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Abstract Methods to immerse walls in a structured mesh are examined in the
context of fully compressible solutions of the Navier–Stokes equations. The ghost
cell approach is tested along with compressible conservative immersed boundaries
in canonical flow configurations; the reflexion of pressure waves on walls arbitrarily
inclined on a cartesian mesh is studied, and mass conservation issues examined in
both a channel flow inclined at various angles and flow past a cylinder. Then, results
from Large Eddy Simulation of a flow past a rectangular cylinder and a transonic
cavity flow are compared against experiments, using either a multi-block mesh
conforming to the wall or immersed boundaries. Different strategies to account for
unresolved transport by velocity fluctuations in LES are also compared. It is found
that immersed boundaries allow for reproducing most of the coupling between flow
instabilities and pressure-signal properties observed in the transonic cavity flow. To
conclude, the complex geometry of a trapped vortex combustor, including a cavity,
is simulated and results compared against experiments.

Keywords Large Eddy Simulation · Compressible flow · Immersed boundaries

1 Introduction

Handling complex geometries on structured and cartesian grids has been the subject
of many studies; specifically motivated by flow simulations over fixed or moving
objects of highly complex shape, leading to challenging transformations if curvilinear
coordinates are used or to discretization errors with body-fitted grids, because of
eventual non-perfect cell-alignment with the wall. First discussed in the context
of blood flow [53], many strategies have been developed to mimick the presence
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of walls inside a fixed mesh, by adding a continuous forcing term in the balance
equations [3, 21, 31, 48, 67] or through a specific treatment of their discretized form,
by modifying the computational stencil near the immersed object [1, 16, 17, 26, 32,
34, 41, 45, 47, 48, 67, 70].

Immersed boundaries with compressible flows have been addressed at some
places in the literature [9, 16, 17, 52], but most of the published works on the subject
focus on incompressible or variable density flows. In the present paper, an attempt is
made to combine immersed boundaries, grounded on the ghost cell technique, with
the solution of the Navier–Stokes equations in their fully compressible form. The
difficulty then lies in the treatment, over the immersed wall, of the strong coupling
between energy conservation and the acoustic field, with feedback into momentum
budget.

The elementary bricks of the retained method are discussed before considering
canonical test cases; the ghost cell formalism is used with some adjustments to ensure
a wall-response to acoustic perturbation close to the one observed with boundary
conditions imposed on a mesh conforming to wall. This is done simulating propa-
gation of a spherical pressure wave in a three-dimensional enclosure. In contrary to
constant-density flow-solvers, mass conservation is not explicitly imposed to the fully
compressible velocity solution and the accuracy of the mass budget is also examined
for both, a flow past a cylinder and a channel flow inclined at various angles in a fixed
horizontal cartesian mesh.

The computation of large-scale flow motion with Large Eddy Simulation (LES)
using immersed boundaries is then addressed, comparing five sub-grid scale (SGS)
modeling of the transport by unresolved velocity fluctuations, with some discussion
on filtering operations in the presence of immersed walls. Results of a flow passing
a rectangular cylinder and the more stringent transonic cavity-flow test case, are
compared against experiments. In the latter, measured information on pressure
spectra is found to be reproduced with the proposed immersed boundary strategy.
Finally, the flow inside a trapped vortex combustor is simulated to compare flow
statistics against measurements in a complex geometry featuring flame holders
followed by a cavity.

The paper is organized as follow, the sub-grid scale modeling and the numerics
used are summarized in a first section; the details of the immersed boundary
approach are given in a subsequent section. Reference test cases (pressure-wave
reflexion, flow past a confined cylinder, channel whose inclination on the mesh
varies) are analyzed in the next section, together with LES of the flow past a
rectangular cylinder. LES of a transonic cavity flow experimentally studied [15] is
then examined, comparing results from walls arbitrarily imposed on a given mesh
through immersed boundaries, and, a multi-block simulation using a wall-conforming
mesh. The trapped vortex combustor simulation is reported in a final section.

2 Sub-Grid Scale Modeling and Numerics

The structured-grid and explicit finite volume fully compressible flow solver SiTCom
[10, 38, 39, 61] has been used. The Navier–Stokes equations (conservation of mass,
momentum and energy) are solved in their fully compressible form without any
preconditioning. The convective terms are computed resorting to a fourth-order
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centered skew-symmetric-like scheme [12], while the diffusive terms are discretized
with a fourth-order centered scheme. Time is advanced with a third-order Runge–
Kutta method [22] and the boundary conditions are prescribed with 3D-NSCBC [38].
In the turbulent flow cases studied, synthetic velocity fluctuations are imposed at the
inlet of the computational domain [30].

Large Eddy Simulation, where large-scale flow motion is simulated while the
effect of unresolved smaller scales is modeled, may be conducted explicitly, after
formulating a physical model for the unresolved transport by velocity fluctuations, or,
in a more implicit manner, which relies on a dissipative numerical scheme to mimic
the smallest-scales viscous contribution [55].

For the transonic flow past a cavity test case, a first set of simulations have been
performed with an eddy viscosity hypothesis [60], combined with three procedures
to estimate, νT , the SGS viscosity: Vreman et al. closure [69], Lagrangian Dynamic
Model [44] and Localized Dynamic Smagorinsky Model [18]. In all cases, the
deviatoric part of τij = ρuiu j − ρũiũ j, the SGS stresses, reads:

τ d
ij = τij − 1

3
τkkδij = −2ρνT ˜Aij, (1)

where νT is obtained from its modeled expression and Aij = (∂ui/∂x j + ∂u j/∂xi)/2 −
(∂uk/∂xk)δij/3. An additional modeling is introduced for the isotropic part τkk [71]:

τkk = 2CIρ�2|˜S|2, (2)

|S|=
√

2˜Sij˜Sij is the magnitude of Sij = Aij + (∂uk/∂xk)δij/3, the strain-rate tensor,
and � is the LES filter size. Both CI and the turbulent Prandlt number [49] are
also computed with their specific dynamic procedure [39], according to the modeling
considered. LES of the flow past a rectangular cylinder is performed with the WALE
[51] closure.

A second set of calculations has been carried out with implicit Large Eddy
Simulation [55]; grounded on the observation that SGS modeling mostly plays a
dissipative role in the simulations, as numerical artificial dissipation would. An
artificial dissipation scheme was selected [27], which introduces second and/or fourth
order dissipative terms whose global contribution is somehow similar to subgrid scale
modeling [55]. To compute the transonic cavity featuring quite strong pressure and
density discontinuities, both calculations (implicit or explicit LES) need moderate
second-order dissipation. However in the implicit LES, the fourth-order dissipation
term is increased, to damp high frequency modes appearing in the centered scheme
[62]. As these modes develop at small scales, they are naturally dissipated by the
SGS model in explicit LES, canceling the need of additional fourth order dissipative
terms.

The skew symmetric scheme used being centered [12], it is non-dissipative. As
discussed above, this scheme is completed by an addition of second- and fourth-order
artificial dissipation terms [27, 62, 63], involving an additional numerical convective
flux that is controlled by four parameters α1, α2, β1 and β2. The coefficients α1 =
0.5 and α2 = 0.5 are for the second-order terms, β1 and β2 for the fourth-order
contribution [63]. α1 controls upwinding fluxes, while α2 pilots the switch to upwind
diffusion for a threshold value of a sensor based on pressure fluctuations [27]. β1

characterizes the strength of the fourth-order damping and β2 = 1 is set to switch
off the fourth-order damping in case of strong discontinuities. For DNS, β1 is set to
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0.016, LES with explicit SGS modeling is performed with β1 = 0.032 and β1 is fixed
at 0.25 for implicit LES. It has been verified that slightly modifying these values does
not profoundly impact on results.

3 Immersed Boundary Method

In the simulations reported below, a solid 
-surface is immersed into a Cartesian
grid and a proper wall boundary condition must be imposed to the surrounding flow,
this is done with a ghost cell technique [1, 13, 17, 26, 65]. The key features of this
approach are summarized in this section.

Three types of cells are identified: fluid cells (� f ), cells inside the solid domain
(�s) and ghost cells at the boundary, on the solid side (Fig. 1). The value of a signed
distance function d(x, y, z, t) from the solid 
-surface is computed for every cell; d >

0 indicates fluid cells, d < 0 are the solid cells and the ghost cells are those bordering

Fig. 1 Cells identification;
Open circle: fluid cell, Filled
square: Solid cell, Filled circle:
Ghost cell. a Sharp-angle free
geometries require one signed
distance function. b Corners
require specific distance
functions definition (d2 and
d6)

(a)

(b)
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the fluid (where the d sign has changed, see Fig. 1). The immersed boundary method
computes the flow at the ghost cells so that the fluid cells account for the precise
position of the wall boundary.

Depending on the complexity of the geometry, one or more distance functions
may be needed to capture the various surface patches. These distance functions may
be prescribed analytically, in the case of simple interfaces, or constructed numerically
for complex surfaces [8, 47]. In the case of various distance functions, the retained d
level-set corresponds to the minimum distance between the considered cell point
and the interface. Any geometry can then be described into a number of piecewise
elements. The use of the zero level-set value of the distance function is nevertheless
excluded for sharp corners or very thin object. To handle such irregular boundaries,
the level-set formulation may be kept unchanged, to modify only the ghost cell
approach extending the solution across the boundary for each discretized direction
[2]. However, if difficulties only arise because or corners, computing d from the
effective distance between the corner position and the grid cell, as depicted in Fig. 1,
may be sufficient.

�G, the value of a given flow variable at a ghost cell located at xk, is computed by
imposing a specific condition �
 over the 
-surface, to relate �G to �I P, the flow
variable at I P, the ‘image point’ of the ghost cell (Fig. 2a). I P lies on the normal to
the 
-surface, so that this surface is mid-distance between the ghost and the image
nodes (Fig. 2a). The normal to 
 is defined from the level-set function:

n̂ = ∇d(xk)

|∇d(xk)| , (3)

In the case of corners, the normal is set as the bisector of the angle formed by the
two edges, as seen in Fig. 2b.

The value �I P is determined in the fluid from linear, bi-linear or tri-linear inter-
polations. The interpolation stencil depends on the nature of the points bordering IP

(a) (b)

Fig. 2 Definition of the image point (IP) associated to the ghost point (G). Open circle: Fluid cell,
Filled square: Solid cell, Filled circle: Ghost cell
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and three configurations exist, which are depicted in Fig. 3. It may be the case that the
interpolation stencil for a given ghost cell contains one or more ghost cells, then the
stencil is modified to replace the ghost points by their normal boundary intercepts,
as shown in Fig. 3.

Linear interpolation may be used for boundaries aligned with the Cartesian grid
directions. For 
-surface featuring more complex three-dimensional (resp. two-
dimensional) shapes a trilinear (resp. bilinear) interpolation is retained. This may
be cast in:

�I P =
∑

j

ω j� j (4)

(a) (b)

(c)

Fig. 3 Schematic of the bilinear interpolation stencil. a General case with four fluid cells. b One
point in the interpolation stencil is the ghost point itself. c The interpolation stencil may include
other ghost cell. Open circles indicate the fluid cells. Filled circles mark the nodes whose the solution
needs to be reconstructed. Filled squares illustrate the solid nodes
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with the coefficients ω j = B−1
ij xi, given from the inverse of the matrix Bij expressed

from the interpolation-node coordinates [17].
Conditions of Dirichlet type are prescribed for the velocity, to capture no-slip

walls, and of Neumann type for pressure and some scalars; to close the energy
equation, the wall temperature is calculated by using an adiabatic hypothesis. To
impose these boundary conditions, the flow-field variables at ghost cells are de-
termined from a linear approximation along the normal to the boundary. In the
present flow solver, the vector of primitive variables associated to the ghost cell
is updated at each sub-step of the third-order Runge Kutta time stepping. The
Dirichlet boundary conditions are of second order accuracy while the Neumann
boundary conditions provides locally first order, but globally second-order accuracy,
as discussed in [47]. To ensure a reasonable wall-flow resolution, the nearest point
from the effective boundary should be in the viscous sublayer, thus enabling the use
of a linear interpolation for the velocity components. Good accuracy was reported in
the literature with a linear interpolation scheme for high Reynolds number flows
interacting with complex surfaces [26]. Weaker resolution usually goes with the
introduction of a law of the wall in the modeling; then a linear interpolation is
inadequate and higher-order interpolation should be used, specifically for the normal
component [41] and, in this specific context of law of the wall, modified interpolation
schemes were discussed [6].

3.1 A Compressible Conservative Immersed Boundary (CCIB)

When dealing with the ghost cell approach, the continuity equation is not taken into
account, which can result in loss or gain of mass. However, for sufficiently refined
mesh, it will be shown below that the error on mass conservation stays moderate.
Nevertheless, when the proportion of ghost/solid cells inside the computational
domain becomes high or in the case of a coarse mesh, the error on mass conservation
can be reduced by using a conservative formulation of the immersed boundary
method. This section reports an extended version, to fully compressible flows, of
the cut cell approach [29, 45], initially developed for constant density flows. Mass
conservation is then secured and spurious pressure noise is damped.

The discretized budget of a quantity ϕ may be cast in:

∂ϕ̂ijk

∂t
= 1

Vijk
Fijk[F + C], (5)

where Vijk is the cell volume, ϕ̂ is the volume average of ϕ and Fijk[F + C] stands for
the discretized form of the viscous and convective fluxes.

The numerical scheme is modified in the vicinity of the immersed boundary, to
be consistent with the finite volume formulation and preserve the actual solid/fluid
volume ratio. In the basic ghost cell approach, the exact shape of the fluid cells near
the boundary is not detailed and this may be improved modifying the volume balance
in removing the solid subset.

The cut cells are first identified, i.e. the fluid cells with a subset contained in the
embedded body, then αijk is defined as the fluid volume fraction of these cells (0 ≤
αijk ≤ 1), to estimate the fluid cell volume as αijkVijk. The wetted surfaces (Si−1/2 jk,
Si+1/2 jk, Sij−1/2k, Sij+1/2k, Sijk−1/2 and Sijk+1/2, Fig. 4) are determined to integrate the
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Fig. 4 Treatment of the
interface cells: the fluid cells in
the vicinity of the embedded
surface are balanced with the
real fluid volume

convective fluxes over the real wetted surfaces of the control volume αijkVijk [29,
45]. In the simulations reported here, these border convective fluxes are determined
with a second-order skew-symmetric-like formulation [12]. To accurately estimate
the fluxes for the cut cells, ghost points within the solid domain are still defined as
above.

Concerning the viscous numerical fluxes, the cut-cell stencil includes an additional
term, Dijk, representative of the friction force at the immersed wall and that was
neglected in Eq. 5:

Dijk = −
∫


ijk

τdS. (6)

where 
ijk is defined as in Fig. 5. For an immersed wall and for an incompressible
case, as discussed in [45], velocity gradients in wall tangential directions are assumed
weak, so that the wall shear stress becomes:

τ = μ

(

∂u||
∂xn

)

(7)

with u|| the flow velocity parallel to the wall and xn the normal distance to the wall.
The friction force may then be determined from interpolation, to project it along the
cartesian mesh directions [45].

Undesirable pressure noise was found to be reduced in our fully compressible
simulations, if the viscous fluxes are not pondered by the effective wetted surface,
but readily estimated from the ghost cell. The viscous fluxes along the immersed wall
are then specified as the linear average of the viscous fluxes on the solid subset of
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Fig. 5 Treatment of the
interface viscous fluxes for a
cut-cell

the planes delimiting the control volume Vijk, multiplied by the immersed section, as
shown in Fig. 5, leading to:

Dijk = 1

2

ijk(Fi+1/2 jk + F j−1/2 jk), (8)

where (Fi+1/2 jk + F j−1/2 jk) is the linear average friction, obtained from the viscous
flux. The numerical stencil for the cut cells may thus be written as:

∂ϕ̂ijk

∂t
= 1

αijkVijk

(

Fijk[F + C] + Dijk
)

. (9)

To prevent the appearance of very small cells, which can result in numerical
instability, the cell mixing procedure [25, 29, 45] is used for the cut cells; overall this
method consists of mixing small cells with their neighboring ones. To find the proper
target cells to be mixed, mixing directions and fractions are determined, involving the
normal vector components. As shown in Fig. 6, a ghost cell (i, j,k) with a fluid subset
αijkVijk has three target cells in two dimensions. The first target cell is identified in
the x-direction as the cell located in (i + 1, j, k) or (i − 1, j, k) according to the sign
of the x-component of the normal nijk, and the same is done in other directions and
also along the diagonal.

3.2 LES-immersed boundary coupling

Specific difficulties arising with immersed boundaries in the context of Large Eddy
Simulation have been addressed at many places in the literature [1, 13, 24, 26, 28, 65,
66]; the most stringent ones relate to the filtering operation in the vicinity of walls,
therefore close to ghost cells. In the present work, Large Eddy simulations have been
carried out with various subgrid scale strategies, some requiring explicit filtering.
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Fig. 6 Shematic of the mixing
procedure for a ghost cell with
a small fluid subset

To determine the dynamic coefficients appearing in the eddy-viscosity models,
the resolved fields are filtered using a discrete top-hat filter of characteristic width
2�, with � the implicit grid filter. This test filter is described by a trapezoidal rule
[72], generalized for non-uniform grids [39]. This operation should be modified in
the near-wall region to prevent the inclusion of solid points in the discrete filter. The
filtered quantities near the immersed boundaries are then determined by cutting the
filtering volume. In other words, the scheme is switched to bi-dimensional filtering
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Fig. 7 Explicit Filtering volume in two dimensions. a In the fluid region. b Near an horizontal
immersed wall. c Near an inclined immersed wall
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over the plane parallel to the immersed boundary (Fig. 7). This operation may never-
theless leads to commutation errors since the filter becomes anisotropic. In a similar
manner, the Lagrangian reconstruction of the fluid path in the Lagrangian Subgrid
Scale Dynamic model [44] is modified in the vicinity of immersed boundaries.

4 Testing Immersed Boundaries

In this section, the prediction capabilities of immersed boundaries in compressible
flows are estimated considering various canonical test cases, as pressure reflection
over oblique surfaces, mass conservation in a channel flow past a cylinder and
inclined channels. Then, simulations are compared against experimental results for
the flow past a square obstacle, before considering a transonic flow cavity in the
subsequent section.

4.1 Pressure-wave reflection

The similarities and differences between characteristic boundary conditions based
on traveling waves (as NSCBC [54]) and the Neumann (zero pressure gradient)
combined to a Dirichlet (imposed velocity) condition at walls, have been studied
in [33] for grid conforming to the shape of the body. However, the impact of an
immersed boundary reconstruction with the wall that does not coincide exactly with
the grid mesh, needs to be assessed also. In this section, the response of a spherical
pressure wave interacting with a wall boundary is examined using both the 3D-
NSCBC formalism [38] with a conforming grid, and, immersed boundary with a non-
conforming grid. In practice, the two techniques prescribe the same wall acoustic-
impedance that goes to infinity; the differences arise from the numerically point
of view, in the sense that 3D-NSCBC is an indirect and smooth imposition of the
boundary conditions, which allows some relaxation of the variables towards target
values.

A Gaussian-shaped pressure pulse is imposed at the center of a three-dimensional
box of side length L = 0.013 m:

p(r) = p∞

[

1 + δ exp

(

− r2

2R2
p

)]

(10)

where r =
√

x2
1 + x2

2 + x3
3 is the distance from the center of the computational

domain, Rp is the characteristic dimension of the pressure pulse (Rp = 0.05L),
δ = 0.001 is its amplitude, with T0 = 300 K and p∞ = 1 · 105 Pa. A uniform mesh
composed of 50 nodes in every direction is used.

With immersed boundaries, near the wall the pressure wave relies on interpo-
lations. Faces and edges are determined from a bilinear interpolation and corners
reconstruction depends on a tri-linear scheme, whose actual impact on flow physics
varies with the angle between the cartesian mesh and the immersed body. Results
from the two boundary treatments are shown in Figs. 8 and 9 for acoustic reflexion
including a 45◦ inclined box. The immersed boundary formalism reproduces the
pressure waves observed with 3D-NSCBC, without much spurious oscillations and
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(a) t = 14µs

(b) t = 27µs

Fig. 8 Pressure iso-surfaces. Left: 3D-NSCBC wall formulation. Center: Immersed boundaries with
walls parallel to mesh. Right: with a 45◦ inclined cube

noise, as confirmed when comparing the time evolution of the pressure signal at
points located on one edge, corner and center of a face (Fig. 10). The agreement
between the three test cases is almost perfect, except in the case of the 45◦ inclined
cube, where some moderate departure is observed in the center of the cube face.

To calibrate the impact of immersed boundaries on the numerical scheme’s
accuracy when approaching the wall, additional simulations were performed with
a resolution varying between 40 and 70 fluid nodes in every direction, with a
conforming grid and immersed boundaries, in the case of the 45◦ inclined box. Two
probes are located either in the center of a face or in a corner, to collect the pressure
time evolution. These signals are then compared against a reference conforming
mesh solution obtained with a 150 fluid nodes resolution. L1 and L2 norms are
computed for a pressure wave traveling over 30 tr, where tr is defined as in Fig. 10.
For both 3D-NSCBC (conforming wall) and IBM, the discretization at wall is found
to be close to second order, as seen in Fig. 11.

4.2 Mass conservation: flow past a confined cylinder

The ghost cell technique enforces the boundary condition on the immersed body
through the use of an interpolation scheme, which combines wall information with
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(a) t = 26µs

(b) t = 27µs

Fig. 9 Pressure map and pressure contours at two different times. Left: 3D-NSCBC wall formulation.
Center: Immersed boundaries with walls parallel to mesh. Right: with a 45◦ inclined cube

the nearest fluid cells. Because the primitive variables are interpolated without
regard to the finite volume integration, fundamental conservations laws are not
explicitly enforced in the near wall cells. To evaluate the consequence of such an
interpolation scheme, a circular cylinder placed inside a channel flow is investigated
with two-dimensional simulations, to measure the level of mass conservation error
introduced by immersed boundaries in compressible flows.1

A flow configuration previously examined in the literature is retained [7, 70],
where a circular cylinder of diameter d is in a channel flow of height h = 5d.
To prevent spurious wave reflections, the cylinder is located half-way up and three
channel heights away from the inlet plane, the simulations are with a non-uniform
grid of 200 × 82 nodes in longitudinal and spanwise directions, the 1 mm cylinder is
discretized over 70 ghost cells. The bottom and top boundaries are adiabatic no-slip
walls and the open inflow and outflow boundaries are subsonic non-reflecting [38].
At inlet, a small asymmetric perturbation is superimposed to the velocity profile for
a short time to initiate the vortex shedding, as in [70]. The critical Reynolds number,
Red = 232, at which vortex shedding appears is reproduced.

To calibrate the error on mass conservation in this unsteady simulation, mass-
budget control volumes are cumulated over twice a flow characteristic-time τ =
d/Uo, with Uo the bulk velocity. The deviation from the exact mass conservation
is expected to increase when decreasing the fluid/solid volume ratio, also various
volumes have been considered; moving inlet and outlet of the control volume away

1Notice that the mass conservation problem arises very differently in incompressible flow solvers, in
which mass conservation is mostly a constraint imposed to the velocity solution.
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from the cylinder, the fluid/solid volume increases (Fig. 12). The mass-conservation
error is defined as:

�M(t) = 1

M(t)

∣

∣

∣

∣

∣

∣

M(t) − M(t − τ) +
t

∫

t−τ

(

Q̇m(xmax) − Q̇m(xmin)
)

dt

∣

∣

∣

∣

∣

∣

(11)

where M(t) is the mass of fluid in the control volume at time t and Qm(xmin) (resp.
Qm(xmax)) is the absolute value of the mass flow rate at the inlet (resp. outlet) plane
of that volume.

The evolution versus the fluid/solid ratio of the relative error on mass conservation
�M is measured in %; for every control volume, with and without the cylinder.
Without the cylinder, the compressible flow solver ensures mass conservation within
0.01 % of error. With the solid obstacle and for a fluid/solid ratio between 13 and 35,
the mass deviation varies between 0.24 % and 0.08 %; it would therefore stay very
moderate for most practical simulations, overall below a few thousandths.

Once mass conservation evaluated, Strouhal and drag numbers predictions are
compared against previous two-dimensional simulations of the same flow [70]
(the experimental values cannot be reproduced with this oversimplifed test case
neglecting the spanwise direction [46]). The Reynolds number is increased up to
Red = 300 and the grid is 20d and 10d in longitudinal and spanwise directions. To
test the interpolation scheme, a not very refined 162 × 100 non-uniform mesh is
used (0.035 < �x/d < 1.5, 0.045 < �y/d < 0.1). Figure 13 shows the time evolution
of drag and lift coefficients. The mean drag coefficient takes the value CD = 1.37
and the Strouhal number, St = f d/Uo = 0.21, where f is the characteristic shedding
frequency; these values are in agreement with previously reported two-dimensional
simulations [70].

4.3 Inclined channel at various angles

A laminar Poiseuille flow simulation is analyzed in this section. Varying the flow
resolution and the inclination in the cartesian mesh, computations are first performed
using the standard Ghost Fluid approach, then the impact on mass conservation of
the adjustments proposed in Section 3.1 (CCIB) is quantified.

10.5h
3h

1.2d

2.5d

hd
Last Control Volume

First Control Volume

Fig. 12 Sketch of the 2D flow pass a cylinder mass conservation test-case
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Fig. 13 Time evolution of
drag and lift coefficients. 2D
flow past a circular cylinder
Red = 300
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The generic Poiseuille flow setup discussed in [54] is retained; the Reynolds
number based on the half-width channel is Reh = 15 and the inlet flow condition
reads:

u(0, y) = Uo F(y) cos(β)

v(0, y) = Uo F(y) sin(β)

T(0, y) = To (12)

with 0 < y < 2h and F(y) = cos(π(y/h − 1)/2)2; Uo is the inlet maximum speed,
To = 298.15 K is the initial temperature, leading to a Mach number of 0.1, and β

is the flow inclination in the mesh (Fig. 14). The inlet profile imposes the mass flow
rate, however F(y) is expected to evolve toward the exact distribution [54, 59]:

F(y) = 3

4μ

1

Reh

ρoUo

h
y (2h − y) (13)

Fig. 14 Computational setup
for the channel flow study
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Table 1 Grid parameters

Nβ is the actual number of
grid points in the transverse
flow direction for the angle β

Grid N0 N20 N30 N45 Number
of cells

A – 9 – – 30 × 30
B – 12 – – 40 × 40
C 52 22 – – 60 × 60
D 78 32 – – 90 × 90
E 102 42 34 26 120 × 120
F – 72 – – 200 × 200
G 130 – – – 150 × 150
H 158 – – – 180 × 180
I – 92 – – 300 × 300
J – 142 – – 400 × 400

The channel length is ten times its half-width (Fig. 14) and the various meshes used
are summarized in Table 1, a non-reflecting acoustic boundary is prescribed at the
outlet.

Figures 15 and 16 show the impact of both resolution and inclination on the
velocity profiles. At 20◦ of inclination and for various grid resolutions (A, D, E in
Table 1), Fig. 15 confirms that the viscous effects of an oblique immersed wall can
be captured, with a reasonable sensitivity to resolution; as expected, the results get
closer to the theoretical profiles when decreasing the mesh resolution. The same is
found in Fig. 16 where the inclination is increased up to 45◦, with an under-prediction
of the velocity with the coarser grid.

To quantify the error on mass conservation, the absolute mass flow rate deviation
between two particular sections is cumulated over 20,000 iterations, for different
control volumes and versus Nβ , the number of cells over the channel height. The
results are shown in Fig. 17 for horizontal and inclined channels at β = 20◦. It is
observed that the ghost cell does not induce noticeable gain or loss of mass; for a
coarse mesh, at worse the budget is closed at 1 %. Furthermore, the comparison
between results obtained for an horizontal channel with a conforming mesh and
NSCBC treatment, reveals in Fig. 18 that the mesh-conforming wall boundary-

Fig. 15 Streamwise velocity
profiles. Inclined channel flow
at β = 20◦. Dotted line: Grid
A. Dash: Grid D. Dot-dash:
Grid E of Table 1. Solid line:
Analytical solution (Eq. 13)
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Fig. 16 Streamwise velocity
profiles. Dotted line: β = 45◦.
Dot-dash: β = 30◦. Dash:
β = 20◦. Solid line: Analytical
solution (Eq. 13)
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Fig. 17 Mass flow rate deviation in % vs number of cells. a β = 0◦. b β = 20◦. Control volumes
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Fig. 18 Mass flow rate
deviation in % vs number of
cells. Triangle: Immersed
boundary. Circle: NSCBC
treatment on conforming mesh
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condition produces an extra mass deviation, very likely because of the viscous and
convective flux approximation needed in NSCBC. In the case of a mesh-conforming
wall, acoustic boundary conditions therefore do not appear as the best compromise;
instead, directly imposing a Dirichlet condition for velocity and Neuman for temper-
ature allows for strict mass conservation.

The standard Ghost Cell Method and the CCIB strategy discussed in Section
3.1 are now compared in terms of mass flow rate deviation. There is a significant
improvement with the CCIB approach for coarse meshes, increasing mesh resolution
brings both methods to the same error level (Fig. 19). In the following, in particular
in the case of the cavity flow, the resolution is sufficiently high to allow for using the
standard Ghost Cell Method.

4.4 LES of the flow past a rectangular cylinder

After examining laminar flow cases, a three-dimensional turbulent flow past a square
cylinder is simulated. The flow considered has been studied experimentally [40, 43]
and it features a Reynolds number of 22,000, based on the obstacle side dimension d
and bulk velocity, for a Mach number of 0.25. Simulation of this canonical problem
may be found in the literature using boundary fitted grid [50, 68] and immersed
boundaries [23].

The longitudinal, transverse and spanwise lengths of the computational domain
are 14d, 8d and 4d, respectively and these directions are discretized over a 300 ×
186 × 50 mesh. The grid is defined to not conform to the shape of the square and
immersed boundaries are with adiabatic no-slip walls. According to experiments
[40], synthetic turbulence is injected at inlet with 2 % of bulk velocity fluctuations
[30], inlet and outlet are prescribed with 3D-NSCBC [38], symmetric and periodic
boundary conditions are used in the spanwise and streamwise directions. Transport
by unresolved sub-grid scale fluctuations is modeled with the WALE closure [51].

After a transient time necessary to initiate the vortex shedding behind the square,
statistics are collected and compared with experimental measurements. Figure 20
displays the averaged and fluctuating velocities for the streamwise and normal
components against experimental data on the cylinder and in its wake, demonstrating
the robustness of the simulation procedure along with its prediction capabilities, even
with sharp corners.

Fig. 19 Mass flow rate
deviation in % vs number of
cells. β = 20◦. Triangle: Ghost
Cell Method. Circle:
Compressible Conservative
Immersed Boundary (Section
3.1)
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Fig. 20 Time-averaged streamwise and transverse velocity U and V at various longitudinal
positions. Circle: Experiments. Line: LES

5 LES of a Transonic Cavity Flow

To further estimate the prediction capabilities of compressible LES with immersed
boundaries in mesh non-conforming to walls, the transonic cavity flow experi-
mentally studied by Forestier et al. [14, 15] is simulated; a configuration already
considered with LES in the literature by Larchevêque et al. [37]. Four different
sub-grid scale modeling strategies are compared against experimental results and an
additional simulation with a multi-block conforming mesh (i.e. without immersed
boundaries) is also carried out.

Air flowing at Mach 0.8 encounters a cavity of length-to-depth ratio L/D = 2
and spanwise extent W/D = 4.8, the Reynolds number based on the cavity length
and inflow bulk velocity is ReL = 6.8 · 106, the lengths of the three-dimensional
computational domain are given in Fig. 21. A flow-acoustic resonance mechanism
controls part of the flow dynamics in this experiment [15, 37] where various length-
to-depth ratios were examined [14]; hence, the mesh must be refined enough in
the vertical direction to capture most of the turbulent boundary layer, but also
the mixing layer developing downstream of the cavity. The properties of the two
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Fig. 21 Sketch of the
computational domain

meshes (6.6 million and 30 million nodes) considered are summarized in wall units
in Table 2. The signals in the streamwise direction must be sufficiently resolved
to propagate most of the acoustic information and an estimation of the boundary
layer thickness (δo ≈ 9.79 mm) was provided by the experimentalist at a longitudinal
position located at 0.1 L before the cavity, it is also used to calibrate the mesh in
Table 2. The two non-uniform meshes of Table 2 were found to fulfill most of the
basic LES resolution requirements. The very regular self-sustained oscillations were
experimentally studied using Schlieren technique and the phase-averaged properties
of the flow have been collected using a two-component laser-Doppler velocimetry
system [15].

Boundary conditions are imposed at inlet, outlet and wall (in the case of the
multi-block simulation) using 3D-NSCBC [38]. In addition, as in previous numerical
investigation of cavity flows [20, 35–37, 56], the mesh is stretched at the outlet to
artificially increase viscosity in order to damp undesired oscillations. With immersed
boundaries, the mesh is constructed independently from the wall geometry, which
is subsequently arbitrarily imposed on the top of the grid. The flow is forced at
inlet with synthetic turbulence [30], but as already concluded [56], intense velocity
fluctuations and turbulence are mainly generated by the Kelvin–Helmhotz instability
interacting with the flow recirculation within the cavity, therefore the inlet forcing as
very little impact on the downstream statistics.

Results with immersed boundaries are first discussed. Figure 22 shows distribution
of vortical structures visualized with the Q-criterion; a disturbed large-scale roller

Table 2 Mesh
characteristic-length ranges in
wall units (denotes by +) and
normalized by δo, the
experimentally reported
boundary layer thickness at
0.1 L before the cavity

Mesh M1 M2

Nodes 290 × 188 × 122 514 × 258 × 226
�x+ [30, 130] [4, 30]
�y+ [20, 70] [7, 40]
�z+ [20, 50] [15, 30]
�x/δo [0.04, 0.5] [0.01, 0.3]
�y/δo [0.002, 0.2] [0.002, 0.15]
�z/δo [0.06, 0.13] [0.03, 0.08]
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Fig. 22 Snapshot of
Q-criterion colored by density.
Mesh M1 (Table 2) with
Localized Dynamic
Smagorinsky modeling [18]

is visible within the cavity, along with the interaction of coherent structures with
the downstream cavity-edge, characterized by the impingement on that edge of the
detached flow mixed with fluid recirculating within the cavity. A numerical Schlieren
view from density gradient is displayed in Fig. 23, the shear-layer oscillations above
the cavity are observed, with coherent structures interacting with the downstream
edge and pressure waves traveling up- and downstream, above and inside the cavity,
featuring strong similarities with what was reported from experiments [15]. It is also
seen that LES is sufficiently resolved to capture some of the fine scale flow patterns.

To evaluate the amplitude of compressibility effects, the resolved turbulent Mach
number defined as:

MT = 1

< c >

[
〈

ρ(̃u)2
〉

〈ρ〉 −
( 〈ρũ〉

〈ρ〉
)2

]1/2

(14)

is used, 〈c〉 is the statistical averaged of the speed of sound. The flow inside the
cavity exhibits a compressible field with a resolved turbulent Mach number ranging
between 0.2 and 0.3, confirming the compressible character of the flow. In comple-
ment to the resolved dynamics, the instantaneous modeling parameter maps for the
isotropic and anisotropic parts of the SGS stress tensor have been examined and the
so-called Yoshizawa isotropic stress parameter (CI) may exceed the Smagorinsky
one (CS), indicating similar levels of thermodynamic pressure gradient and SGS
kinetic energy. Large values of isotropic stress are found in the vicinity of the
pressure waves, while the anisotropic part introduces turbulent viscosity within the
cavity, in the shear layers and in the free flow.

Experiments have revealed an asymmetric character of the flow, resulting from a
bifurcation induced by the confinement within the lateral walls [37]. This is observed

Fig. 23 Numerical Schlieren
view. LES mesh M1
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in the simulations looking at the horizontal aperture plane above the cavity (Fig.
24); all the SGS modeling approaches feature a non-symmetric flow, with a mean
streamwise velocity that is decomposed in a two-core zone developing on the left
side of the cavity and a single core on the right side (Fig. 24, left), associated to two
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Fig. 24 Maps in the horizontal aperture plane of the cavity. Left: time average streamwise velocity.
Right: Turbulent kinetic energy. a MiLES. b Vreman et al. model [69]. c Lagrangian Dynamic
Smagorinsky [44] with macropressure formulation [39]. d Lagrangian Dynamic Smagorinsky with
isotropic part of the stress tensor [71]. e Localized Dynamic Smagorinsky Model [18]
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non-centered maximum velocity fluctuations (Fig. 24, right). The MiLES (implicit
LES without additional SGS modeling), Vreman et al. [69], Lagrangian Dynamic
Smagorinsky [44] with macropressure formulation [39] and with isotropic part of the

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0

0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04

0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04

0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04

0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04

0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04 0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04

0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04

0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04

0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04

0 0.08 0.2 0.32 0.44 0.56 0.68 0.8 0.92 1.04

Fig. 25 Velocity statistics in the mid-span plane. Mesh M1 of Table 2. From top to bottom: Time
averaged longitudinal, vertical velocity, longitudinal and vertical fluctuating velocity. Left: Wall-
conforming mesh. Right: Immersed boundaries. Solid line: Lagrangian Dynamic Smagorinsky with
isotropic part of the stress tensor [71]. Dotted line: Vreman et al. model [69]. Dashed line: MiLES.
Circles: Experiments [37]
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stress tensor [71] and the Localized Dynamic Smagorinsky Model [18] are compared.
They all provide very similar results in terms of amplitude, but the shape of the
iso-velocity contours differ, with kernels more or less well-defined and pronounced.
Comparison of statistics with measurements is now reported to help discriminate
between the modeling approaches.

Figure 25 presents the converged flow statistics for the grid M1 (Table 2), with
immersed boundaries and with a wall-conforming mesh using 3D-NSCBC treatment
[38], and Fig. 26 for the refined grid M2, also for a wall-conforming mesh. The
upper corners of the cavity are very sensitive points in these simulations, they may
easily radiate spurious numerical noise [19]; the first conclusion drawn is that the
strategies retained here prevent the appearance of these difficulties. Second, there
is no significant perturbation or errors induced by immersed boundaries and, in
this preliminary global view of the flow statistics, weak differences are observed
between the selected SGS closures. Third, refining the mesh from 6.6 million nodes
to 30 million, neither profoundly modifies flow statistics nor their agreement with
measurements. It is thus concluded that the numerics and the SGS modeling is of
sufficient quality to adjust to the mesh resolution. This global comparison may be
refined by isolating profiles, as proposed in Figs. 27, 28, 29, 30 and 31.
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Fig. 26 Velocity statistics in the mid-span plane, wall-conforming mesh (no-immersed boundaries).
Mesh M2 of Table 2. From top to bottom: Time averaged longitudinal, vertical velocity, longitudinal
and vertical fluctuating velocity. Solid line: Lagrangian Dynamic Smagorinsky with isotropic part
of the stress tensor [71]. Dotted line: Vreman et al. model [69]. Dashed line: MiLES. Circles:
Experiments [37]
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Fig. 27 Time averaged longitudinal velocity in the mid-span plane for different longitudinal posi-
tions. Mesh M1 of Table 2. Solid line: Lagrangian Dynamic Smagorinsky [44] with isotropic part
of the stress tensor [71]. Dashed line: Lagrangian Dynamic Smagorinsky with macro-pressure [39].
Dotted line: Localized Dynamic Smagorinsky Model [18]. Crosses: Vreman et al. model [69]. Dot-
dashed line: MiLES. Circles: Experiments [37] (profiles are positioned in the order of Figs. 25 and
26)
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Fig. 28 Time averaged vertical velocity in the mid-span plane for different longitudinal positions.
Mesh M1 of Table 2. Solid line: Lagrangian Dynamic Smagorinsky [44] with isotropic part of the
stress tensor [71]. Dashed line: Lagrangian Dynamic Smagorinsky with macro-pressure [39]. Dotted
line: Localized Dynamic Smagorinsky Model [18]. Crosses: Vreman et al. model [69]. Dot-dashed
line: MiLES. Circles: Experiments [37]
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Fig. 29 Time averaged longitudinal velocity fluctuation in the mid-span plane for different longitu-
dinal positions. Mesh M1 of Table 2. Solid line: Lagrangian Dynamic Smagorinsky [44] with isotropic
part of the stress tensor [71]. Dashed line: Lagrangian Dynamic Smagorinsky with macro-pressure
[39]. Dotted line: Localized Dynamic Smagorinsky Model [18]. Crosses: Vreman et al. model [69].
Dot-dashed line: MiLES. Circles: Experiments [37]
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Fig. 30 Time averaged vertical velocity fluctuation in the mid-span plane for different longitudinal
positions. Mesh M1 of Table 2. Solid line: Lagrangian Dynamic Smagorinsky [44] with isotropic part
of the stress tensor [71]. Dashed line: Lagrangian Dynamic Smagorinsky with macro-pressure [39].
Dotted line: Localized Dynamic Smagorinsky Model [18]. Crosses: Vreman et al. model [69]. Dot-
dashed line: MiLES. Circles: Experiments [37]
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Fig. 31 Reynolds stress in the mid-span plane for different longitudinal positions. Mesh M1 of Table
2. Solid line: Lagrangian Dynamic Smagorinsky [44] with isotropic part of the stress tensor [71].
Dashed line: Lagrangian Dynamic Smagorinsky with macro-pressure [39]. Dotted line: Localized
Dynamic Smagorinsky Model [18]. Crosses: Vreman et al. model [69]. Dot-dashed line: MiLES.
Circles: Experiments [37]
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Looking at details, as reported elsewhere for a deep cavity [64], any small
departure on the initial thickness of the upstream boundary layer may explain some
of the observed differences. Indeed, when focussing on the first profile (x/L =
1.08 in Fig. 27), the boundary layer appears thinner than required. Among all the
modeling ingredients, this lack of accuracy in the prediction may be due to the
artificial dissipation scheme perturbing the near wall behavior. Within the cavity, the
longitudinal mean velocity is also slightly overpredicted and this tendency is reversed
in the downstream near wall region. A bump may be observed in the vicinity of
y/L = 0.6, for x/L < 1.6, with Lagrangian Dynamic modeling; the Lagrangian path
reconstruction close to the wall along with the specific filtering needed by this closure
may be responsible for this behavior. Concerning the vertical velocities presented
in Fig. 28, the simulations underpredicts slightly the measured ones; nevertheless,
this vertical velocity component brings into play small amplitude compared to the
streamwise one.

The fluctuating longitudinal and vertical velocity components are displayed in
Figs. 29 and 30 and the longitudinal-vertical Reynolds stress is shown in Fig. 31.
The turbulent fluctuation levels are well reproduced near the mixing layer, however
inside the cavity, fluctuations are underpredicted (from x/L = 1.32 up to x/L = 1.8
in Fig. 29). Larchevêque et al. [37] reported similar behavior in their numerical results
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Fig. 32 Pressure power density spectra. Sensor located in the cavity downstream wall. a and b No
explicit SGS modeling. c Localized Dynamic Smagorinsky [18]. d Vreman et al. [69]
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and relate this discrepancy to the low coherence of the numerical Stuart vortex,
which fails to provide the double bumps inside the cavity. Nonetheless, the averaged
Reynolds Stresses behavior is quite well captured throughout the cavity (Fig. 31).

A strong acoustic feedback exists in this flow, inducing self-sustained oscillations,
previously studied experimentally and numerically [37]. Time pressure signals have
been recorded at a point located in the vertical half-span plane on the downstream
wall of the cavity. The Power Spectral Density (PSD) is determined for various SGS
modeling and for the two grids in the case of the MiLES approach, simulations
are with immersed boundaries (negligible differences have been reported in PSD
between immersed boundaries and wall-conforming mesh calculations, not shown
for brevity). These pressure spectra are plotted (Figs. 32 and 33) in sound pressure
level (SPL) in decibels per Hertz versus the Strouhal number, according to:

SPL(dB) = 10 log10

(

SP

4 · 10−10

)

(15)
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where SP is the spectrum module. The Burg method [4, 42, 57] is used to treat the
LES signal, which is known to be more accurate for short sampling; here about 50
periods of the dominant Rossiter mode have been computed, to collect the pressure
spectra and statistics. Figure 32 shows the pressure power spectrum and Fig. 33
is a close-up with comparisons against measurements. Best results are obtained
with MiLES and Vreman approaches; the Lagrangian Dynamic modeling introduces
numerous spurious frequencies, which may result from commutation errors with
anisotropic filters, errors cumulated in the averaging procedures along fluid parti-
cle trajectories near boundaries. Concerning the Vreman closure, except the first
mode and its first harmonics and the second mode, further harmonics of the first
Rossiter modes and other modes are clearly over-predicted, suggesting an under-
dissipation of these models. However the detailed comparison of fluctuations levels
discussed above for the various models, indicates that all closures have difficulties
in reproducing the precise levels, with over- or/and under-prediction depending on
the exact location examined. In fine, as already concluded in the literature for such
transonic flows [37], overall the MiLES approach provides a quite accurate pressure
spectrum, with much less spurious harmonics. Moreover, the immersed boundary
approach used in the present simulations allows for capturing this unsteady pressure
response.

In this cavity flow dominated by pressure oscillations associated to a relatively
high turbulent Mach number, the SGS modeling is mainly overwhelmed by the
numerical dissipation, thus moderating the relative importance of the subgrid scale
closure, as concluded above when comparing with measurements. The magnitude
of the molecular, turbulent (SGS modeling) and artificial diffusion fluxes may be
extracted from the flow. The SGS and artificial diffusion fluxes are added and
compared to the corresponding molecular contribution. Figure 34 shows that the
level of artificial viscosity fluxes in the MILES simulation is of the order of the
total level of SGS plus artificial fluxes when using Vreman modeling, while the
dynamic approach goes with more artificial viscosity. This balance between artificial
dissipation and explicit turbulence modeling was discussed in compressible flow
literature at many occasions, for instance in the case of shock-interactions studies
[11] and shocklets [58]. In terms of spatial distribution of the fluxes added by the SGS
closure, the Lagrangian Dynamic approach provides viscosity patterns that follow
the flow structure, both at the wall and in the free shear layers featuring traveling
acoustic-waves, while the Vreman closure gives a more spotty distribution, without
much correlation with flow topology.

The wall-layer is not resolved in these simulations, both with wall-conforming
mesh and immersed boundaries. Similar results are obtained in the two cases, sug-
gesting that the interpolation schemes used with immersed boundaries may impact
less than artificial viscosity, which actually acts as a wall function when approaching
solid boundaries. In the case of subsonic wall-bounded flow, artificial viscosity can
certainly be brought down to an almost negligible level of contribution; there the
use of wall function may improve the simulation procedure. In the present case of a
transonic cavity, featuring quite strong pressure waves, as previously reported in the
literature [36, 37], it was not found possible to complete the simulations without a
numerical scheme specialized in compressible flows and artificial viscosity.
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(a)

(b)

(c)

0 0.25 0.5 0.75 1

Fig. 34 Maps of the relative contribution of molecular (left) and artificial + SGS (right) diffusion
fluxes to the total energy diffusion fluxes. a MiLES. b Lagrangian Dynamic Smagorinsky Model with
isotropic stress modeling. c Vreman model

6 Flow Simulation of a Trapped-Vortex Combustor Geometry

In the flows considered so far, overall the geometries are rather simple; also to
increase the test-case complexity, the unsteady flow in a trapped-vortex combustor is
now simulated. The geometry of the immersed wall is shown in Fig. 35a, it consists of
a main annular flow arriving on a set of rods (flame holder) located before a cavity
in which additional fluid is injected through two annular slots, featuring weak flow
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(a) Immersed walls (flow from right
to left)

(b) iso-Q (Q=2.197s−2) colored by velocity
magnitude (flow from left to right)

Fig. 35 a Trapped vortex combustor geometry. b Flow top-view

rates compared to the main flow. After passing the cavity, the flow leaves the domain
as an annular wall confined-jet. Figure 35b presents the complex flow topology with
turbulence developing behind the rods, within and above the cavity.
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Fig. 36 Radial profiles of time averaged streamwise velocity between two rods at different stream-
wise positions. Dashed line: MILES. Dotted line: VM. Solid line: MILES with turbulence injection.
Open circle: experiments
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One quarter of the full geometry is computed, with annular periodicity on the
lateral sides of the domain. The length of the cavity is L = 22 mm and the com-
putational domain is composed of 3L × 1.9L × 1.9L. The cartesian mesh contains
10,853,864 cells with 43 % devoted to fluid, the LES resolution in the three cartesian
directions is 188 μm < �x < 462 μm and �y = �z = 209 μm. A non-reactive case is
simulated with an air-flow rate of 20 g/s in the main annular flow, in the cavity 0.7 g/s
and 1 g/s are injected through the upstream and downstream annular slots; the main
flow velocity is of the order of 10 m/s. Flow measurements inside such a real burner
setup are uneasy because of wall complexity, however, magnitude and rms velocity
are available in a few planes of the cylindrical system [5].

Time averaged streamwise and rms velocity are given in Figs. 36 and 37 for the
Vreman et al. [69] and MILES SGS closures discussed above. Simulations have been
performed with and without forcing turbulence [30] at the inlet of the computational
domain, however, because many shear layers develop in the vicinity of the rods
placed just before the cavity, the inlet forcing procedure was found to have only a
weak impact.

The complex flow topology is recovered by the immersed boundary simulations,
with a more than fair agreement against measurement considering the complexity of
the geometry, for both experimental and numerical investigations.
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Fig. 37 Radial profiles of velocity RMS between two rods at different streamwise positions. Dashed
line: MILES. Dotted line: VM. Solid line: MILES with turbulence injection. Open circle: experiments
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7 Summary

Considering a set of canonical problems along with a turbulent transonic flow past
a cavity, an attempt has been made to demonstrate the potential of an immersed
boundaries approach to solve the Navier–Stokes equations in their fully compressible
form, with walls arbitrarily imposed over a structured cartesian mesh.

The ghost cell technique plus some adjustments was found to perform well in
terms of pressure response and mass conservation, even when the wall is far from
conforming to the grid.

After simulating canonical flows (channel inclined over a fixed grid, flow past a
cylinder), a transonic cavity flow has been addressed. Large Eddy Simulation was
performed with five different approaches for modeling the smallest and unresolved
scales. The comparisons with experiments, in particular the power density spectra
of pressure fluctuations, demonstrate the full potential of LES with immersed
boundaries for a compressible flow. Specifically, the numerical solution reproduces
the complex cavity feedback-loop process, which is controlled by the interaction of
instabilities in the shear layer with the downstream cavity wall-corner, in relation
with the generation of acoustic waves traveling upstream. To address a more complex
geometry, a trapped vortex combustor, including rods (flame holder) and a cavity,
is also simulated and statistical flow properties compare well with experimental
measurements.

Acknowledgements This work was granted access to the HPC resources of IDRIS-CNRS under
the allocation 2011-020152 made by GENCI (Grand Equipement National de Calcul Intensif) and
was funded by the European research project TECC-AE-FP7 (Technologies Enhancement for Clean
Combustion in Aero-Engines), Grant No. 2010-020152. The authors are grateful to Dr. G. Lodato
for his precious help in the development of immersed boundary in the flow solver and to Dr. L.
Larchevêque for providing detailed information on the transonic cavity flow.

References

1. Balaras, E.: Modeling complex boundaries using an external force field on fixed Cartesian grids
in Large Eddy Simulations. Comput. Fluids 33, 375–404 (2004)

2. Berthelsen, P., Faltinsen, O.: A local directional ghost cell approach for incompressible viscous
flow problems with irregular boundaries. J. Comput. Phys. 227(9), 4354–4397 (2008)

3. Beyer, R.P., Leveque, R.J.: Analysis of a one-dimensional model for the immersed boundary
method. SIAM J. Numer. Math. 29, 332–364 (1992)

4. Burg, J.: Maximum entropy spectral analysis. Ph.D. thesis, Stanford University (1975)
5. Burguburu, J.: Experimental study of flame stability in an aeronautical combustion chamber

using trapped burned gases. Ph.D. thesis, National Institute of Applied Sciences Rouen (2012)
6. Capizzano, F.: A turbulent wall model for immersed boundary methods. In: 48th AIAA

Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
Orlando (2010)

7. Chen, J.H., Pritchard, W.G., Tavener, S.J.: Bifurcation for flow past a cylinder between parallel
planes. J. Fluid Mech. 284, 23 (1995)

8. Choi, J.I., Oberoi, R.C., Edwards, J.R., Rosati, J.A.: An immersed boundary method for complex
incompressible flows. J. Comput. Phys. 224, 757–784 (2007)

9. de Tullio, M.D., Palma, P.D., Iaccarino, G., Pascazio, G., Napolitano, M.: An immersed boundary
method for compressible flows using local grid refinement. J. Comput. Phys. 225(2), 2098–2117
(2007)

10. Domingo, P., Vervisch, L., Deynante, D.: Large Eddy Simulation of a lifted methane jet flame in
a vitiated coflow. Combust. Flame 152, 415–432 (2008)



66 Flow Turbulence Combust (2013) 90:29–68

11. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large
Eddy Simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

12. Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes
for conservative skew-symmetric-like schemes in stuctures meshes: application to compressible
flows. J. Comput. Phys. 161, 114–139 (2000)

13. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-
difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60
(2000)

14. Forestier, N., Geffroy, P., Jacquin, L.: Etude expérimentale des propriétés instationnaires d’une
couche de mélange compressible sur une cavité: cas d’une cavité ouverte peu profonde. Rt
22/00153 dafe, ONERA (in French) (2003)

15. Forestier, N., Jacquin, L., Geffroy, P.: The mixing layer over a deep cavity at high-subsonic speed.
J. Fluid Mech. 475, 101–145 (2003)

16. Ghias, R., Mittal, R., Lund, T.S.: A non-body conformal grid method for simulation of compress-
ible flows with complex immersed boundaries. AIAA Paper (2004)

17. Ghias, R., Mittal, R., Dong, H.: A sharp interface immersed boundary method for compressible
viscous flows. J. Comput. Phys. 225, 528–553 (2007)

18. Ghosal, S., Lund, T.S., Moin, P., Akselvoll, K.: A dynamic localization model for large eddy
simulation of turbulent flows. J. Fluid Mech. 286, 229–255 (1995)

19. Gloerfelt, X.: Bruit rayonné par un écoulement affleurant une cavité: simulation aéroacoustique
directe et application de méthodes intégrales. Ph.D. thesis, Ecole Centrale de Lyon (2001)

20. Gloerfelt, X.: Cavity noise. In: VKI Lectures: Aerodynamic Noise from Wall-Bounded Flows.
Von Karman Institute (2009)

21. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip boundary condition with an external
force field. J. Comput. Phys. 105, 354–366 (1993)

22. Gottlieb, S., Shu, C.: Total variation diminishing runge-kutta schemes. Math. Comput. 67(221),
73–85 (1998)

23. Grigoriadis, D.G.E., Bratzis, J.G., Goulas, A.: LES of the flow past a rectangular cylinder using
the immersed boundary concept. Int. J. Numer. Methods Fluids 41, 615–632 (2003)

24. Grigoriadis, D.G.E., Bartzis, J.G., Goulas, A.: Efficient treatment of complex geometries for
Large Eddy Simulations of turbulent flows. Comput. Fluids 33, 201–222 (2004)

25. Hu, X., Khoo, B., Adams, N., Huang, F.: A conservative interface method for compressible flows.
J. Comput. Phys. 219(2), 553–578 (2006)

26. Iaccarino, G., Verzicco, R.: Immersed boundary technique for turbulent flow simulations. Appl.
Mech. Rev. 56(3), 331–347 (2003)

27. Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite
volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 1259, 1981 (1981)

28. Kim, J., Kim, D., Haecheon, C.: An immersed-boundary finite-volume method for simulations
of flow in complex geometries. J. Comput. Phys. 171, 132–150 (2001)

29. Kirkpatrick, M.P., Armfield, S.W., Kent, J.H.: A representation of curved boundaries for the
solution of the Navier–Stokes equations on a staggered three-dimensional cartesian grid. J.
Comput. Phys. 184(1), 1–36 (2003)

30. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially
developing direct numerical or Large Eddy Simulation. J. Comput. Phys. 186, 652–665 (2003)

31. Lai, M.C., Peskin, C.S.: An immersed boundary method with formal second order accuracy and
reduced numerical viscosity. J. Comput. Phys. 160, 705–719 (2000)

32. Laizet, S., Lardeau, S., Lamballais, E.: Direct numerical simulation of a mixing layer downstream
a thick plate. Phys. Fluids 22(1), 015,104 (2003)

33. Lamarque, N., Porta, M., Nicoud, F., Poinsot, T.: On the stability and dissipation of wall boundary
conditions for compressible flows. Int. J. Numer. Methods Fluids 62(10), 1134–1154 (2010)

34. Lamballais, E., Silvestrini, J.: Direct numerical simulation of interactions between a mixing layer
and a wake around a cylinder. J. Turbulence 3, Article Number 028 (2002). doi:10.1088/1468-
5248/3/1/028

35. Larchevêque, L., Sagaut, P., Mary, I., Labbé, O.: Large-Eddy Simulation of a compressible flow
past a deep cavity. Phys. Fluids. 15(1), 193–210 (2003)

36. Larchevêque, L., Sagaut, P., Lê, T.H., Comte, P.: Large eddy simulation of a compresible flow in
a three dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265–301 (2004)

37. Larchevêque, L., Sagaut, P., Labbé, O.: Large-Eddy Simulation of a subsonic cavity flow includ-
ing asymmetric three-dimensional effects. J. Fluid Mech. 577, 105–126 (2007)

http://dx.doi.org/10.1088/1468-5248/3/1/028
http://dx.doi.org/10.1088/1468-5248/3/1/028


Flow Turbulence Combust (2013) 90:29–68 67

38. Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct and
Large-Eddy Simulation of compressible viscous flows. J. Comput. Phys. 227(10), 5105–5143
(2008)

39. Lodato, G., Vervisch, L., Domingo, P.: A compresssible wall-adapting similarity mixed model for
Large-Eddy Simulation of the impinging round jet. Phys. Fluids 21, 035,102 (2009)

40. Lyn, D.A., Einavv, S., Rodi, W., Park, J.H.: A laser-doppler velocimetry study of ensemble-
averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304,
285–319 (1995)

41. Majumdar, S., Iaccarino, G., Durbin, P.: RANS solver with adaptive structured boundary non-
conforming grids. In: Annual Research Briefs, pp. 353–366 (2001)

42. Marple, S.L.: Digital Spectral Analysis with Applications. Prentice Hall (1987)
43. McLean, I., Gartshore, I.: Spanwise correlation of pressure on a rigid square section cylinder. J.

Wind Eng. 41, 779–808 (1992)
44. Meneveau, C., Lund, T., Cabot, W.: A Lagrangian dynamic subgrid-scale model of turbulence. J.

Fluid Mech. 319, 353–385 (1996)
45. Meyer, M., Devesa, A., Hickel, S., Adams, N.A.: A conservative immersed interface

method for Large-Eddy Simulation of incompressible flows. J. Comput. Phys. 229, 6300–6317
(2010)

46. Mittal, R., Balanchadar, S.: Effect of intrinsic three-dimensionality on the lift and drag of nomi-
naly two-dimensional cylinders. Phys. Fluids. 7(8), 1841 (1995)

47. Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A., Von Loebbecke, A.: A versatile
sharp interface immersed boundary method for incompressible flows with complex boundaries.
J. Comput. Phys. 227(10), 4825–4852 (2008)

48. Mohd-Yusof, J.: Combined immersed-boundary/B-spline methods for simulations of flow in
complex geometries. In: Annual Research Briefs, pp. 317–327 (1997)

49. Moin, P., Squires, K., Cabot, W., Lee, C.: A dynamic subgrid-scale model for compressible
turbulence and scalar transport. Phys. Fluids. A 3(11), 2746–2757 (1991)

50. Murakami, S., Izuka S. ans Ooka, R.: Cfd analysis of turbulent flow past square cylinder using
dynamic LES. J. Fluids Struct. 13, 1097–1112 (1999)

51. Nicoud, F.: Defining wave amplitude in characteristic boundary conditions. J. Comput. Phys. 149,
418–422 (1999)

52. Palma, P.D., de Tullio, M.D., Pascazio, G., Napolitano, M.: An immersed boundary method for
compressible viscous flows. Comput. Fluids 35(7), 693–702 (2006)

53. Peskin, C.S.: The fluid dynamics of heart valves: experimental, theoretical and computational
methods. Annu. Rev. Fluid. Mech. 14, 135–259 (1982)

54. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J.
Comput. Phys. 101, 104–129 (1992)

55. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer (2000)
56. Sagaut, P., Garnier, E., Tromeur, E., Larchevêque, L., Labourasse, E.: Turbulent inflow condi-

tions for Large-Eddy Simulation of supersonic and subsonic wall flows. AIAA J. 42, 469–477
(2004)

57. Sagaut, P., Deck, S., Larchevêque, L.: Numerical simulation data: from validation to physical
analysis. In: Congrès Francophone de Technique Laser. CFTL 2008, Futuroscope (2008)

58. Samtaney, R., Pullin, D.I., Kosovic, B.: Direct numerical simulation of decaying compressible
turbulence and shocklet statistics. Phys. Fluids 13, 1415–1430 (2001)

59. Schlichting, H., Gersten, K.: Boundary Layer Theory. Springer, Berlin (2003)
60. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather

Rev. 91(3), 99–164 (1963)
61. Subramanian, V., Domingo, P., Vervisch, L.: Large-Eddy Simulation of forced ignition of an

annular bluff-body burner. Combust. Flame 157(3), 579–601 (2010)
62. Swanson, R., Turkel, E.: On central-difference and upwind schemes. J. Comput. Phys. 101(2),

292–306 (1992)
63. Tatsumi, S., Martinelli, L., Jameson, A.: Flux-limited schemes for the compressible Navier–

Stokes equations. AIAA J. 33(2), 252–261 (1995)
64. Thornber, B., Drikakis, D.: Implicit Large-Eddy Simulation of a deep cavity using high-

resolution methods. AIAA J. 46(10), 2634–2645 (2008)
65. Tseng, Y.H., Ferziger, J.H.: LES of 3D turbulent wavy bounadry flow: validation of a ghost-cell

immersed boundary method. In: Proc. 3rd International Symposium on Turbulence and Shear
Flow Phenomena. Sendai, Japan (2003)



68 Flow Turbulence Combust (2013) 90:29–68

66. Tyagi, M., Acharya, S.: Large Eddy Simulation of turbulent flows in complex and moving rigid
geometries using the immersed boundary method. Int. J. Numer. Methods Fluids 48, 691–722
(2005)

67. Verzicco, R., Mohd-Yusof, J., Orlandi, P., Haworth, D.: LES in complex geometries using
boundary body forces. AIAA 38, 427–433 (2000)

68. Voke, P.R.: Flow past a square cylinder test case LES2, vol. Direct and Large Eddy Simulation
II. ERCOFTAC Series (1997)

69. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory
and applications, Phys. Fluids 16(10), 3670–3681 (2004)

70. Ye, T., Mittal, R., Udaykumar, H.S., Shyy, W.: An accurate Cartesian grid method for viscous
incompressible flows with complex immersed boundaries. J. Comput. Phys. 156, 209–240 (1999)

71. Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to
subgrid modeling. Phys. Fluids 29, 2152–2164 (1986)

72. Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to
turbulent recirculating flows. Phys. Fluids A 5(12), 3186–3196 (1993)


	Immersed Boundaries in Large Eddy Simulation of Compressible Flows
	Abstract
	Introduction
	Sub-Grid Scale Modeling and Numerics
	Immersed Boundary Method
	A Compressible Conservative Immersed Boundary (CCIB)
	LES-immersed boundary coupling

	Testing Immersed Boundaries
	Pressure-wave reflection
	Mass conservation: flow past a confined cylinder
	Inclined channel at various angles
	LES of the flow past a rectangular cylinder

	LES of a Transonic Cavity Flow
	Flow Simulation of a Trapped-Vortex Combustor Geometry
	Summary
	References


