the −5/3 inertial range is valid only when L/�v > (kL) � 1. From
Eq. 22 it follows that the ratio of EX to Ev� varies over this range. The criterion for
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the inertial eddy spectrum to dominate over the second order shear layer induced
spectrum over this whole wave number range is that Re1/4 � 1. For the simulations
used here Re1/4 ∼ 10, so the criterion is well satisfied. (This is the criterion that
the smallest scale motions evaluated on the KO model are much larger than the
largest scale strains [57].) The combined spectra from Eq. 22 suggest that the
‘compensated’ form for E(k), (i.e. k5/3 E(k)), can increase slightly above the inertial
range spectrum (22b) for a limited range of wave numbers near k ∼ �−1

v if �vi < �v

(IKH, IGK).
Away from the significant thin layers, the quasi-homogeneous eddy motions have

weaker microscale vortices vortices of magnitude ωkol ∼ uo/λ ∼ ω� with the typical
velocity fluctuations of magnitude ukol ∼ uo/Rλ

1/2, but their spectra Eqh(k) have the
same form as those associated with the thin layer (22b). This is because of the larger
number of weaker (rather than stronger) structures per unit volume.

Higher order moments can indicate better than second order spectra the intermit-
tency of the fluctuations in the thin layers (see Section 3.1 of IKH and Section 3.2.3).
The simulations show that within the thin layers of thickness � the vortices are
close packed, with a typical spacing of order �v . It implies that the flatness factor of
vorticity within the layer is determined more by their strength than by their spacing.
From the exponential pdf of the velocity jumps δw in Fig 16a of IKH, since their
thickness does not vary significantly and since the peak vortices in the specific layer
have components predominantly parallel to y, it follows that the pdf of vorticity is
also exponential, and therefore F

[
ωy

]
Inside ≈ F

[
∂w/∂x

]
Inside. (Here local flatness

factor of φ in a specific region D is defined by

F [φ]D ≡
〈
(φ − 〈φ〉D)4

〉
D[〈

(φ − 〈φ〉D)2
〉
D

]2 ,

where 〈φ〉D is the average of φ over the region D. “Inside” denotes the region
inside the specific layer (see IKH).) The simulations show that F

[
∂w/∂x

]
Inside ≈

6.0 is much less than the flatness factor of ∂w/∂x over the whole domain E , i.e.
F [∂w/∂x]E ≈ 15.6. As shown in Fig. 14 of IKH, vortices in the thin layers have
much larger gradients than in the distorted eddies outside the thin layers. Also, the
spacing of the layers is of order L. If we assume that ∂w/∂x is negligibly small outside
the layers, then F [∂w/∂x]E is estimated (using L/� ≈ 10 from Table 1 of IKH) as
F [∂w/∂x]Inside × (L/�) ≈ 60, which is not far from the DNS value.

We conclude that the quasi-deterministic model for the random distribution of the
strained microscale vortices in the viscous layers broadly agrees with the simulations.
It also helps explain the limitations of the physical interpretations of the KO model
that assumes a homogeneous distribution of microscale eddies. However, the KO
prediction for the smallest statistical length scale �v in relation to the average
dissipation rate 〈ε〉 and ν, i.e. �v ∼ (ν3/ 〈ε〉)1/4 does indeed agree with the observed
average thickness of the microscale vortices in the significant thin layers (Table 2 and
the experiments in Section 2).

3.4 Connecting thin-layer structures to overall scales

The model proposed here for high Reynolds number turbulence flow fields is
consistent with numerical simulations and experiments, and shows how the inertial
and viscous range statistics can be explained physically by considering the significant
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thin layer coherent structures and the weaker random fluctuations that lie between
them. These thin layer structures usually lie within larger structures that may span
the whole flow over a scale 	. Observations and numerical simulations (e.g. of
mixing layers and buoyant plumes) indicate that inertial instabilities and non-linear
distortions, lead to smaller and quasi-independent structures of decreasing scale
L1, L2,..., Lm, where L1 ∼ 	 and so on until for m = Ms, Lm = L, which is also of
order LS, the distance between thin layer structures, shown in Fig. 7. The ratio of Lm

to Lm+1 is significantly greater than unity typically β ∼ 5 (e.g. eddies in boundary
layers and convective turbulence) (Fig. 7).

But the inertial range process only occurs over scales less than L (which is of order
	β−Ms if there is an approximately self similar reduction (by a factor β > 1) in the
scales of the large scale structures). From simulation and experiments, the minimum
value of the Reynolds number, Re∗, for the eddies between thin layers to have a fully
developed inertial range structure is Re∗ ∼ 105. Therefore the minimum value of the
macroscale Reynolds number Re	 for inertial range turbulence to exist is

Re	 = uo	/ν � βMs Re∗ or Ms � ln(Re	/Re∗)
ln(β)

.

For the large scale eddies in typical geophysical flows (where Re	 ∼ 1011), the
number of generations Ms of sub-structures is seldom greater than about 3–5. In
the simulations (IKH) and experiments (Section 2; [51]), Ms ∼ 1. In mixing layers
Ms ∼ 3 [89]. This low number of Ms means that the inertial range covers most of the
turbulent energy. But in atmospheric flows it is found that the inertial range spectrum
is only valid for k ≥ 	/100 i.e. Ms ∼ 2–3 (e.g. [42, 90]).

The mechanisms proposed in the model, and the conditional results of IKH, show
how in the vicinity of significant thin shear layers there is a spatial ordering of larger
and smaller eddy motions depending on the distance from the thin layer. Also the
smaller scales are shielded from larger scales. Therefore the inertial range spectrum
is only generally valid over scales of order LS. These small scale interactions and the
blocking action at the interface deflects eddies into different directions as well as the
tendency of distorted shear layers to roll up, tend to make the small scale turbulence
near the thin layers less anisotropic. However if the large scales are highly anisotropic
and non-Gaussian, as with buoyant convection [91], the distribution of thin layers are
likely to be anisotropic, which also affects higher order statistics [43].

The sheltering effect of the shear layers implies that the typical distance LS

between the thin layers (see Fig. 8) is of the order of the scale L of the large eddies
impacting on the layers in typical conditions (without rapid changes or extraneous
influences). The models shows that a quasi-universal eddy structure forms with an
average transfer of energy per unit volume 〈ε〉 ∼ uo

3/L towards the significant thin
layers, where viscous dissipation ensures the local equilibrium, like waves breaking
on a beach. The model implies therefore that L is in fact equivalent to the ‘dissipation
integral’ length scale, Lε that defines the energy transfer process i.e. Lε ∼ L ∼
uo

3/ 〈ε〉. In general Lε is not a constant fraction of the overall integral scale of the
flow 	, because of the intermediate generations of eddy structure between these
two lengths [92]. For example in anisotropic boundary layer flows 	 defines large
eddies, while Lε defines the scale below which there is an inertial range spectrum.
Observations show how this is the length scale of typical sheared structures near the
ground (e.g. [88]).
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4 Conclusions and Discussion

4.1 Structure of significant thin layers in homogeneous turbulence

The main conclusion from our study of the local and overall statistics of fully de-
veloped homogeneous turbulence in IKH, the laboratory experiments of Worth and
Nickels [51] described in Section 2, is that in these high Re flows there are two charac-
teristic regions associated with the significant thin layers (defined within the smallest
integral scales where energy is introduced). The thickness of these layers � is of the
order of the Taylor microscale which occupy a small part of the volume of the order
of 10Rλ

−1. Outside the layers the turbulence is distorted, which leads to intense micro
scale vortices being generated within the layers. The maximum velocity fluctuations
of the vortices are of the order of uo the energy containing eddies. The thickness
of the microscale vortices is the same as in the KO model, namely �/Rλ

1/2. Their
lengths are of order L/Rλ

1/2. Away from the significant layers, there are regions of
quasi-homogeneous and quasi-isotropic turbulence with smaller amplitude micro-
scale fluctuations, which broadly correspond to the KO model of homogeneous
turbulence.

In IKH it is shown that the total volume of the significant thin layers is small, so
that they do not contribute significantly to low order statistics (e.g. variance, mean
dissipation). However, it is expected that they may dominate the extreme point val-
ues of the statistical distributions of dissipation, velocity and vorticity fluctuations, so
that they are the key to understanding the nature of strong intermittency (high order
statistics) in high Reynolds number turbulence. It would be interesting to examine
this idea. It is left for future study.

It is important to realize that other small-scale, lower intensity intermittent struc-
tures exist between the significant thin layers, as experiments using flow visualization
(Section 2) and statistical wavelet methods [24] both indicate. The net contribution
of all these structures to energy spectra is greater than that of the significant thin
layer structures, where the greatest dissipation and enstrophy occur.

From the basic statistics of the overall flow, i.e. spectra and correlations to second
and third order, it is not possible to distinguish between these two characteristic
regions. The simulations and modelling presented here have shown that outside the
‘significant’ thin layers the spectra have the same form as in the inertial range of the
KO theory. Inside the layers they have the same form as for the viscous range of
KO theory. (It is a well-known result of spectral analysis that similar forms are found
for different kinds of signal, e.g. [57].) The wavelet analysis by Argoul et al. [24]
of their measurements of homogeneous turbulence also suggest that the different
ranges of the spectra (for the whole flow) are systematically separated in space, which
is consistent with our finding.

However, it is expected that the different regions produce relatively different
contributions to the fourth and higher order statistics. This has yet to be investigated.
As in other turbulent flows with different types of coherent and non-coherent regions
the distinct flow features and local statistics of the coherent thin layer regions
have been identified through analysing the conditional statistics. Combining this
data with our idealised model of vortical interactions between large and small-scale
fluctuations leads to a description of the characteristic dynamical mechanisms near
and within the thin layers.
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The significant thin layers influence the much larger scale motions outside them
because their intense mean vorticity (greater than that of the large scales) can adjust
so as to shelter or block the outer motions. Through distorting smaller scales these
larger scale motions induce both down scale and upscale transfer of energy outside
the thin layers [40]. These net downscale motions, that are highly inhomogeneous on
a local-scale—like waves being absorbed at critical layers or on beaches—determine
the characteristic structures with greatest persistence which, as shown in IKH, defines
the form of their inertial range energy spectrum, given by Eq. 15d. But since the
thin layers occupy a small part of the flow, the dominant contribution to the inertial
subrange and non-linear transfer of energy over the whole flow is determined by
local eddy structures in the regions between the thin layers (see IKH and Section 2).
These local structures with a quasi-homogeneous distribution have lower strain and
vorticity than in the significant layers and are consistent with the estimates of eddy
structure derived from KO theory (e.g. [24, 25]).

The spatial flux of external energy towards the layers transfers energy into the thin
layers, where intense elongated microscale vortices are induced close to each other,
leading to the energy dissipation being much greater than in the quasi-homogeneous
regions. It appears that as the vortices grow they are shielded within the shear layer
(e.g. [69]) so that they can exist over much longer periods (greater than a character-
istic ‘turn-over’ time) as has often been noted in experiments. Their velocity is of the
order of the mean velocity jump across the layer-the maximum possible value without
the layer being disrupted. The jump velocity is also comparable to the rms velocity.

The intermittency of intense gradients and dissipation in these layers associated
with the distinct vortex structures define the higher order statistics. (They also define
higher moments of velocity differences, but this will be considered in a later paper.)

4.2 Implications and uncertainties of the model

The proposed structure for the eddy motions of homogeneous turbulence has
implications for how the turbulence develops in time and space. Where the flows that
lead to the initial generation of eddy motions include thin layers at high Reynolds
number, e.g. by sharp edges of static or moving rigid surfaces, such as plates or bars
or aerofoils, they immediately block the larger eddies and generate small scales,
even when the Taylor microscale Reynolds number is only about 100 [9, 93]. This
is a faster process (being of order of TL) than by large-scale eddy-eddy distortion
mechanisms which take times greater than TL [73]. In other words the thin layers
are an important catalyst for the fast generation of the small-scale structure. These
layers also shield the smaller scale eddy motions from those with scales greater than
L, which have characteristic non-universal features and depending on how the flow
was generated. In general they are anisotropic and unsteady. Thus the smaller eddy
motions recirculate within the protected spaces between the layers and eventually
become isotropic, as is observed even in flows where the large scales are highly
inhomogeneous, and anisotropic (see IKH, and [57]).

At large scales, the shielding effect of vortex structures can reduce long range
correlations, which has been suggested as analogous to the ‘Debye’ shielding in
electrostatics, first by Ruelle [94] and later by Ishida et al. [95] and Davidson [96].
The shielding mechanism provides a physical explanation for why there is a sudden
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transition in the energy spectra of inhomogeneous and anisotropic turbulent flows at
high Reynolds number at a wavenumber k∗ (e.g. as reviewed by Hunt and Vassilicos
[57] and Wyngaard [42]). In such flows both the quasi-universal eddy structure on
scales smaller than the typical distance L∗ ∼ k∗−1, are shielded by the layers from
the non-universal forms of the large scale eddy motions. There is a sharper transition
for the spectrum than in statistical physics models, based on the gradual transitions
between the larger eddy straining motions that are non-universal (e.g. shear) and the
smaller scale motions associated with the cascade process (e.g. [97]).

In many complex flows, as flow visualization studies have demonstrated, the thin-
shear layers in some flows are disrupted, e.g. by strong turbulence outside shear
layers [98], while in other flows they can be strengthened and orientated preferen-
tially by the non-universal and anisotropic larger scale motions, e.g. shear or stable
stratification. This is a further reason for the common observation for the marked
variation in the sharpness of the transitions in energy spectra between anisotropic
non-universal large-scale forms to their more universal small scale form in the inertial
subrange (e.g. [57]).

More detailed conditional measurements, local simulations (e.g. [71]) and theoret-
ical modelling of these local, quasi-deterministic mechanisms are needed to improve
understanding of these transition processes. They would assist the development of
simulation methods, such as Large Eddy Simulations, local statistical models and
modelling of practical applications—see below.

4.3 Turbulence structure revealed by applications

Studying applications often helps reveal fundamental aspects of scientific phenom-
ena, and this is the case with the structure of high Reynolds number turbulence.

For example, solving practical problems in engineering and environmental flows
usually requires understanding the characteristic features of turbulence in space and
time. Quantitative models are also needed both for relevant aspects of the flow fields
and for ‘associated’ processes depending on the application, such as the advection
and diffusion of scalars, or the motions of particles and bubbles that depend on the
acceleration and velocity fields.

In many flows the associated processes are most significant within and near the
coherent structures, for example leading to bubbles concentrating in vortices, which
shows the thin layer microstructure [99] and how with greater concentrations the
coherent structures can be reinforced or destroyed [100].

Modelling turbulent flow processes depends greatly on whether the flows and the
associated processes are or are not close to a statistically steady state, which generally
depends on whether the associated process are also dissipative. This can occur in
fluctuating homogeneous scalar fields with finite molecular diffusivity [93], and when
small particles, which have finite drag, are distributed homogeneously in mixing
vessels. But there are also important applications where the processes are not in equi-
librium and are inhomogeneous such as dispersion and interactions of marked fluid
particles or non-fluid particles released from localised sources in the environment
(e.g. [101]).

Both kinds of process can reveal particular aspects of the turbulent structures and
their statistics in homogenous turbulence. Consider where the passive scalar fields,
e.g. concentrations, with molecular diffusivity D are introduced into homogeneous
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turbulence the flow, where the Peclet number Pe = uo L/D � 1 is of the order of Re.
The distribution of scalars depends on the ratio of their initial scalar integral length
scale Lθ to that of the typical distance L between the layers. If Lθ /L is greater than
O(1) the significant scalar structures studied in this paper act to produce significant
jumps in temperature across the thin layers [93],—which also occurs if the initial
scalar field is simply a mean scalar gradient.

This coincidence of temperature and velocity interfaces with significant discon-
tinuities across them was seen clearly in the DNS simulations of such interfaces by
Bisset et al. [10] for a turbulent wake boundary and experimentally for a jet boundary
by Westerweel et al. [8]. The thickness was of the order of the Taylor microscale as in
homogeneous turbulence. These are both flows with inhomogeneous turbulence and
scalar fluctuations, showing that the formation of sharp interfaces with significant
shear is a robust process. If Lθ is initially less than O(L) the role of the thin shear
layers is initially less significant for the scalar field, but over time the scalar spectrum
follows the spectrum of the velocity over the inertial range.

Within the thin shear layers, whatever the ratio of Lθ /L, viscous and molecular
diffusion are significant. The new structure identified here for the significant thin
shear layers may affect current models of scalar mixing that are based on particular
models of the turbulence microstructure (e.g. [102]).

If the molecular diffusivity is several orders of magnitude less than that of the
molecular kinematic viscosity, the scalar microstructure does not develop on the time
scale of the thin shear layers. Then the larger scale spectrum for the scalar is affected,
with important implications for oceanic and perhaps astrophysical flows [103].
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