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Abstract A low-Reynolds-number k-ω model for Newtonian fluids has been devel-
oped to predict drag reduction of viscoelastic fluids described by the FENE-P model.
The model is an extension to viscoelastic fluids of the model for Newtonian fluids
developed by Bredberg et al. (Int J Heat Fluid Flow 23:731–743, 2002). The per-
formance of the model was assessed using results from direct numerical simulations
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for fully developed turbulent channel flow of FENE-P fluids. It should only be used
for drag reductions of up to 50 % (low and intermediate drag reductions), because
of the limiting assumption of turbulence isotropy leading to an under-prediction of
k, but compares favourably with results from k-ε models in the literature based on
turbulence isotropy.

Keywords Drag reduction · Polymer solutions · FENE-P · k-ω turbulence model

1 Introduction

Interest in developing turbulence closures for the prediction of flows with drag-
reducing additives has grown over recent years and has fostered a wealth of research
on direct numerical simulation (DNS) of turbulent flows with viscoelastic fluids such
as polymeric dilute solutions and surfactant solutions. In the DNS investigations with
polymer solutions [1–3], the rheology of the fluids has usually been modelled by the
Finitely-Extensible-Nonlinear-Elastic constitutive equation with Peterlin’s approx-
imation (FENE-P), and, occasionally, by the Oldroyd-B [4] and Giesekus models
[5], whereas for the surfactant flow simulations the Giesekus constitutive equation
has been more often preferred [6, 7]. In some cases the DNS results were processed
to provide Reynolds-averaged data [8, 9] leading to improved understanding of the
physical processes involved [10, 11].

First efforts at the development of turbulence closures for drag reduction were
reported in the 1970s and invariably involved ad-hoc modifications of mixing length
models (see review in Pinho et al. [12]). More physically-based closures were
proposed by Malin [13] for purely viscous fluids of variable viscosity, and by Pinho
and co-workers [14–17] who adopted a Generalized Newtonian Fluid constitutive
equation and mimicked some extensional viscosity effects via a dependence on
the third invariant of the rate of deformation tensor. These more physically-based
turbulence closures were still not based on a true viscoelastic constitutive equation
with memory effects. Therefore, it is only natural that the constitutive models which
better describe the rheology of dilute polymer solutions, such as the FENE-P model,
are adopted for the development of turbulence closures, even if there are still some
discrepancies between the calculated (by DNS) and measured intensities of drag
reduction [18].

Previous turbulence closures for FENE-P fluids include the eddy viscosity model
of Li et al. [9]. Pinho et al. [12] extended the Newtonian low-Reynolds-number k-ε
closure of Nagano and Hishida [19] to viscoelastic fluids and incorporated variable
turbulent Prandtl numbers [20] for improved performance. In order to arrive at
a closed form turbulence model for FENE-P fluids, Pinho et al. [12] developed
closures for new terms appearing in the governing equations such as the nonlinear
turbulence distortion term in the evolution equation of the conformation tensor, the
so-called NLTij term [10], the viscoelastic stress work and the viscoelastic-turbulent
diffusion appearing in the transport equation of turbulent kinetic energy. These
earlier closures were developed on the basis of DNS data, but the models proved
suitable only for low drag reduction.

More recently, the same model was significantly improved by Resende et al. [21]
who also extended it to the intermediate drag reduction regime. This was achieved
by developing a closed form of the exact equation for NLTij and by introducing
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a direct polymer contribution to the eddy viscosity closure. Additionally, in the
transport equation for the rate of dissipation of turbulence by the Newtonian solvent,
a polymer effect was incorporated. In spite of these improvements the new model
still under-predicted the increase of the turbulence kinetic energy (k) with drag
reduction.

Recently, Iaccarino et al. [22] developed a k-ε model for FENE-P fluids based on
the v2- f proposals of Durbin [23]. In the v2- f approach, the eddy viscosity is made
to depend on a scalar turbulent velocity scale that brings into the model the more
intense wall damping of wall-normal turbulence, obviating the need for the eddy
viscosity wall-function, but two extra transport equations for v2 and f need to be
solved. Iaccarino et al. [22] modelled directly the Reynolds-averaged polymer stress
without solving the evolution equation for the polymer conformation tensor, thereby
reducing the number of coefficients and functions used. The results were generally in
good agreement with DNS data both at low and intermediate drag reductions but this
model showed some weakness in the prediction of the turbulent kinetic energy. At
low drag reduction, the model underpredicted the peak turbulence and matched the
turbulence in the log-law region, whereas at intermediate drag reduction the good
prediction of peak turbulence comes together with a significant over-prediction of k
in the log law region.

Other two-equation turbulence models use the specific rate of turbulence dissi-
pation (ω = ε/k) instead of the rate of dissipation (ε) itself [24]. Near the walls ω

is independent of k, hence k-ω models are numerically more robust there than k-ε
models, but in contrast they are overly sensitive to free-stream boundary conditions
[25, 26]. An overview of these models can be found in Wilcox [24]. Subsequent
improvements of the original k-ω model to obtain the correct asymptotic near-wall
behaviour [27, 28] include the exact treatment of viscous cross-diffusion but damping
functions had to be introduced. Further developments improved the performance
in complex flows with recirculation, as done by Peng et al. [29] and Bredberg et al.
[30], who also eliminated the dependence on a wall-function. Bredberg et al. [30]
compared their model with the k-ε model of Abe et al. [31], the k-ω model of Wilcox
[32], the variant by Lien and Kalitzin [33] of the k-ε-v2- f model of Durbin, DNS data
and experimental data for fully-developed channel flow, backward-facing step flow
and rib-roughened channel flow. They found that all turbulence models performed
similarly well in fully-developed channel flow, but in recirculating flows their model
compared better with DNS and experimental data. In particular, in backward-facing
flow the model of Abe et al. [31] under-predicted the recirculation length, whereas
both the Wilcox and Durbin’s model over-predicted it relative to the DNS and their
k-ω model, which was the closest to the DNS data.

The aim of the work reported herein was to develop a k-ω turbulence model
for FENE-P fluids valid for both low and intermediate drag reductions. The new
model, which incorporates the cross-diffusion term and includes terms associated
with fluid elasticity, is calibrated using DNS data for fully-developed channel flow
for low and intermediate drag reductions (DR < 30 % and 30 % < DR < 50 %,
respectively). It is important at this stage to clarify that the developed k-ω model
is an extension to viscoelastic fluids of the Newtonian model of Bredberg et al.
[30], presented in Appendix, which has also been slightly changed for improved
predictions of Newtonian turbulent channel flow, as explained in Section 2.

The remainder of this paper is organised as follows: the governing equations
for the k-ω turbulence model for fluids represented by the FENE-P rheological
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constitutive equation are presented in Section 2. Section 3 presents the various
closure assumptions proposed. The complete turbulence model is summarized in
Section 4, and model assessment against DNS and k-ε model results for fully-
developed channel flow is presented in Section 5. The paper closes with the summary
of the main conclusions.

2 Governing Equations and Model Development

In the Reynolds-averaged Navier-Stokes framework, the continuity and momentum
equations for an incompressible FENE-P fluid take the form [34]:

∂Ui

∂xi
= 0 (1)

ρ
∂Ui

∂t
+ ρUk

∂Ui

∂xk
= − ∂ p

∂xi
+ ηs

∂2Ui

∂xk∂xk
− ∂

∂xk
(ρuiuk) + ∂τ ik,p

∂xk
, (2)

where ηs is the viscosity coefficient of the Newtonian solvent, τ ik,p is the Reynolds-
averaged polymer stress, Ui is the velocity vector, p is the mean pressure, ρ is the
fluid density and −ρuiuk is the Reynolds stress tensor.

An expression for τ ij,p can be obtained by Reynolds-averaging the rheological
FENE-P constitutive equation and is given by [35]:

τ ij,p = ηp

λ

[
f (Ckk) Cij − f (L) δij

]+ ηp

λ
f (Ckk + ckk) cij (3)

where λ is the relaxation time of the polymer, ηp is its viscosity coefficient and Cij is
the mean conformation tensor. In the FENE-P constitutive equation a dilute polymer
solution is modelled as a collection of non-interacting dumbbells, each representing
an ultra simplified linear polymer molecule, in a sea of solvent. A dumbbell is
represented by two mass-less spheres connected by a nonlinear elastic spring which
accounts for the internal entropic force of the molecule. The use of a single dumbbell
does not allow the representation of the large number of internal degrees of freedom
of the molecule, but nevertheless the modelled molecule can stretch and change
orientation. The force balance on each dumbbell relates the viscous drag on the
spheres, the Brownian forces due to thermal fluctuations and the internal restoring
force on the spring. The constitutive equation results from an averaging process over
the configurational space of the local collection of dumbbells due to the force balance
on each dumbbell. Then, to arrive at a closed form expression for the polymer stress a
closure model is required for the non-linear spring force (the Peterlin approximation
of the FENE model [35], where the higher order correlations between the end-to-
end vectors are cast in terms of second order correlations). The conformation tensor
is simply the average second moment of the end-to-end vector of the dumbbell
normalised by its equilibrium length squared so that at rest the conformation tensor
relaxes to the unit tensor.

Pinho et al. [12] have shown that the impact of the double correlations (the last
term in Eq. 3) to be small at low and intermediate drag reductions and thus τ̄ij,p will
be modelled in this work as:

τ ij,p ≈ ηp

λ

[
f (Ckk) Cij − f (L) δij

]
(4)
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The functions that appear in this equation have the form [34]:

f (Ckk) = L2 − 3

L2 − Ckk
and f (L) = 1 (5)

where L2 denotes the maximum extensibility of the dumbbell model.
The mean conformation tensor (Cij) which appears in Eq. 3 is determined by

Reynolds averaging its instantaneous evolution equation to obtain [35]:

⎡

⎢⎢⎢
⎣

∂Cij

∂t
+ Uk

∂Cij

∂xk
−
(
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∂Ui
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(6)

The terms NLTij and CTij in Eq. 6 represent viscoelastic cross correlations that are
unknown and require closure. The CTij term is negligible at low and intermediate
DR and is therefore neglected. In this study, we adopt the proposal of Resende et al.
[21] for NLTij:

NLTij ≡ ckj
∂ui

∂xk
+ cik

∂u j
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CεF
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4

15
× Ck × k × ωN

(
νs + ντP

)× β
Cmm × fF2 × δij

]

(7)

where Weτ0 is the Weissenberg number, defined as Weτ0 ≡ λu2
τ

/
ν0, k is the

turbulent kinetic energy and Sij is the rate of deformation tensor, Sij ≡(
∂Ui

/
∂x j + ∂U j

/
∂xi
)/

2. The Weissenberg number relies on the friction velocity (uτ )
and ν0 is the sum of the kinematic viscosities of the solvent and polymer, ν0 = νs + νp.
It is important to realize that even though Eq. 7 looks complex, this closure for NLTij
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is in fact an explicit algebraic equation with a negligible computational cost. It allows
the computation of Cij and τ ij,p through Eqs. 4–6, the equations also valid for laminar
flow, while maintaining a closure level for NLTij compatible with the closure level
for the Reynolds stress presented below. This is a middle ground modelling option
between the use of a full transport equation for NLTij and the modelling of the
polymer stress at a lower level as for the Reynolds stress tensor, but below that used
for laminar flow, as done by Iaccarino et al. [22]. In addition, for the specific case of
fully-developed turbulent channel flow there is an exact solution of the differential
evolution equation for Cij provided in the appendix of Pinho et al. [12], which is
used here.

The parameters and damping functions are unchanged from the original reference
and are listed in Table 1. The extra Ck coefficient appears due to the definition of ωN ,
by adapting the Newtonian dissipation, εN , in the k-ω context, εN = Ck × k × ωN .

The Reynolds stress tensor appearing in Eq. 2 is modelled by Boussinesq‘s linear
stress-strain relationship:

−ρuiu j = 2ρνT Sij − 2

3
ρkδij, (8)

where k is the turbulent kinetic energy and νT is the eddy viscosity.
In their model for FENE-P fluids, Resende et al. [21] took the eddy viscosity νT

to be the sum of a Newtonian
(
νN

T

)
and a polymeric

(
νP

T

)
contribution, thus:

νT = νN
T − νP

T (9)

In this work, we model the Newtonian contribution as a function of the specific rate
of dissipation along the lines of the k-ω model [24], thus:

νN
T = Cμ × fμ × k

ωN
, (10)

The model coefficient and damping function are those of Bredberg et al. [30] except
that the original coefficient value of 25 in the damping function fμ was changed to 28
for improved predictions of velocity in Newtonian turbulent channel flow:

Cμ = 1.0 and

fμ = 0.09 +
(

0.91 + 1

R3
t

)[

1 − exp

{

−
(

Rt

28

)2.75
}]

with

Rt = k
ωN · νS

(11)

Resende et al. [21] modelled the polymeric contribution to the eddy viscosity νP
T as a

function of the trace of the conformation tensor and introduced a damping function

Table 1 Parameters and
damping functions of the
NLTij model

CF1 CF2 CF3 CF4 Cε F Ck

1.0 0.0105 0.046 1.05 2 0.09

fF1 =
(

1 − 0.8 exp
(
− y+

30

))2
fF2 =

(
1 − exp

(
− y+

25

))4
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depending on the Weissenberg number and distance from the wall f
(
Weτ0 , y+).

Their model, which is adopted here unchanged, reads as:

νP
T = f

(
Weτ0 , y+)× Cmm√

L2
× Cμ × fμ × k

ωN
, (12)

where f
(
Weτ0 , y+) = CP

μ × f P
μ × fDR with CP

μ = 0.0135 ×
[

25
Weτ0

]0.12
,

f P
μ =

[
1 + 2.55 × exp

(
− y+

44

)]
and fDR =

[
1 − exp

(
− Weτ0

6.25

)]4

. (13)

The eddy viscosity model is capable of predicting the correct evolution shown
by the DNS data in both low (LDR) and intermediate drag reductions (IDR),
namely a decrease in νT as DR increases with the Weissenberg number, as shown
in Fig. 1. As can also be observed the discrepancies at large y+ are inherent to the
original Newtonian model and not a consequence of viscoelastic modelling. These
discrepancies have a negligible impact on both momentum and turbulent kinetic
energy predictions in the centreline region because there the eddy viscosity multiplies
a vanishingly small rate of deformation. To close the eddy viscosity model, transport
equations are solved for k and ωN , discussed latter. The Reynolds-average polymer
stress is provided by the Reynolds-average constitutive equation, discussed next.

The transport equation for k is obtained by taking half the trace of the Reynolds
stress transport equation [8]:

ρ
Dk
Dt

+ ρuiuk
∂Ui

∂xk
= −ρuk

∂k
∂xk

− ∂ p′ui

∂xi
+ ηs

∂2k

∂x2
k

− ηs
∂ui

∂xk

∂ui

∂xk

+ ∂

∂xk

(
τ ′p

ikui

)
−
(

τ ′p
ik

∂ui

∂xk

)

(14)

Fig. 1 Comparison between
predictions by the k-ω and k-ε
[21] models (lines with close
symbols) of normalized eddy
viscosity with DNS data (open
symbols), for turbulent
channel flow at Reτ0 = 395,
L2 = 900 and
β = 0.9: � Newtonian
(Weτ0 = 0), � DR = 18 %(
Weτ0 = 25

)
and �

DR = 37 %
(
Weτ0 = 100

)
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By introducing the definition of instantaneous polymer stress we obtain:

ρ
Dk
Dt

= −ρuiuk
∂Ui

∂xk︸ ︷︷ ︸
ρ Pk

−
(

ρuk
∂k
∂xk

+ ∂ p′ui

∂xi

)

︸ ︷︷ ︸
ρQk

+ ηs
∂2k

∂x2
k︸ ︷︷ ︸

ρDN
k

− ηs
∂ui

∂xk

∂ui

∂xk︸ ︷︷ ︸
ρεN

+ ηp

λ

∂

∂xk

[
Cik f (Cmm + cmm) ui + cik f (Cmm + cmm) ui

]

︸ ︷︷ ︸
ρQV

− ηp

λ

[

Cik f (Cmm + cmm)
∂ui

∂xk
+ cik f (Cmm + cmm)

∂ui

∂xk

]

︸ ︷︷ ︸
ρεV

(15)

wherePk represents the rate of production of k; Qk the turbulent transport of k
by velocity and pressure fluctuations; DN

k the molecular diffusion of k associated
with the Newtonian solvent; εN the direct viscous dissipation of k by the Newtonian
solvent; QV the viscoelastic turbulent transport and εV the viscoelastic stress work.

In this work, Qk and εV are modelled along the lines suggested by the previous
low-Reynolds-number k-ε models for FENE-P fluids of references [12, 21], namely

Qk = ∂

∂xi

(
νT

σk

∂k
∂xi

)
(16)

and

εV ≡ 1

ρ
τ ′

ik,p

∂ui

∂xk
≈ 1.37 ×

[
Weτ0

25

]0.1

× fDR × ηp

ρλ
f (Cmm)

NLTmm

2
, (17)

where the drag reduction function fDR corrects the behaviour for the effect of the
Weissenberg number (cf. [21]).

For the viscoelastic turbulent transport (QV), the present closure is also based on
the proposals of Pinho et al. [12] and Resende et al. [21] with modifications related
to the rate of dissipation by the Newtonian solvent (εN). In these works εN was split
into a pseudo-dissipation

(
ε̃N
)

and a wall correction (D) according to εN = D + ε̃N .
In Pinho et al. [12] D is proportional to the Newtonian solvent viscosity, but here
this was found to be inadequate especially at low Weissenberg numbers, leading to
predictions of drag increase rather than drag reduction (or to no change in relation
to the Newtonian flow). Actually, this deficiency is not as severe as one might think;
the Weissenberg number is usually decreased by reducing the relaxation time, but for
FENE-P fluids the relaxation time and the polymer viscosity coefficient are related
by ηp → nkBTλL2

/(
L2 + 5

)
in the limit of small Weissenberg numbers, i.e., at small

We both parameters must be reduced and when this is done simultaneously the model
deficiency is reduced. However, the exact equation relating λ and ηp is unknown so
there is a real problem at small We as We is reduced without the concomitant change
in Re, which Resende et al. [21] solved by making D proportional to the local shear

viscosity of the fluid (μ = ηs + ητp , where ητp = τ
p

xy/
·
γ ).

By using ωN instead of εN this wall correction D term naturally disappears and
the problem of predicting a drag increase at low We reappears. The solution of
this problem is a modification of the original closures for the viscoelastic turbulent
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diffusion of k and ωN in a way that impacts only the wall region, as was the case
with term D in the k-ε model. This modification specifically consists of the direct
incorporation of an extra molecular diffusion associated with the local shear polymer
viscosity in the transport equations of k and of ωN , the former being denoted QV

D.
Consequently, the closure for QV becomes now

ρQV ≡ ∂τ ′
ik,pui

∂xk
≈ ηp

λ

∂

∂xk

[
f (Cmm)

(
Cik FUi + CUiik

2

)]

︸ ︷︷ ︸
ρQV

T

+ ητP

∂2k

∂x2
k︸ ︷︷ ︸

ρQV
D

, (18)

where QV
T is the former QV (as in [21]). QV

D together with the molecular diffusion by
the Newtonian solvent

(
ηs∂

2k
/
∂xi∂xi

)
results in a molecular diffusion by the whole

solution, since ηs + ητp is the local shear viscosity of the FENE-P fluid. Incidentally,
the k-ε v2- f viscoelastic turbulence model of Iaccarino et al. [22] also has a molecular
diffusion term proportional to the fluid viscosity, ηs + ητp . The closures for CUiik and
CikFUi are given by Eqs. 19 and 20, respectively,

CUiik = −Cβ1

√
25

Weτ0

λ

f (Cmm)

(
2uium

∂Cki

∂xm

)
− Cβ7

(
Weτ0

25

)1.66 [
±2
√

u2
i Cik

]
(19)

Cik FUi = CFU

2

√
Weτ0

25
Cik

∂unun

∂xi
(20)

with coefficients Cβ1 = 0.6, Cβ2 = 0.05 and CFU = 1, i.e., they are identical to those
used in the context of the k-ε model [21]. It is important to refer that in addition
to solving the problem of drag increase at very low We, this closure of QV provides
an onset of drag reduction at Weτ0 ≈ 5.5, which is close to the value of Weτ0 ≈ 6.25
obtained by DNS.

The final form of the transport equation of turbulent kinetic energy is

∂ρk
∂t

+ ∂ρUik
∂xi

= − ρuiuk
∂Ui

∂xk
+ ∂

∂xi

[(
ηs + ρντP + ρ

νT

σk

)
∂k
∂xi

]

− ρCkωk + QV
T − ρεV (21)

and the required values of the turbulent Prandtl number and of the Newtonian
coefficient are those of the model of Bredberg et al. [30], i.e. σk = 1.0 and Ck = 0.09,
respectively.

For a FENE-P fluid, the modelled transport equation for ε̃N takes the form [12]:

∂ρε̃N

∂t
+ ∂ρUĩε

N

∂xi
= f1Cε1

ε̃N

k
Pk + ηsνT

(
1 − fμ

)
(

∂2Ui

∂xk∂xk

)2

︸ ︷︷ ︸
ρ P

εN

+ ∂

∂xi

[(
ηs

ρ ftνT

σε

)
∂ε̃N

∂xi

]

︸ ︷︷ ︸
ρ
(

DN
εN +Q

εN

)

− f2Cε2ρ
ε̃N2

k︸ ︷︷ ︸
ρ�

εN

+EV
εN (22)
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where for compactness we denote PεN as the rate of production of εN , QεN as the
turbulent transport of εN by velocity and pressure fluctuations, DN

εN as the molecular
diffusion of εN by the Newtonian solvent and �εN as the destruction of εN . EV

εN is the
viscoelastic term, which is here assumed as a destruction term since the DNS data has
shown that εN decreases with the viscoelasticity (measured through the Weissenberg
number) and drag reduction.

Following Bredberg et al. [30], the derivative of ωN gives

DωN

Dt
= D

Dt

(
εN

Ckk

)
= 1

Ckk
DεN

Dt
− ωN

k
Dk
Dt

. (23)

By substituting the transport equations of k and εN into this expression, and after
some lengthy manipulation [36], the final form of the transport equation of ωN is
obtained as:

DωN

Dt
=
[

1

Ckk
PεN − ωN

k
Pk

]
−
[

1

Ckk
�εN − ωN

k
εN
]

+
(
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σεN
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σk

)
ωN

k
∂2k

∂x2
i

+ ∂

∂xi

(
νT
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∂ωN

∂xi

)
+ 1

k
∂k
∂xi

∂
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[(
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σεN
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)
ωN
]

+
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νs

∂2ωN

∂x2
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]
+ 1

k

(
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σεN
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σk

)
∂ωN

∂xi

∂k
∂xi

+ 2νs

k
∂ωN

∂xi

∂k
∂xi︸ ︷︷ ︸

cross diffusion term

+EV
ωN (24)

In the k-ω model of Bredberg et al. [30], the viscous and turbulent cross-diffusion
term in Eq. 24 is retained to obtain a better description of the asymptotic near-
wall behaviour of k and ω (viz. k ∼ y2 and ω ∼ y−1) without the need for a specific
damping function.

The solvent contribution to Eq. 24 is modelled as in Bredberg et al. [30], and so
the modelled transport equation becomes

∂ρωN

∂t
+ ∂ρUiω

N

∂xi
= ∂

∂xi

[(
ηs + ρντP + ρ

νT

σω

)
∂ωN

∂xi

]
+ Cω1

ωN

k
Pk − Cω2ρ

(
ωN)2

+ ρ
Cω

k

(
ηs

ρ
+ ντP + νT

)
∂k
∂xi

∂ωN

∂xi︸ ︷︷ ︸
cross diffusion term

+ρEV
ωN . (25)

Term EV
ωN introduced earlier in Eq. 24 has a slightly different implementation, i.e., we

use Eq. 26 due to the viscoelastic turbulent diffusion contribution to the k equation.

EV
ωN = 1

Ckk
EV

εN − ω

k
QV

T + ω

k
εV (26)

QV is given as QV = QV
T + QV

D in Eq. 18 and the closure for QV
D (diffusion of k by

the local polymer viscosity ντP ) was put together with the solvent molecular diffusion
and eddy diffusion of k, so it now appears in the cross-diffusion term of the ωN Eq. 25
as a consequence of Eq. 23. Remember that the incorporation of QV

D in the transport
equation of k was part of the solution to avoid drag increase at low Weissenberg
number flows, but the solution to this problem also involved adding to the transport
equation of ωN a similar molecular diffusion of ωN by the local polymer viscosity.
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Still regarding Eq. 26, the viscoelastic closures for εV and QV
T are those given by

Eqs. 17 and 18, respectively. The EV
εN term is a viscoelastic destruction of εN , exactly

given by Eq. 27 and requiring a closure.

EV
εN = 2ηs

ηp

λ
(
L2 − 3

)
∂ui

∂xm

∂

∂xk

{
∂

∂xm

[
f (Cnn) f

(
Ĉpp

)
c′

qqCik

]}
(27)

In principle, we could use for EV
εN the exact closure developed by Resende et al.

[21], written in Eq. 28, but a modification to the numerical values of the coefficients
CεF1 and CεF2 was required to correct and improve the predictions of the Newtonian
dissipation quantity, εN (so that the k-ω model predicts εN as well as the k-ε model).
More details on the development of the closure of EV

εN can be found in [21].

EV
εN ≈ − f5 × fDR × (1 − β)

Weτ0

εN2

k

×
[

CεF1

(
Weτ0

25

)0.72
εV

εN
+ CεF2

(
25

Weτ0

)1.56
(Cmm × f (Cmm))

2

(
L2 − 3

)

]

(28)

The two viscolastic damping functions of EV
εN remain unchanged as f5 = [1 −

exp(−y+/50)] and fDR, but the coefficients are CεF1 = 400 and CεF2 = 1.
The capacity of the closure for EV

εN to predict well in both the k-ε and k-ω
turbulence models, with minor adjustments to the numerical values of coefficients,
suggests the fairness of the assumptions invoked to develop the closure for EV

εN by
Resende et al. [21].

The remaining coefficients are those used for the Newtonian model, Cω = 1.0,
Cω1 = 0.49, Cω2 = 0.072 and σω = 1.8, with a correction in the coefficient Cω for
which we use 1.0 rather than 1.1. Note that this change in Cω is in line with the
correction of the coefficient in the damping function fμ from a numerical value of
25 to a value of 28, which was aimed at improving the Newtonian predictions for
channel flow.

To summarize, this low-Reynolds number k-ω model is an extension of Bredberg
et al.’s [30] model to account for viscoelastic FENE-P fluids. Only the eddy viscosity
and NLTij closures are mathematically transformed from the corresponding closures
developed in the context of the k-ε model of Resende et al. [21], whereas the closures
for the cross-diffusion term, the destruction of ωN and the viscoelastic turbulent
diffusion contain specific developments.

3 Results and Discussion

The turbulence model was tested against DNS data for FENE-P fluids in a vis-
coelastic turbulent channel flow. The simulations were performed at DR = 18 %
and 37 % (Weτ0 = 25 and Weτ0 = 100, respectively, with Weτ0 ≡ λu2

τ

/
ν0) and with

Reynolds number Reτ0 = 395 (Reτ0 = uτ h
/
ν0 based on the friction velocity (uτ ), the

channel half-height (h) and the zero shear-rate kinematic viscosity of the solution,
which is the sum of the kinematic viscosities of the solvent and polymer ν0 = νs + νp),
maximum extension of the conformation tensor L2 = 900 and the viscosity ratio β =
0.9 (β ≡ νs

/
ν0).
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Throughout this paper the definition of drag reduction used is that introduced
by the literature on DNS of viscoelastic fluids [37], namely the ratio of the wall shear
stress reduction in viscoelastic flow relative to the wall shear stress for the Newtonian
flow at the same mass flow rate, as in Eq. 29.

DR = 1 − τw,Viscoelastic

τw,Newtonian
= 1 −

(
uτ,Viscoelastic

uτ,Newtonian

)2

(29)

Using this definition the DR intensity reported as DR is that of the DNS data,
whereas the DR obtained using exclusively the simulations by the turbulence models
is denoted DR*. To compute DR for the DNS data, and according to the literature
[37], the friction velocity for the drag-reduced flow, uτ,Viscoelastic, is obtained from the
definition of the Reynolds number Reτ0 and the friction velocity for the correspond-
ing Newtonian flow (meaning at the same flow rate of the viscoelastic flow) can be
calculated (or approximated) using Dean’s correlation,

uτ,Newtonian =
(

0.073

2
Re

−1/4
m U2

m

)1/2
(30)

where the mean flow Reynolds number Rem = 2hUm/νw is based on the bulk mean
velocity Um and the solution viscosity at the wall (νw). To compute DR* the friction
velocity for the viscoelastic fluid is obtained also from the Reynolds number, whereas
the friction velocity for the corresponding Newtonian flow is that given by the specific
turbulence model at the same mass flow rate as the viscoelastic flow.

The governing equations were solved using a finite-volume code specifically
developed for boundary layer flows. The original code is described in Younis
[38] and was modified for FENE-P fluids. The finite-volume code uses staggered
meshes to ensure pressure-velocity-polymer stress coupling in the solution of the
governing equations for one- or two-dimensional turbulent boundary layers. In
the present implementation for fully-developed channel flow and in order to deal
with the FENE-P fluid model, the viscoelastic stress divergence term was added
to the momentum equation, volume-integrated and the corresponding stress flux
discretized by central differences and added to the source term. The evolution
equation of the conformation tensor in fully-developed channel flow was analytically
solved by Pinho et al. [12] (cf. its Appendix A) and provides the ensuing algebraic
equations for the conformation tensor provided the closure for NLTij is known. For
the transport equations of k and ω the additional terms associated with the FENE-
P model were incorporated and discretized also with central differences. No-slip
boundary conditions were applied at the wall with U = k = 0. The specific rate
of dissipation ω follows a well defined asymptotic behaviour described by Wilcox
[24]. Since the FENE-P polymer solution has a viscosity given by the sum of the
solvent and polymer viscosities, Wilcox’s asymptotic expression for Newtonian fluids
was modified to incorporate the local total shear viscosity by the inclusion of the
corresponding kinematic polymeric contribution

(
ντP

)
:

ωN → 2
(
νS + ντP

)

Ck · y2
(31)

Grid-independent solutions were obtained using a computational mesh with 99 cells
non-uniformly distributed across the channel width. The expansion factor of the
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Fig. 2 Comparison between
predictions of the mean
velocity by this model (solid
lines), Resende et al.’s model
[21] (dashed lines) and DNS
data (symbols), for turbulent
channel flow at Reτ0 = 395,
L2 = 900 and β = 0.9: � DR =
18 %

(
Weτ0 = 25

)
and

� DR = 37 %
(
Weτ0 = 100

)

mesh was 1.13 (ratio of widths of consecutive control volumes), the smallest cell size
near the wall had a dimensionless width �y/H = 0.00033, where H is the channel
half-width, so that each viscous sublayer was resolved by around 10 computational
cells.

In Fig. 2 the predicted mean velocity profiles are compared with DNS data for
DR = 18 % and 37 % and with the predictions of Resende et al. [21] obtained
with a k-ε model. The k-ω predictions coincide with those of the previous k-ε model
and show good agreement with the DNS data. The monotonic shift of the log-law
region with DR is well captured, as is the correct evolution in the buffer-layer. We
also compare in Table 2 the values of DR* for the predictions by the k-ω and k-
ε models with the values of DR pertaining to the DNS simulations. Although the
velocity profiles in Fig. 2 coincide for both turbulence models, the values of DR*
are slightly over-predicted, especially for the k-ε model at Weτ0 = 25, because of
the different Newtonian predictions of the base Newtonian turbulence models. This
further emphasizes the relevance of choosing a Newtonian turbulence model with
a good performance as a basis for the development of the viscoelastic closures and
suggests that the k-ω model of Bredberg et al. [30] used here is a better candidate
than the model of Nagano and Hishida [19] used by Resende et al. [21].

The impact of the Weissenberg number variation on the prediction of the velocity
profile and the limits of the model can be observed in Fig. 3, where the k-ω turbulence
model is able to reach DR ≈ 47 %, corresponding to a maximum Weissenberg

Table 2 Comparison between the drag reductions predicted by the viscoelastic turbulence models
and the DNS simulation for L2 = 900, Reτ0 = 395 and β = 0.9

DR* ( %) DR ( %)

k-ω model k-ε model [21] DNS

Weτ0 = 25 18 19.6 18
Weτ0 = 100 39 39 37
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Fig. 3 Comparison between
predictions of the mean
velocity (lines with symbols)
with DNS data (open symbols:
� DR = 18 %

(
Weτ0 = 25

)

and � DR = 37 %(
Weτ0 = 100

)
) for turbulent

channel flow at Reτ0 = 395,
L2 = 900, β = 0.9 and
different Weissenberg
numbers

number Weτ 0
= 153, with a maximum deviation of 10 % relative to the correlation of

Li et al. [9] presented below. This is well within the intermediate range of DR. Above
these values the predictions by both models show large discrepancies relative to the
DNS data, with an over-prediction of the drag reduction intensity and an under-
prediction of k, as discussed next.

Li et al. [9] used extensive DNS data sets to develop a correlation for the drag
reduction intensity DR as a function of Weτ 0

, Reτ0 and the maximum molecular
extensibility of the dumbbell (L). The correlation is of the form:

DR = 80
[
1 − exp (−0.0275L)

]

×
{

1 − exp

[

−0.025
(
Weτ0 − Weτ0,c

)
(

Reτ0

Reτ0,r

)−0.225
]}

(32)

where Weτ0,c = 6.25 and Reτ0,r = 125.
In Table 3 the drag reduction predicted by the k-ω model is compared with that of

Eq. 32 and with the DNS data for several values of the Weissenberg number. While
there is a fairly good agreement for large Weτ0 , at low Weτ0 (such as at Weτ0 = 25)
there is a large difference in DR* relative to the correlation but this is largely due
to the under-prediction of the drag reduction by Li et al.’s [9] expression at LDR, as
explained in [9].

Table 3 Comparison between the drag reduction predicted by the turbulence models (DR*), the
DNS simulation (DR) with Li et al.’s [9] equation for L2 = 900, Reτ0 = 395 and β = 0.9

Weτ0 14 25 44 100 153

Present model (DR*) 10 18 25.8 39 46.8
k-ε model [21] (DR*) 9 19.6 27.6 39 43.7
Li et al. [9] equation (DR) 6.2 13.6 23.3 37.6 43
DNS data – 18 – 37 –
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For L2 = 900 the k-ε model of Resende et al. [21] behaves similarly to the present
model as shown in Tables 2 and 3, but upon increasing L2 and Weτ0 the k − ε model
predictions deviate significantly from the equation of Li et al. [9]. The predictions
of the present k-ω model also deviate from Li’s equation, but to a much smaller
extent. For instance, with L2 = 3600, Reτ0 = 270, β = 0.9 and Weτ0 = 30, the present
k-ω model predicted DR* = 23 % against DR = 25.4 % by Li et al.’s [9] equation,
whereas the k-ε model predicted DR* = 17 %. In order to assess the effect of the
Reynolds number on the model predictions, a set of simulations was undertaken with
the present model at Reτ0 = 500 with L2 = 900. For Weτ0 = 25 DR* increased from
18 % at Reτ0 = 395 to 20 % at Reτ0 = 500 while for Weτ0 = 100 the corresponding
increase in DR* was from 39 % to 43 %. The equation of Li et al. [9], which has been
developed on the basis of DNS data for 125 < Reτ0 < 395, predicts values of DR at
Reτ0 = 500 similar to those predicted at Reτ0 = 395.

The turbulent kinetic energy predictions are plotted in Fig. 4. The predicted peak
values decrease with DR, in contrast with the DNS data, and this represents a
deficiency of the model. The model of Resende et al. [21] shows the same deficiency.
The evolution of the predictions of k with Weτ0 is shown in Fig. 5 where we observe a
continuous decrease in k, a defect of the present model also present in the k-ε model
of Resende et al. [21]. This deficiency limits the application of the present model up
to drag reduction rates of about 50 %.

The reduction of k is related to the inherent incompatibility between the eddy
viscosity closure used and the physics of the drag reducing fluids. Experiments and
DNS on drag reduction flows show that with increased Weissenberg number, the
Reynolds shear stress decreases, but the turbulent kinetic energy increases. Since
the eddy viscosity closure models the Reynolds shear stress in proportion to k2,
a reduction in the Reynolds shear stress requires a reduction in this turbulent
velocity scale, when it actually increases. In an attempt to resolve this problem Pinho
et al. [12] incorporated the viscoelastic stress work in the turbulence length scale,

Fig. 4 Comparison between
predictions of the turbulent
kinetic energy by this model
(lines with symbols), by the k-ε
model of Resende et al. [21]
and DNS data (open symbols),
for turbulent channel flow at
Reτ0 = 395, L2 = 900 and
β = 0.9: � Newtonian(
Weτ0 = 0

)
, � DR = 18 %(

Weτ0 = 25
)

and � DR =
37 %

(
Weτ0 = 100

)
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Fig. 5 Comparison between
the predictions of the
turbulent kinetic energy (lines
with symbols) with DNS data
(open symbols): � Newtonian(
Weτ0 = 0

)
, � DR = 18 %(

Weτ0 = 25
)

and � DR =
37 %

(
Weτ0 = 100

)
and effect

of Weissenberg number for
turbulent channel flow at
Reτ0 = 395, L2 = 900 and
β = 0.9

whereas Resende et al. [21] and the present model consider instead a polymeric
contribution to the eddy viscosity subtracting the standard Newtonian eddy viscosity,
but both approaches were not effective enough to solve this issue. Incidentally, a
fairly successful alternative is that of Durbin [23], also implemented by Iaccarino et
al. [22] for FENE-P fluids, who relate the turbulent velocity scale to the transverse
normal Reynolds stress. However, this approach is more expensive since it requires
the additional numerical solution of two differential equations, and introduces other
difficulties in geometries with more than one wall. The solution of this problem is
certainly a major motivation for future work with this type of models.

The profiles of the predicted dissipation rate are presented in Fig. 6, normalized
by the friction velocity and the zero shear rate kinematic viscosity, including the
DNS data and the predictions of [21]. In the buffer and log layers the predictions by
both the k-ω model and k-ε model of [21] are similar and agree with the DNS data.
Elsewhere there are significant differences, which are also present for Newtonian
fluids. These differences require a correction in the coefficient values of the EV

εN

closure, which has a direct impact on the predictions of εN . The behaviour of the
rate of dissipation of k with Weτ0 is well captured by the model in the log law, and
the buffer layers, as shown in Fig. 7, but very close to the wall there exist differences
between the predictions and the DNS, a consequence of the k-ω Newtonian model.
The saturation of εN+ observed to occur at large Weτ0 is also well captured: we see
that at large Weissenberg numbers (Weτ0 = 100 and 153) the profiles of εN+ are
essentially the same.

Figure 8a–e compare the predictions of NLT∗
ij for both the k-ω and k-ε models

for DR = 18 % and 37 %. NLT∗
ij is defined as NLTijh/uτ . For each component

the predictions by the two models are similar, with the former model showing better
predictions than the latter for NLT∗

11 and the trace NLT∗
kk and the other way for

the other components. The main features of these predictions are the increase of
the peak value of NLT∗

ij with DR and its shift away from the wall, which becomes
more intense in the log-law region. For all normal components of NLTij there is an
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Fig. 6 Comparison between
predictions of the Newtonian
kinetic energy dissipation by
this model (lines with
symbols), by the k-ε model of
Resende et al. [21] and DNS
data (open symbols), for
turbulent channel flow at
Reτ0 = 395, L2 = 900 and
β = 0.9: � Newtonian(
Weτ0 = 0

)
, � DR = 18 %(

Weτ0 = 25
)

and � DR =
37 %

(
Weτ0 = 100

)

underprediction of the peak value for DR = 37 %, whereas for the shear component
there is an overprediction.

NLT∗
22 (or NLT∗

yy) and its variation with Weτ0 is shown in Fig. 9a. For compactness
this component of the NLT∗

ij tensor is the only one presented there because of the
high impact in the calculation of the conformation tensor, except on C33 component
(the behaviour of the predictions with Weτ0 variation are similar in the other
components). There is a rapid increase at values of DR less than 30 %, after which
the maximum value of NLT∗

22 decreases slowly to stabilize at intermediate DR, as at
DR = 37 %. The behaviour of the invariant NLT∗

kk is plotted in Fig. 9b and shows
also a rapid increase with Weτ0 at the low DR regime, followed by a slow increase
and saturation at intermediate DR. Since the streamwise normal component is the

Fig. 7 Comparison between
the predictions of the solvent
kinetic energy dissipation
(lines with symbols) with DNS
data (open symbols):� Newtonian

(
Weτ0 = 0

)
,

� DR = 18 %
(
Weτ0 = 25

)

and � DR = 37 %
(
Weτ0 =

100) and effect of Weissenberg
number for turbulent channel
flow at Reτ0 = 395, L2 = 900
and β = 0.9
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(a) (c)

(b) (d)

(e)

Fig. 8 Comparison between predictions of NLT∗
ij by this model (lines with symbols), by the k-

ε model of Resende et al. [21] and DNS data (� DR = 18 %
(
Weτ0 = 25

)
and � DR = 37 %(

Weτ0 = 100
)
), for turbulent channel flow at Reτ0 = 395, L2 = 900 and β = 0.9: a NLT∗

11; b NLT∗
22;

c NLT∗
33; d NLT∗

12; e NLT∗
kk
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Fig. 9 Comparison between
the predictions of NLT∗

ij (lines
with symbols) with DNS data
(open symbols: � DR = 18 %(
Weτ0 = 25

)
and

� DR = 37 %
(
Weτ0 = 100

)
)

and effect of Weissenberg
number for turbulent channel
flow at Reτ0 = 395, L2 = 900
and β = 0.9: a NLT∗

22 and
b NLT∗

kk

(a)

(b)

main contribution to NLT∗
kk, NLT∗

11 has a similar behaviour, but is not shown here
for compactness.

The predictions of the viscoelastic stress work in Fig. 10 show higher values for
the k-ω model than for the k-ε. Specifically, there is a slight overprediction of εV for
DR = 37 %, whereas at low DR both turbulence models under-predict the DNS data.
The variation of the viscoelastic stress work with Weτ0 is shown in Fig. 11 and exhibits
a rapid increase in εV+ at low drag reduction, reaching a maximum at Weτ0 = 25,
(corresponding to DR = 18 %), followed by a decrease with the peak value moving
away from the wall, whereas the DNS data shows εV+ always increases with Weτ0 . It is
also possible to visualize a saturation effect, the reduction of the peak value variation
as we increase DR above 37 %, which shows an asymptotic variation towards the
maximum drag reduction.
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Fig. 10 Comparison between
predictions of the viscoelastic
dissipation by this model (lines
with symbols), by the k-ε
model of Resende et al. [21]
and DNS data (open symbols),
for turbulent channel flow at
Reτ0 = 395, L2 = 900 and
β = 0.9: � DR = 18 %(
Weτ0 = 25

)
and

� DR = 37 %
(
Weτ0 = 100

)

The predictions of NLT∗
ij and of εV are all related and as general comment on these

sets of data we can say that in spite of a general improvement over the predictions of
k-ε model of Resende et al. [21] at the intermediate DR regime (i.e., for DR ≈ 37 %),
these were not enough to eliminate the main deficiency, the under-prediction of k,
as in the the k-ε model. This is ultimately rooted on the turbulence isotropy concept.
In all our attempts to improve the prediction of k using both models, the prediction
of the other quantities have deteriorated. Certainly we could match the predicted
k with DNS but only at the cost of an over-prediction of εN . Since the closures for
NLTij and εV also depend on a deficient prediction of k, the adoption of a model

Fig. 11 Comparison between
the predictions of the
viscoelastic dissipation (lines
with symbols) with DNS data
(open symbols: � DR = 18 %(
Weτ0 = 25

)
and

� DR = 37 %
(
Weτ0 = 100

)
)

and effect of Weissenberg
number for turbulent channel
flow at Reτ0 = 395, L2 = 900
and β = 0.9
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(a) (c)

(b) (d)

(e)

Fig. 12 Comparison between the predictions of the conformation tensor (lines with symbols) with
DNS data (open symbols: � DR = 18 %

(
Weτ0 = 25

)
and � DR = 37 %

(
Weτ0 = 100

)
) for turbulent

channel flow at Reτ0 = 395, L2 = 900, β = 0.9 and different Weissenberg numbers: a C11; b C22;
c C33; d C12 and e f (Ckk)
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not based on turbulence isotropy will allow the correct prediction of k, εN and, by
recalibration, of NLTij and εV .

The predictions of the NLTij tensor have a direct impact on the prediction of
the conformation tensor, according to Eq. 6, as can be observed by comparing the
predictions of NLT∗

ij in Fig. 8 and those of the conformation tensor in Fig. 12a–d.
The predictions of all components of Cij are fair except for C33, where a large deficit
relative to the DNS data is seen as a consequence of a deficit in the prediction of

Fig. 13 Comparison between
the predictions (lines) and
DNS data (open symbols) for
normalized shear stresses (τ+

N ,
τ+

p , −u1u2
+) in turbulent

channel flow with Reτ0 = 395,
L2 = 900 and β = 0.9. (� and
line) τ+

N , (� and line) τ+
p ,

(� and line) −u1u2
+; (× and

dashed line) sum of stresses:
a DR = 18 %

(
Weτ0 = 25

)
;

b DR = 37 %
(
Weτ0 = 100

)

(b)

(a)
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NLT33. Again, we suspect this to be essentially a consequence of invoking turbulence
isotropy to develop several closures within the model. An overprediction is observed
for C11, next to the wall, at DR = 18 %, which decreases when DR increases
to DR = 37 %. For the C12 component there are also large discrepancies, with
an overprediction next to the wall and a underprediction away from wall, which
becomes stronger at large DR. The predictions of C22 are fair due to the correct
prediction of NLT22, but deficiencies observed with NLT22 are carried over to C22,
for example the underprediction of the maximum value of NLT22 is also detected
in C22. The behavior in terms of the trace Ckk can be assessed indirectly through
function f (Ckk) plotted in Fig. 3; there is an overprediction of the maximum value of
f (Ckk) at both DR = 18 % and 37 %.

The transverse distributions of the three shear stresses for DR = 18 % and 37 %
are compared in Fig. 13 with the corresponding DNS data. The solvent stress is
always well predicted and this is a consequence of the correct prediction of the
velocity profile. The reduction of the Reynolds stress with DR and the simultaneous
presence of a polymer stress is clear, but close to the wall there is an under-
prediction of −ρuv and an over-prediction of τ

p
xy, whereas away from the wall the

opposite occurs. The polymer shear stress is calculated from the shear component
of the conformation tensor and these differences are due to the corresponding
predictions of Cxy. Since the total shear stress must follow the straight line imposed
by the pressure gradient for fully-developed channel flow, the discrepancies in the
prediction of the Reynolds shear stress must compensate the deficiencies in polymer
shear stress.

Ultimately, the evolution of the conformation and polymer stress tensors are
based on the model used for NLTij. Since the closure used for this tensor in this
k-ω model is the same as in the k-ε model of Resende et al. [21], it is no surprise that
the stress distributions are essentially identical.

4 Conclusions

A k-ω turbulence model was developed for viscoelastic fluids described by the
FENE-P rheological constitutive equation. It is based on the low-Reynolds number
k-ω model of Bredberg et al. [30] for Newtonian fluids, which was extended as
follows: the eddy viscosity and NLTij closures are mathematically transformed from
the corresponding closures developed in the context of the k-ε model of Resende
et al. [21]; the closures for the cross-diffusion term, the destruction of ωN and the
viscoelastic turbulent diffusion contain specific developments, even though they get
inspiration from those of Resende et al. [21].

The performance of the model was assessed first through comparisons with DNS
data for Reτ0 = 395, L2 = 900 and β = 0.9 at Weτ0 = 25 (DR = 18 %) and Weτ0 =
100 (DR = 37 %) and also with the predictions of the k-ε model of Resende et al. [21]
for the same flow conditions and with the expression of Li et al. [9] for the variation
of DR with Weissenberg number obtained from a large set of DNS data.

The k-ω model predictions of the mean velocity were nearly identical to those of
the k-ε model of Resende et al. [21] but as we increase flow elasticity to the inter-
mediate DR regime the k-ω model behaves better, especially when increasing the
maximum molecular extensibility. For the other quantities (k, εV ,NLTij) generally
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speaking there was an improvement relative to those of Resende et al. [21] especially
for the intermediate DR region, and most notoriously for the prediction of k, which
was closer to the DNS data, but still not enough to eliminate the under-prediction
of k. The under-prediction of k limits the application of this turbulence model to
drag reductions below about 47 %, a value at which the deviation in relation to the
correlation of Li et al. [9] reaches 10 %, as is also the case with the k − ε model
of Resende et al. [21]. We believe this is a limitation of two-equation turbulence
models associated with the assumption of turbulence isotropy, because there is an
incompatibility between the variations of eddy viscosity and k with drag reduction:
k increases and the eddy viscosity decreases at low DR, whereas this type of closure
implies νT ∝ k. The solution of this deficiency requires closures that do not directly
couple the eddy viscosity with the turbulent kinetic energy. This can be achieved in
a number of ways: through adopting a Reynolds stress model where the direct link
between the Reynolds stress and k is not imposed (using a Reynolds stress model
developed from a simple toy rheological constitutive equation Resende et al. [39]
were able to achieve the high drag reduction regime) or also as in k-ε-v2- f models
where the eddy viscosity depends on two different turbulent velocity scales. Future
work involves the extension of the turbulence model to all regimes of turbulent drag
reduction and the substitution of the friction velocity by a local velocity scale in the
closures to allow the extension of the model to other scenarios, such as free stream
flows.

Appendix: Equations of the k-ω turbulence model of Bredberg et al. [30]
for Newtonian fluids

The eddyviscosity required to calculate the Reynolds stress in Eq. 8 is given by
Eq. 33

νT = Cμ × fμ × k
ω

(33)

where k and ω are to be computed by the transport Eqs. 34 and 35, respectively using
the damping function of Eq. 36.

Dk
Dt

= Pk − Ckωk + ∂

∂xi

[(
ν + νT

σk

)
∂k
∂xi

]
(34)

Dω

Dt
= ∂

∂xi

[(
ν + νT

σω

)
∂ω

∂xi

]
+ Cω1

ω

k
Pk − Cω2ω

2 + Cω

k
(ν + νT)

∂k
∂xi

∂ω

∂xi
(35)

fμ = 0.09 +
(

0.91 + 1

R3
t

)[

1 − exp

{

−
(

Rt

28

)2.75
}]

with Rt = k
ω · ν

(36)
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