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Abstract Pulsed high-velocity water jets are of interest for breaking rocks and other
materials. This paper describes a straightforward way of generating single water
pulse with a hammer impacting a piston that rests on top of a chamber filled with
water. This impacting action pressurises the water, expelling it at high velocity
through a nozzle. A theoretical investigation is outlined aimed at gaining a better
understanding of this system for generating water pulses. A computational model
is developed to simulate the pressure dynamics in the chamber based on continuity
and momentum equations for a compressible viscous flow. This model is used to
optimise the relative sizes of the hammer and piston as well as the height of the
water column to produce the highest velocity water pulse. The model was validated
by building an experimental apparatus. In these experiments maximum pressures of
about 200 MPa were measured inside the chamber over a time period of about 560 μs.
This produced a water pulse with maximum velocity of 600 m/s. Experiments were
conducted with nozzle diameters between about 1 mm and 4 mm to study the effect
of discharge volume on the pressure history. The results illustrate that although the
peak attainable pressure decreases with an increase in nozzle diameter, the duration
of the elevated pressure remains similar for all nozzles.
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1 Introduction

Practical methods for producing high-energy water pulses repeatedly have proven
difficult. At one extreme are water cannon which provide highly energetic but
single pulse impacts on the target [1]. At the other extreme are the very high-
frequency low-energy pulsed jets formed using an ultrasonic transducer upstream of
the nozzle introduced by Vijay et al. [2] and developed further by Foldyna et al. [3].
Between these extremes are the so-called self-modulated jets. These use an organ
pipe structure upstream of the nozzle to induce waves in the flow stream. When these
jets exit the nozzle, the air drag causes the continuous jets to break up into a series
of pulses as first described by Nebeker and Rodriguez [4] and further developed by
Chahine et al. [5]. Few of these systems have found widespread use as a practical
device.

Our research set out to understand the production of a single water pulse
generated using a water-filled cylindrical steel chamber with a steel piston at one end
and a centrally-located nozzle mounted at the other end. In this system the cylinder
axis is vertical with the nozzle at the bottom and the piston resting on the water
surface. The water pulse is generated when a hammer was used to impact the piston
(Fig. 1).

Other workers have conducted similar studies [6–9] but focusing at much higher
velocity ranges. In particular Rehbinder [10] developed an analytical model to
calculate the stress waves travelling in the piston and the hammer and he validated
his model (Fig. 2) using an experimental apparatus not unlike that illustrated in Fig. 1.

Fig. 1 Schematic view of the
water filled chamber, the
piston and hammer
(not to scale)
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Fig. 2 Solid line: pressure profile derived from theory, oscillating line: experimental results [10].
a and b shows higher and lower noise level in the recorded data

2 General Theory for Analytical Model

The goal of the present study was to optimise the design of the hammer, piston and
chamber to produce the most energetic and therefore potentially destructive water
pulses.

The easiest and most straightforward way to approach the problem is to make
two assumptions. First, to treat the piston and the hammer as lumped bodies. This
assumption is reasonable since the elastic properties of water and piston differ by two
orders of magnitude: Kw = 2.2 GPa while Ep = 200 GPa. Second, to treat the water
column inside the chamber as a spring. This assumption means that the energy deliv-
ered from the hammer impact moves the piston forward, compressing and thereby
storing energy in the water. As the water approaches the maximum compression,
determined by the bulk modulus of water, the piston slows and eventually stops. The
compressed water then starts expanding releasing the stored energy and reducing the
pressure inside the chamber. Water discharge from the nozzle is initiated as soon as
pressure starts to build in the chamber. This model is described in following section.

2.1 Governing equations

The problem to be solved is to calculate the changing water volume in the chamber
with a moveable boundary (the piston) and with water discharging through the
nozzle. Rehbinder [10] addressed this problem by considering a control volume
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inside the chamber and applying the equations of continuity and conservation of
mass to relate the movement of the piston to the discharge from the nozzle, assuming
that flow inside nozzle and chamber is quasi-steady-state and one dimensional and
also that water is inviscid and compressible. In our analysis below a similar approach
is adopted, but the non-steady-state aspects of the problem are considered more
completely. A comparison of our analysis with that of Rehbinder in the equations
that follow is made clear by labelling Rehbinder’s equations with the index R.

2.1.1 Compressibility of water

A first approach is to note that the water density can be related to pressure in the
chamber using the bulk modulus of water:

dp = Kw

dρ

ρ
(1)

where Kw is the bulk modulus of water which is assumed to be constant and equal to
2.2 GPa. In reality however, the bulk modulus varies with pressure. An alternative
method for relating the density of a compressible fluid to pressure is via the Tait
equation of state [6, 11, 12] which for water is written as:

P + B
P0 + B

=
(

ρ

ρ0

)n

(2)

where, n and B are constants and for water n =7.415 and B = 296.3 MPa [12]. The
subscript zero denotes the reference condition which here is P0 = 0 and so ρ = ρw.
The Tait equation is an empirical equation of state with some theoretical justification.
This equation has been found to provide an excellent representation of the equation
of the state of water for pressures up to 2.5 GPa at temperature range of 20◦–60◦C
for n = 7 and B = 321.4 MPa [11]. However, the application of the Tait equation
with these empirical constants for lower pressure values between 10–100 MPa has
not led to acceptable results [13]. Different constant values have been determined by
different scientists based on their experimental data; the comparisons showed that
Tait equation is in error at the low pressure range [14].

Integration of Eq. 1 for initial values of P = 0 when ρ = ρw (original density of
water) results in a state equation for direct comparison with Eq. 2:

P = Kw ln
(

ρ

ρw

)
(3)

Applying the Tait state equation (2) for P = 200 MPa gives a water density of
1072 kg/m3 whereas using a constant value of Kw equal to 2.2 GPa in Eq. 3 gives
a water density of 1095 kg/m3, a difference in density of 2.1%. Pressures of up to
200 MPa can be reached in the present work, so it is important to accurately model
the pressure-density relationship. Therefore, the state equation described by Eq. 3 is
adopted for the present work.

Rehbinder [10] adopted an approximate equation of state for water, based on the
pressure profiles given by Bridgeman [15] for various relative densities at constant
temperatures, since he demonstrated that it is reasonable to neglect the temperature
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change during the short event when the water is being compressed. Therefore,
Rehbinder [10] assumed an approximated linear relation between pressure, P, and
density, ρ, in which the pressure function cannot accept negative values:

P = Ew f

(
ρ

ρw

− 1
)

(3R)

where Ew f is a fictitious term for water compressibility with value of 2.96 GPa. It
corresponds to a fictitious speed of sound, Cw f , calculated as 1750 m/s for the density
of water at atmospheric pressure, ρw = 1000 kg/m3.

2.1.2 Continuity and conservation of f luid mass

Starting from the well-known Reynolds’ transport theorem, in which Nsys represents
the extensive quantity of any physical property of the fluid (e.g., momentum, energy)
and η is the corresponding value per unit mass, the intensive property for any finite
control volume of cv bounded by a control surface boundary cs, so that [16]:

dNsys

dt
=

(
∂

∂t

∫ ∫ ∫
(ρη).dV

)
cv

+
(∫ ∫

ρηucs.dA
)

cs
(4)

The equation of continuity or conservation of fluid mass can be derived from Eq. 4
by simply substituting η = 1, i.e.:

dm
dt

=
(

∂

∂t

∫ ∫ ∫
ρ.dV

)
cv

+
(∫ ∫

ρu.ndA
)

cs
= 0 (5)

in which m is fluid mass, ρ is density, u is velocity, n is the outward normal to the
control surface (cs), A represents the boundary surface and V denotes the volume
inside the control volume domain. Equation 5 implies that no fluid mass can be
created or destroyed in the control volume. In the rate form, this equation translates
into the statement that the rate at which mass accumulates inside the control volume
must be balanced by the rate at which it enters and exits across the control surface
[16]. Within the chamber volume provided properties are uniform, as a result the rate
of change of the accumulated mass inside the control volume for compressible water
is simply:

(
∂

∂t

∫ ∫ ∫
ρ.dV

)
cv

= ∂

∂t
(ρ A(h − x)) = ρ̇ A(h − x) − ρ Aẋ (6)

where again, ρ is the density of water, A is the cross sectional area of the chamber, h
is the original height of water column in the chamber, x and ẋ are the displacement
and velocity of the piston. The outflow term is positive in this equation.

While the rate of fluid mass inflow through the control surfaces is zero, the rate of
mass outflow through the nozzle and the gap between piston and chamber walls will
not generally be zero, so the second term is approximated using a quasi-steady-state
approach:

(∫ ∫
ρu.ndA

)
cs

= cdρua + π D�3dP
12μL

(7)
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The first term on the right hand side is a quasi-steady-state approximation for the
volumetric rate of discharge through the nozzle where cd is the discharge coefficient
of nozzle (which, for the nozzle type used in the experiments described below is equal
to 0.85), a is the cross sectional area of nozzle exit and u is the instantaneous velocity
of discharge at the nozzle exit. The second term on the right hand side of the Eq. 7
is a quasi-steady-state approximation of possible leakage of water through the gap
between the piston and the wall of the cylindrical chamber. This is given in terms of
volumetric rate (or discharge unit) varying with the pressure drop in the leakage gap
flow where this head loss itself is caused by the shear stresses resisting the flow along
the both cylindrical wall boundaries [16]. In this term, dP is the pressure difference
along the piston, � is the gap between the piston and chamber wall, D is diameter
and L is length of the piston and μ is dynamic viscosity of water.

Combining Eqs. 6 and 7 we have:

ρ̇ A(h − x) − ρ Aẋ + cdρua + π D�3dP
12μL

= 0 (8)

Rehbinder [10] assumed the viscosity of the fluid to be zero, μ = 0. As a result, he
ignored the leakage discharge term in his model and considered a unit discharge
coefficient for his nozzle, i.e. cd = 1.0. Hence, the Rehbinder’s version of Eq. 8
relating to conservation of fluid mass reduces to:

ρ̇ A(h − x) − ρ Aẋ + ρua = 0 (8R)

2.1.3 The conservation of mechanical energy and Bernoulli equation

For the next stage of the analysis, the velocity of flow discharge through the nozzle
needs to be determined. The chamber diameter is orders of magnitude greater than
the nozzle diameter, typically A/a = 50, and if we assume that there is a steady-
state flow with no radial flow component in the whole chamber-nozzle system, the
axial flow inside the nozzle can be modelled as a one-dimensional flow. In this
case, Bernoulli’s equation for compressible flow is used to approximate the average
velocity of the jet at the nozzle exit from the value of the pressure inside the chamber.
Since the water flow velocity inside the chamber is much smaller than the jet velocity
at the nozzle exit, the Bernoulli hydrodynamic equation is written only for the nozzle
segment where the fluid velocity is considerably higher than that in the chamber
segment. In this case, the pressure inside the chamber is treated as the stagnation
pressure of the flow that is discharged through the nozzle:

∫ 0

P

dP
ρ

+ u2

2
= 0 (9)

where u is discharge velocity at the nozzle exit. The chamber includes some relatively
sharp corners and area changes on the path towards the nozzle exit (see Fig. 1) and
these can result in shearing and separated flow, which can cause appreciable head
losses. This effect has been accounted for by adding a head loss or kinetic energy
dissipation term to Eq. 9:

∫ 0

P

dP
ρ

+ u2

2
+ k

u2

2
= 0 (10)
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where k is the head loss coefficient. The value of this coefficient for square-edged
inlets can be assumed to be 0.5 [16]. Therefore, Eq. 10 can be further simplified to:

∫ 0

P

dP
ρ

+ 1.5
u2

2
= 0 (11)

Rehbinder’s approach to this problem was different. Although he ignored the flow
dynamics in the chamber and considered only the inside domain of the nozzle, he
added an inertia term instead to include non-steady-state flow in nozzle. His equation
for compressible and non-steady-state flow inside the nozzle reads:

∫ 0

P

dP
ρ

+ Le
∂u
∂t

+ u2

2
= 0 (11R)

where Le in this equation was the effective length of the nozzle, 0 < Le < L, L being
the total length of the nozzle. Le has been defined using the mean value theorem of
the integral calculus in such a way that the acceleration of the water along the nozzle,
from the inlet to the exit, could be replaced by the rate of the change of the velocity
at the nozzle exit. In other words, if ξ was the distance variable along the nozzle axis
and v was the axial component of the velocity variable along the nozzle, the rate of
the velocity change along the nozzle length was simplified to:

∫ L

0

∂v

∂t
dξ = Le

∂u
∂t

(12)

Le = L0 + de

di
Li (13)

where de and di are the exit and inlet diameters of the nozzle respectively, L0 is the
straight length of the nozzle (parallel walls) with diameter of de, and Li is the length
of it with varying diameter [10].

2.1.4 Hammer and piston dynamics

The following parameters are unknown and need to be determined from the main set
of governing Eqs. 3, 8 and 11, to reproduce pressure dynamics inside the chamber:
x(t) and ẋ(t) are the displacement and velocity of water-piston interface, ρ(t) and
ρ̇(t) are the water density and its temporal derivative, P(t) and u(t) are the pressure
in the chamber and the velocity of discharge at the nozzle exit. Further equations
are required in order to solve the problem and these equations can be developed by
considering the dynamics of the piston.

Since both the hammer and the piston are treated as lump bodies, the initial
velocity of the piston-water interface, ẋ(0), is equal to the velocity of piston at
its centre of mass immediately after impact. During the collision the equation of
momentum in the axial direction can be written as:

Mp.Vp,1 + Mh.Vh,1 = Mp.Vp,2 + Mh.Vh,2 (14)

In this equation M and V are mass and velocity while the p and h indices denote
piston and hammer, respectively. Further, subscript 1 refers to the approach before
the impact and subscript 2 indicates the separation after impact.
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During the impact of the hammer and piston some of the kinetic energy delivered
by the hammer is dissipated due to the local plastic deformation on contact surface of
piston and the generation of heat, sound and internal friction. If the internal friction
is ignored this energy dissipation can be taken into account using the coefficient of
restitution, Cr, which is simply the ratio of the relative separation velocity to the
relative approach velocity, i.e.:

Cr = Vp,2 − Vh,2

Vp,1 − Vh,1
(15)

If the coefficient of restitution is zero, the relative separation velocity is zero and
the impact is perfectly plastic. If the coefficient of restitution is unity, the relative
separation velocity equals the relative approach velocity and the kinetic energy of
the system is preserved. This situation is the case of perfectly elastic impacts [17].

If the value of the coefficient of restitution is known or assumed, the final
velocity of hammer and piston after impact can be determined from the momentum
conservation Eq. 14. Therefore, we can calculate separation velocities of the hammer
and the piston as below:

Vp,2 =
(
Cr + 1

)
MhVh,1 + Vp,1

(
Mp − Cr Mh

)
Mp + Mh

(16)

Vh,2 =
(
Cr + 1

)
MpVp,1 + Vh,1

(
Mh − Cr Mp

)
Mp + Mh

(17)

The assumption of a lump hammer and piston implies an instantaneous collision
between the hammer and the piston [18]. Therefore, immediately after impact, the
velocity of the piston will be equal to its separation velocity, ẋ(0+) = Vp(0+); ẋ(t) and
x(t), the velocity and displacement of the water-piston interface can be determined
using the equation of motion or Newton’s second law. The model assumes that as
the piston moves forward it compresses the water causing the pressure to rise. The
rising pressure resists the motion of the piston and reduces its velocity. This resistant
force is proportional to the instantaneous pressure inside the chamber and can be
determined as a function of the acceleration of the piston using Newton’s second law:

F(t) = −P(t)Ap = Mpẍ(t) (18)

where F(t) is the resistant force applied on the piston by the water, P(t) is the
instantaneous pressure in the chamber, ẍ(t), Mp and Ap are, respectively, the instan-
taneous acceleration, mass and cross sectional area of the piston. First integration of
Eq. 18 leads to the velocity equation and second integration yields the displacement
equation of the piston as below:

ẋ(t) = − Ap

Mp

∫ t

0
P(t)dt + ẋ(0) (19)

x(t) = − Ap

Mp

∫ t

0

(∫ t

0
P(t)dt

)
dt + ẋ(0)t (20)

where ẋ(0) is the piston velocity immediately after impact and can be determined
using Eq. 16 based on the impact velocity of the hammer and a coefficient of
restitution, Cr, of 0.65 for steel.
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The discharge velocity at the nozzle exit is determined as a function of the pressure
inside the chamber by the integration of Eq. 11 using the state equation described
in Eq. 3:

u(t) =
√

2Kw

1.5ρw

(
1 − exp

(
− P(t)

Kw

))
(21)

Consequently, placing Eqs. 3, 19, 20 and 21 in Eq. 8, gives the chamber pressure as:

dP
dt

=
{

Kw

(
Ap

(
− Ap

Mp

∫ t

0
P(t)dt + ẋ(0)

)
− cda

√
2Kw

1.5ρw

(
1 − exp

(
− P(t)

Kw

)))

− π D�3dP
12μL

exp
(

− P(t)
Kw

)}
/Ap

(
h −

(
− Ap

Mp

∫ t

0

(∫ t

0
P(t)dt

)
dt + ẋ(0)t

))

(22)

Equation 22 was solved for P(t) using the Runge–Kutta–Fehlberg numerical
solution method with time steps, dt, of 0.1 microsecond using a computer program
developed in Visual Basic.

2.2 Model results

The model, Eq. 22, was solved for different combinations of the hammer and piston
masses in order to find the optimal combinations of masses keeping the nozzle
diameter and the water column height unchanged. The resultant pressure profiles
for these different runs are illustrated in Fig. 3. Figure 3a, shows the pressure history
graphs, generated in a sequence by increasing the hammer mass whilst keeping the
piston mass constant; Fig. 3b presents pressure profiles as the mass of the piston was
varied for a constant hammer mass.

The results show that at a constant piston mass the peak pressure rises as the
hammer mass increases if the impact velocity remains unchanged. This occurs
because the input energy of the system increases with hammer mass. Furthermore,

Fig. 3 Elevated pressure profile inside the chamber with different configurations of the hammer and
piston masses; a constant Mp, change in Mh; b constant Mh, change in Mp
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the shape of the pressure history changes from a single inverted parabola to a dual
inverted parabola as the hammer mass increases. The second parabola is the result
of secondary collision between the hammer and the piston. This behaviour is also
observed when the hammer mass is kept constant whilst the mass of the piston is
varied. As shown in Fig. 3b when the piston mass is much lower than that of the
hammer the pressure history is an inverted parabola with superimposed oscillations;
the result of multiple impacts between hammer and piston. As the mass of the piston
approaches the mass of the hammer, the pressure graph becomes a single inverted
parabola indicated a single collision taking place between the hammer and the
piston.

The calculated volumes of the water pulses generated with these different
configurations of hammer and piston are shown in Fig. 4. As can be seen, the
largest pulses correspond to the greatest hammer mass. However, there is no similar
correspondence between the pulse volume and the piston size. From Fig. 4, the
largest pulses correspond to the configurations with ratios of the piston to the total
mass Mp/(Mp + Mh) of 0.08, 0.14 and 0.34. Examining the pressure history of these
three cases in Fig. 3 shows that the first two, Mp/(Mp + Mh) of 0.08 and 0.14, produce
multiple impacts—this is likely to reduce the coherence of the water pulse. Whereas
the third case, Mp/(Mp + Mh) = 0.34, creates only a double impact and is therefore
likely to produce a more coherent pulse. As a result, this combination is chosen for
further studies.

Next we use the model to examine the effect of the height of the water column on
the history of pressure build-up inside the chamber. The results, Fig. 5, show the high
sensitivity of the pressure response to the initial volume of water in the chamber. As
the height of the water column increases the maximum pressure decreases and the
time over which that pressure acts increases. Since the value of the elevated pressure
in the chamber indicates the velocity of the water pulse as it exits the nozzle and the

Fig. 4 Volume of the generated water pulses using different masses of hammer and piston, x is
randomly selected value (water column height constant)
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Fig. 5 Pressure history of the chamber for variations in the initial water column heights, Lw , where
Y is randomly selected value (Mh = 2Mp)

duration of the pressure pulse indicates the pulse length, the model allows the height
of the water column to be selected based on the desired capabilities from the system.

3 Design of the Experimental Apparatus

The model was used to design a hammer-piston-chamber system to generate water
pulses. Our design differs from the apparatus built by Rehbinder [10]. A comparison
of the two systems is given in Table 1.

The results of our model with a quasi-steady-state flow assumption (∂u/∂t = 0) at
the nozzle, for the parameters listed under Present Design in Table 1, are illustrated
in Fig. 6. This figure compares the pressure history inside the chamber using different
nozzle sizes. The first peak pressure is the greatest (200 MPa) for a blocked chamber
(nozzle diameter of zero) and is the lowest (165 MPa) for the 4.02 mm nozzle
diameter.

The second peak pressure as well as the minimum pressure between these two
peaks follows the same pattern (largest for the blocked chamber and lowest for the
4.02 mm nozzle). The smaller the nozzle size, the higher the pressure. However, the
ratios of the two peak pressures to the minimum pressure value (between these two

Table 1 Comparison of Rehbinder’s with the present design

Factor Rehbinder’s design Present design

Diameter of water chamber, mm 107.2 50
Height of water in chamber, mm 26.5 13
Length of hammer and piston, mm 320 195
Mass of hammer, kg 22.7 6.1
Mass of piston, kg 22.7 3.2
Impact velocity of hammer, m/s 7.67 10.85
Input energy to system, J 668 359
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Fig. 6 Pressure history inside the chamber for different nozzle sizes- analytical model for steady-
state flow

peaks) vary with nozzle diameter, Fig. 7. These ratios are the largest for 4.02 mm
nozzle and decrease as the nozzle size decreases. The higher this ratio, the greater
the disturbance to the flow through the nozzle, and hence, presumably the less the
coherence of the emerging water pulse.

The time duration of the elevated pressure inside the chamber also varies with
nozzle size. The longest duration of 550 μs is for the 4.02 mm nozzle while the shortest
duration belongs to the blocked chamber and is about 500 μs.

The calculated pressure history inside the chamber for a 1.02 mm nozzle is shown
in Fig. 6. Comparing this with the pressure history inside Rehbinder’s chamber with
the same size nozzle (Fig. 2) shows great potential for improving the capability of
system. The maximum attainable pressure with Present Design system is 200 MPa,
30% higher than the maximum attainable pressure (140 MPa) with Rehbinder’s
equipment, whilst the input energy of our system is almost half that of Rehbinder, see
Table 1. The duration of the pulses produced with both systems cannot be compared
as Rehbinder did not provide a full history of the pressure changes.

Fig. 7 Variation of the ratios
of 1st and 2nd peak pressure to
the minimum pressure with
Nozzle diameter
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Fig. 8 Discharge velocity
history at nozzle exit for
different nozzle sizes-
analytical model for
steady-state flow

Figure 8 compares the calculated velocity of discharge at the nozzle exit for all five
of the nozzle sizes examined. These graphs follow the same pattern as the pressure
histories.

Knowing the velocity of discharge at the nozzle exit allows the instantaneous
volume of the water ejected from nozzle to be easily determined by multiplying the
cross sectional area and nozzle discharge coefficient at the corresponding velocity
values. As an example Fig. 9a illustrates the volumetric flow rate at the exit of the
2.98 mm diameter nozzle. The area under this profile indicates the total volume of
the generated pulse after impact. For the 2.98 mm nozzle diameter this was 1.04 cm3.

The total volume of discharge for different nozzle sizes is shown in Fig. 9b. Perhaps
unsurprisingly, this volume increases as the nozzle diameter increases. As a result the
total energy of the generated water pulse increases with nozzle exit diameter even
though the velocity of discharge decreases. The total energies of generated water
pulses are summarised at Fig. 10.

4 The Experimental Apparatus

The described model was used to design an efficient piston, hammer and chamber
system, Table 1. The hammer was dropped from a height of 6 m onto a piston
that initially was resting on the surface of a water-filled cylindrical chamber. The

Fig. 9 a Discharge volume history from 2.98 mm nozzle; b Calculated discharge volume for different
nozzle sizes
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Fig. 10 Energy of generated
water pulses using different
nozzle sizes

chamber had a nozzle centrally mounted in the cylinder end opposite to the piston
as illustrated in Fig. 1. The nozzle head was covered with a tape to prevent the
water inside the chamber from leaking out prior to the hammer impact. All of the
components of the system were supported on a rigid steel frame.

A dynamic pressure sensor (manufactured by PCB Piezotronics, model 109C11)
was mounted flush on the inside wall of the chamber (see Fig. 1) to record the
pressure history during the impact event. Data acquisition was accomplished using
the pressure transducer, a signal conditioner, an oscilloscope and a laptop. The data
were digitised at a 2.5 MHz sampling rate and the computer software LabVIEW was
used for processing and displaying the signals.

The transfer of energy from the hammer to the piston and consequently the
velocity of piston after impact depends on the quality of impact. The maximum
velocity is achieved with coaxial collision between the hammer and the piston.
Inevitably any plastic deformation at the contact surfaces of the piston and hammer
absorbs some of the energy.

Five nozzles with the same throat diameters used in the modelling described above
(d = 1.02, 2.08, 2.98, 3.40, 4.02 mm) were acquired. All other aspects of the internal
geometry of these nozzles were identical.

5 Experimental Results

Experiments with each nozzle were repeated to obtain at least 5 reproducible and
consistent pressure profiles. For example, Fig. 11a illustrates the pressure history
records of the pressure chamber with the 2.98 mm nozzle for 6 acceptable exper-
iments. Three out of a total 9 experiments from this set were disregarded due to
inconsistent pressure profiles with large pressure fluctuations shown in Fig. 11b. We
consider that these large oscillations were caused by high energy micro-jets produced
by the collapse of air pockets that were not expelled from the chamber during
refilling. The results of the six approved experiments all have very similar profiles
with maximum discrepancy of about ±15MPa within the duration of 550 μs.

Time zero in the recorded profiles was the instant at which the piston starts moving
due to impact. This instant was captured using an accelerometer mounted on the
piston, Fig. 1.
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Fig. 11 Pressure history of the chamber with 2.98 mm nozzle at different trials

Recorded pressure profiles from the experiments with different nozzle sizes are
compared in Fig. 12. Each graph in this figure is obtained by averaging the accepted
test results for each nozzle. The greatest peak pressure, about 200 MPa, was achieved
when the nozzle was blocked and there was no water discharge. This value starts
decreasing with an increase in the nozzle size as the water discharge volume rises.
The lowest peak pressure value corresponds to the 4.02 mm diameter nozzle. The
time duration of the elevated pressure inside the chamber was similar for all nozzles.
As a result, the time duration of the elevated pressure is largely independent of
nozzle size.

A second peak pressure is observed in all of the recorded pressure traces (Fig. 12).
From the modelling work described above and from visual evidence using video
footage this was due to piston rebound causing a second impact between the piston
and the hammer. The magnitude of the second peak pressure is lower than that of
the first but it follows the same trend as first peak pressure with respect to changes
in the nozzle diameter.

Fig. 12 Comparison of achieved pressure profiles in chamber for five different nozzles
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6 Comparison of the Analytical Model with Experimental Results

An excellent correlation was observed between the theoretical pressure profiles and
the recorded experimental data (Fig. 13) validating the model.

Figure 14 compares the maximum and minimum pressures from both the exper-
iments and from the modelling for each nozzle size. The error bars in these graphs
indicate the range over which the mean pressures fall for all five data points.

The results show that for the smaller nozzles the computational model slightly
over predicts the first peak pressure value, but it is in the range of experimental
results for the 3.4 and 4.02 mm nozzles.

The minimum pressure before the second impact is estimated fairly accurately for
all of the nozzles except for the closed chamber and the 1.02 mm nozzle. The second
peak pressure values of the model are all in the ranges of experimental data. The
maximum out-of-range error belongs to the computational result of closed chamber
with the magnitude of 8%.

Fig. 13 Comparison of recorded and computational pressure profiles for different tested nozzles;
Solid line in all graphs is the predicted theoretical pressure profile
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Fig. 14 Comparison of the two maximum and the minimum pressure values obtained experimentally
(shown as error bars) and the computational model (shown as data points)

Figure 14 also shows a decrease in the value of these pressures with an increase
in the nozzle diameter. The minimum pressure and the second peak pressure fall
at a faster rate compared to the first peak pressure. This is because, obviously, the
volume of discharge from the chamber increases as the nozzle size increases. Hence
the height of the remaining water in the chamber is lower for the second impact with
the larger nozzle sizes.

It is apparent that the computational model agrees very well with the experimental
data. The model can therefore be used with confidence to determine water pulse
parameters such as velocity, volume and shape.

7 Sensitivity to Quasi-Steady-State Flow Assumption

It could be argued that treating the flow as quasi-steady-state is an oversimplification.
To address this concern we re-analysed the flow inside the nozzle in non-steady-state.
One-dimensional non-steady-state flow assumes that velocity changes with time in
the direction of flow between the nozzle entrance and exit ( ∂u

∂t �= 0).
Since the mass of the fluid is constant the relation between the velocity of water

at the nozzle inlet and exit can be determined as:

v = m
Aρ

m≡cte=⇒ v1

v2
= A2ρ2

A1ρ1
= d2

2ρ2

d1
2ρ1

thus:

v1

v2
∝ d2

d1

Based on these assumptions, Eq. 13 is adopted to determine the equivalent length.
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Fig. 15 Internal geometry of the nozzle and nozzle pipe

The geometry of the nozzle used in our apparatus was complex as illustrated in
Fig. 15. This geometry consisted of an upstream section Lp, and the main nozzle
section, Ln, with a parallel nozzle throat section, L.

In our non-steady-state flow analysis we simplified this nozzle geometry in two
different ways, Options 1 and 2 which is shown in Fig. 15. These required the
calculation of two different equivalent lengths as described below.

Option 1 in Fig. 15 takes into acount the effect of the upstream section as well
as the main nozzle on the pressure and acceleration of the water particles, whilst
option 2 concentrates on the main nozzle and assumes that upstream section does
not influence the velocity of the fluid. Le for options 1 and 2 was determined using
Eq. 13:

Option 1: Le = L + (
Ln + Lp

) de
di

Option 2: Le = L + Ln
de
di

Thus, Eq. 11 is updated for the non-steady-state model as:

∫ 0

P

dP
ρ

+ (1 + k)
u2

2
+ Le

∂u
∂t

= 0 (23)

Results from solving Eqs. 3, 8, 19, 20 and 23 are shown in Figs. 16 and 17 along
with the results from the steady-state flow case.

Figure 16 shows that there is no significant difference in pressure between the
steady-state and non-steady-state flow cases at the smaller nozzle sizes. For the
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Fig. 16 Comparison of pressure histories for steady-state and non-steady-state model

larger diameter nozzles the calculated pressures are lower for the steady-state flow
assumption. The highest pressure is calculated for the nozzle with the longest
equivalent length. Further, Fig. 16 shows that the pressure graphs start to climb
with a similar gradient, ∂ P

∂t , for all three assumptions. However, this gradient starts
decreasing faster for steady-state flow model as it approaches the maximum pressure
value.

Figure 17 compares the velocity profiles for the steady-state and the non-steady-
state models. The results show that the calculated velocity is highest for the steady-
state flow model and lowest for the non-steady-state flow model with the larger
equivalent length. Also the velocity gradient, ∂v

∂t , for the steady-state flow model is
linear at early time whereas it is varying for the non-steady-state flow model, lower
initially but then rises until the peak velocities match, or for the larger diameter
nozzles, almost match those of the steady-state flow case but at a later time than
for the steady-state flow model.

It is interesting to note that the value of the first peak pressure is lower with
steady-state flow model, at least with the larger nozzle sizes (Fig. 16); whereas the
discharge velocity is highest, and occurs at an earlier time with the steady-state flow
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Fig. 17 Comparison of velocity histories for steady-state and non-steady-state model

Fig. 18 Change in discharged volume with Le for different nozzles
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model (Fig. 17). This behaviour can be explained by the conservation of energy
theorem. The input kinetic energy to the system, governed by the impact velocity of
the hammer, is the same for both the steady-state and non-steady-state flow models.
This energy converts into a combination of potential energy, increasing pressure in
the chamber, and kinetic energy, of the water discharge from the system. The steady-
state flow model predicts a higher discharge velocity, and therefore a higher kinetic
energy component, up to the first peak; this results in a lower (first) peak pressure
with this model.

In summary, reviewing the results of the steady-state and non-steady-state flow
models we find that the maximum pressure in the water chamber is somewhat lower
for the steady-state flow, although the effect is not large. The influence on the
discharge velocity, which was lower for the non-steady-state flow model, was greater
and was sensitive to the Le value. This is important because this velocity profile
affects the shape of the water pulse that exits the nozzle.

However, the volume of the water pulse is calculated not to be greatly different
between the two models (Fig. 18). For these reasons and because, in the case
of the experiments described above, it was difficult to estimate the value of Le

accurately, the steady-state flow model was used when making a comparison with
the experimental results.

8 Conclusions

This study has illustrated the mechanism by which high velocity water pulses can be
generated using an impacting technique. Furthermore, this new understanding has
highlighted those variables that influence the efficiency of generating these water
pulses thereby enabling impacting systems of this type to be designed to maximise
the efficiency.

A theoretical and computational model explains the impact mechanism and the
phenomenon of pressure build-up and release in the water-filled chamber. According
to this model, immediately after collision of the hammer and piston, as soon as the
piston starts moving, the water inside the chamber compresses and stores energy.
As a consequence, the pressure in the chamber rises, triggering the water discharge
from nozzle. As water approaches the maximum compression point, determined
by the water bulk modulus, the piston slows and eventually stops. This point
corresponds to the maximum attainable pressure at the peak compressibility value.
From this moment, the compressed water expands elastically releasing the stored
energy, lowering the pressure and reversing the direction of the piston’s movement.
Depending on the system design, at this point often a second collision will take place
between the hammer and piston. This causes the piston to change direction again and
recompress the water inside the chamber. A second peak pressure is then recorded,
the magnitude of which is related to the compressibility of the remaining volume of
water in the chamber.

This model was used to design an impacting system which was used to conduct
experiments using five nozzles with diameters of: 1.02 mm, 2.08 mm, 2.98 mm, 3.43
mm and 4.02 mm. The data from the pressure sensor mounted in the cylindrical
chamber showed two peak values, the second being lower than the first. The
magnitude of these maximum pressures decreased with increasing nozzle size. The
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first peak pressure with the 1.02 mm nozzle had a magnitude of 200 MPa; this value
was reduced to 170 MPa whilst with the 4.02 mm nozzle. The discharge velocity
history at the nozzle exits with the different diameter nozzles followed the same trend
with the highest peak velocities of 500 m/s for the 1.02 mm and of 460 m/s for the 4.02
mm nozzle.

The model was developed using the assumption of steady-state flow. Although the
values achieved seemed reasonable and corresponded well with experimental results
there was a concern that this assumption oversimplified the problem. Consequently,
further analysis was conducted and a more complex non-steady-state flow model was
developed. In this new model the concept of equivalent length, Le, which has also
been used by [10], was employed. This equivalent length factor, which takes into
account the inertial effect of the nozzle, was found to be influential in the resultant
pressure and discharge velocity gradients. Increases in Le increased the critical
pressure points whilst decreasing the critical velocity points. This nozzle discharge
velocity was found to be more sensitive to changes in Le than the calculated pressure
values. The influence of the Le value was found to be greater for the larger nozzle
sizes.

Although, the discharge velocity was significantly affected by the Le value, the
volume of the generated water pulse was almost unchanged.

In summary, the additional complexity of the non-steady-state flow model was
found not to be warranted particularly considering the sensitivity of this non-steady-
state system to the value of Le and the fact that the methods available to calculate
the value of Le are imprecise. Hence the steady-state flow approach was preferred.
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