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Abstract This work investigates the problem of distinguishing modelling assump-
tions and numerical errors in sparse-Lagrangian FDF (Filtered Density Function)
methods. A new interpretation of sparse modelling with Curl’s mixing, which does
not require an additional observation scale nor filtering, is given. The diffusion effects
induced by mixing, which were previously interpreted as numerical errors, are now
treated as modelling instruments. This ability of controlling numerical errors with
the purpose of modelling physical quantities is one of the advantages of Lagrangian
particle methods in turbulent reacting flows. The development of stochastic methods
which use Lagrangian particles has been ongoing for many years, although the exact
interpretation of the nature of such particles varies within the literature. Here we
briefly discuss these interpretations and introduce the new term—“Pope particles”—
to unify terminology used for the particle simulations of turbulent reacting flows.

Keywords Turbulent reacting flows · PDF and FDF methods · MMC

1 Introduction

The Filtered Density Function (FDF) methods [1–4] represent an adaptation of the
Probability Density Function (PDF) approach [5] for LES (Large Eddy Simulations
[6]) conditions. LES is based on the concept of resolving the largest scales in
turbulent flows while the smallest (subfilter or subgrid) scales are modelled. In recent
decades both LES and PDF methods have undergone impressive developments
stimulated by an increase in computational power. In the framework of LES the

Article submitted for the Special Issue dedicated to S.B. Pope.

A. Y. Klimenko (B) · M. J. Cleary
School of Mechanical and Mining Engineering, The University of Queensland,
Qld, 4072, Australia
e-mail: klimenko@mech.uq.edu.au



568 Flow Turbulence Combust (2010) 85:567–591

distinction between numerical and modelling errors is not always clear [7]. It seems
that the most commonly used form of LES, with a filtering operation indivisibly
attached to numerical grid, does not represent a pure model nor a pure numerical
method, but is a mixture of both. The FDF methods in general, and especially
the sparse-Lagrangian FDF methods (discussed below), are linked to the LES
methodology and hence in their applied form they too may represent mixture
of a model and a numerical method. Finding an optimal interpretation for the
modelling and numerical errors in sparse-Lagrangian simulations is the subject of the
present work.

It is commonly argued that a proper scientific method should distinguish a model
from its numerical implementation—this ensures repeatability and consistency of the
simulations as well as adequate understanding of the model properties. A model
that is inseparably linked to its numerics is likely to be sensitive to the particulars
of a specific numerical implementation. Simulation results produced by these models
can be difficult to reproduce consistently under changing computational conditions.
Increased number of particles or grid points can be used differently in different
simulations. In the present work, we use the term “convergence to a model” to
refer to the case when numerical errors become negligible, although, obviously, this
type convergence does not eliminate modelling errors. Another type of convergence,
brought about by increasing the number of grid points and/or Lagrangian particles
in order to resolve all of the scales of turbulence is referred to as “convergence to
DNS”. In [8] these convergencies are studied as convergence with intensification
and convergence with localisation. From an applied perspective, convergence to a
model is computationally expensive and an engineer may be better off by reducing
the overall error (i.e. modelling plus numerical errors) while keeping the compu-
tational cost relatively low. This approach, although reasonable and computation-
ally efficient, results in a strong coupling between the model and the numerical
scheme. The differences in simulation strategies noted above may be related to
methodological differences between the disciplines of Science and Engineering [9].
Science is primarily concerned with a thorough understanding and consistent re-
peatability of the results while Engineering is more interested in their practical utility
and affordability.

The FDF methods for simulating turbulent reacting flows reproduce the statistical
distributions of the subfilter (or subgrid) quantities by stochastic modelling. The
FDF methods (like the PDF methods from which they evolved) are formulated
from a Lagrangian perspective and the use of stochastic particles brings significant
advantages. The nature of these particles is discussed in detail in the next section.
Typically, Lagrangian schemes permit a greater level of control over numerical
diffusion than do Eulerian schemes. Perhaps the most important benefit of the
Lagrangian FDF methods is that the chemical source terms, which are highly non-
linear and sensitive to small variations in composition, are evaluated exactly. Despite
these formidable advantages there is a large computational cost associated with FDF
simulations. The emergence of sparse-Lagrangian FDF methods [10, 11], where the
number of Lagrangian particles is much smaller than the number of Eulerian grid
points, significantly reduces the computational cost associated with FDF methods;
it even brings the cost below the cost of evaluating reactive scalars by Eulerian
LES alone. The opposite case of having many particles per Eulerian cell is called
intensive.
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It is generally assumed that an insufficient number of particles or grid points
will induce large numerical errors. As the number of particles is relatively small
under sparse conditions, this inevitably brings questions about numerical accuracy
and the separation of modelling and numerical errors. However, the Lagrangian
FDF approach includes the option of utilising the stochastic fluctuations (which
from a more conventional perspective would seen as numerical errors) as modelling
tools. This conversion of a weakness into a strength is an inherent feature of the
FDF methodology. Of course we do not rule out the possibility of interpreting the
numerical errors in Eulerian LES in this FDF-like manner (i.e as fluctuating quan-
tities modelling subgrid behaviour). In fact there are some reports that numerical
errors may be used to partially offset modelling errors in conventional Eulerian LES
[12, 13]. If this is the case, the useful fraction of the errors have to be separated from
the rest of the numerical method, then analysed and explicitly labelled as modelling
quantities. Here this separation, analysis and labelling is performed only for the
sparse-Lagrangian FDF approach.

In the present work, we consider convergence to a model under conditions of
a sparse distribution of particles. Our consideration is conceptual and performed
for the case of constant density. The errors, which were previously seen as nu-
merical errors, are now analysed and treated as modelling instruments. The issue
of numerical convergence and accuracy in intensive FDF methods was previously
analysed in [3, 4]. Convergence to DNS in sparse simulations was investigated
in [8]. Our present interpretation of the sparse-Lagrangian methods differs from
[14]: the present treatment is more direct, does not involve an additional obser-
vation scale and does not need explicit filtering of the simulated functions at that
observation scale.

2 Pope Particles

Particles have traditionally played a prominent role in Fluid Mechanics. Fluid
particles move with the local velocity of the fluid while Brownian particles not
only move with the fluid velocity but are also engaged in a random walk, which
continuously alters their positions and corresponds to the process of diffusion. The
exact interpretation of the nature of these particles may vary. For example Brownian
particles may be models for fluid molecules or small physical particles which are
immersed in a flow, alternatively Brownian particles may be purely notional particles
that are defined from a mathematical perspective. Fluid and Brownian particles do
not possess scalar properties and can represent scalar concentrations only collectively
by their number density.

The remarkable expansion of Lagrangian PDF methods during the last few
decades is associated with another type of particles. The term stochastic particle
was introduced in the review [5] which laid the foundations of the Lagrangian
PDF methods. According to this review, the stochastic particles are interpreted as
models for the motion of fluid particles and scalar values (i.e. the thermochemical
composition of the fluid) evaluated at particle locations. The model is a Markov
process which involves continuous movements in physical space and possibly dis-
continuous mixing between particles. The particle distributions are determined in a
numerically efficient way by solving stochastic differential equations. The governing
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PDF equation for stochastic particles involves both Fokker–Planck and Poisson-type
terms [5]. The parameters of the stochastic process are selected to consistently match
the PDFs of the particles with the PDFs of the physical scalars and velocities in the
turbulent flow.

The subsequent development of Lagrangian methods has resulted in the evolution
of that original stochastic particle concept. Application to boundary layer conditions
required the introduction of particles whose position in physical space is subject to
Brownian fluctuations [15]. Stochastic particles became a part of hybrid methods
that combine Lagrangian stochastic simulations of the PDF of reacting scalars with
Eulerian solutions of the Navier–Stokes equation [16]. The hybrid FDF approach
[3, 4] adapts the concept of this hybrid PDF models for LES conditions. The particles,
which are used in the stochastic formulation of the FDF concept [3], follow the LES
resolved large-scale motions in physical space and model the subgrid fluctuations.
The emergence of sparse-Lagrangian FDF methods [10, 11] resulted in consideration
of sparse particle systems that are moved on the background of Eulerian velocity
fields that are much better (or fully) resolved. Under these conditions, stochastic
particles follow the trajectories of Brownian or fluid particles and may serve not only
as models but also as tools of direct numerical simulation (DNS) of scalar transport
[8]. The development of hybrid methods has resulted not only in the convergence
of PDF, RANS and LES/DNS but also in the synergy of PDF methods and models
based on the use of the mixture fraction—namely the Flamelet [17, 18] and CMC
[19] methods. Particles used in the MMC approach [20], which effectively unifies
PDF and CMC methodologies, are traced in an extension of the physical space by
MMC reference variables [10]. We refer to this combined physical/reference space
as the extended physical space.

The previous paragraphs illustrate the great breadth of use of stochastic particles
since their conceptualisation. It should be noted that the term stochastic particles
was not universally accepted beyond the area of Fluid Mechanics despite the cross-
disciplinary use of this term, to refer to particles of any kind that exhibit some sort
of stochastic behaviour. Even in the literature dedicated to stochastic modelling
of reacting flows, the use of the term stochastic particles is often mixed up with
other similar terms. The subsequent major reviews and books on modelling of
reacting flows [17, 21–26] use various terms (Lagrangian particles, notional particles,
stochastic trajectories, etc) to denote essentially the same thing—the stochastic
particles introduced by Pope [5]. In publications on atmospheric dispersion, the term
marked particles is reserved for notional particles without properties or mixing while
the stochastic particles with properties and mixing are used without any specific term
being assigned to them [27]. The existing terminological uncertainty indicates the
need for a more general name for particles used in stochastic simulations of reacting
and non-reacting flows that can encompass and unify the different terms. Therefore,
we suggest the term Pope particles, which is accurately defined below, and believe
that this definition directly addresses the need. It is also intended that the term Pope
particles will serve as an acknowledgment of the outstanding contribution of S.B.
Pope to Science and Engineering and especially to his crucial role in introducing
the methodology and establishing the principal framework for stochastic Lagrangian
modelling of reacting flows. It is expected that the term Pope particles will receive
cross-disciplinary recognition and that interpretations of Pope particles will continue
to evolve in line with future developments in the area.
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Pope particles are used to simulate a variety of properties in turbulent reacting
flows. Unlike marked particles which are fully characterised by their locations, Pope
particles have a set of properties and values of these properties are assigned to, or
modelled by, each of the particles. These properties include scalars and possibly,
velocities and other flow parameters needed in simulations. Since fluid velocity and
scalars are continuous fields when considered from the Eulerian perspective, the
assigned properties are understood as the values of these fields evaluated at the
location of the particles.

We now define Pope particles as notional particles with assigned properties that

1. model or follow the trajectories of fluid particles, Brownian particles or mole-
cules in physical or extended physical space;

2. model the assigned properties with the assistance of a mixing model;
3. in reacting flows evolve due to chemical reactions.

The essential and distinctive features of Pope particles are that they have a set of
assigned property values and a mixing operation is performed on them which affects
the values of those properties. Mixing may involve various forms of direct exchanges
between particles or interactions with mean values. The mixing models that are
commonly used in Lagrangian simulations (Curl’s and modified Curl’s models, IEM,
EMST, MMC and others) are repeatedly reviewed in publications [5, 17, 21–26] .

In the present work we use Pope particles in the context of hybrid sparse-
Lagrangian FDF/LES methods. The particles have a certain PDF which, with the
appropriate selection of parameters, is a model for the FDF. Each particle is
representative of the PDF, but due to the low number of particles used in sparse
simulations we may not be able to evaluate that PDF locally and instantaneously.
Irrespective of our ability to evaluate it the particle PDF exists whether we know its
distribution or not. Statistical quantities of interest (i.e. moments of the PDF) can
be accumulated locally over a long period of time or instantaneously over a larger
volume containing a greater number of particles. Alternatively, many particles can
be used under conditions of convergence to a model to populate the simulations
and visualize the PDF both locally and instantaneously. Obviously, this latter option
imposes a significant computational cost.

The random walk of particles p = 1, ..., n with scalar properties and mixing is
represented by the following stochastic Ito equations

dxi
p = Ai (xp, t

)
dt + bij (xp, t

)
dω j

p (1)

dZ (α)
p

dt
= W(α)

p +
[

dZ (α)
p

dt

]

mix

(2)

Here xi
p is ith physical coordinate of particle p and Z (α)

p represents the scalar prop-
erties of this particle. The summation convention over repeated indices applies here
and further in the paper. The particle PDF is given by P(Z, x; t) = PZ (Z|x; t)Px(x; t)
where Px is linked to particle number density ρn and the overall number of particles
n by Px = ρn/n. Both Px and ρn are constant in a constant density flow. The PDF PZ
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is evaluated for a given realisation of the velocity field and governed by a modified
Fokker–Planck equation

∂ PZ

∂t
+ ∂ Ai PZ

∂xi
− ∂2 Bij PZ

∂xi∂x j
+ ∂W(α) PZ

∂ Z (α)
=

[
dPZ

dt

]

mix
(3)

Here, ω j
p represent Wiener processes, Z = {Z (1), ...Z (nZ )} are simulated scalar values

assigned to the particles, W = W(Z) is the chemical source term, Ai is the drift
coefficient linked to fluid velocity, Bij = bilb jl/2 is the diffusion coefficient, and [·]mix

represents the mixing operation. Note that notation
[
dZ (α)/dt

]
mix is symbolic and

does not necessarily imply that conventional derivatives dZ (α)/dt exist. The specific
forms of the model parameters are discussed further in the remaining sections.

3 Convergence to a Model in Sparse-Lagrangian Simulations

The number of Pope particles under sparse conditions is much smaller than the
number of Eulerian grid points. Hence, the velocity field evaluated on the Eulerian
grid is much better resolved than the reacting scalars evaluated on the particles. In
our present consideration, we assume that a fully resolved velocity field is available
in the simulations; that is the Pope particles are transported within a DNS-simulated
velocity field. That assumption, rather than the more practical case of a filtered
velocity field by LES, is a conceptual simplification that avoids the added confusion
of there being several (Lagrangian and Eulerian) filter scales. We consider the case of
constant density, which is another simplifying assumption. In practical applications,
sparse-Lagrangian simulations are coupled to an LES-simulated velocity field and
the molecular diffusion coefficient in the FDF transport equation is replaced by a
turbulent diffusion coefficient associated with the Eulerian LES filter scale.

Convergence to a model implies increasing the number of Pope particles to a very
large value in a way that reduces numerical error but does not significantly alter
the substance of the model. As discussed above, this type of convergence is not
particularly useful from a practical perspective—many particles produce modelling
effects which are similar to those for relatively few particles and furthermore
convergence to a model would be difficult to achieve due to practical limitations
on computing resources. A larger number of particles can be more efficiently used
to progressively resolve the finer turbulent scales and effectively approach the DNS
limit. This convergence of Lagrangian simulations to DNS was analysed in [8] and is
not considered further in the present work. From a theoretical perspective, however,
convergence of a numerical scheme to a model permits a thorough characterisation
of that model. For sparse simulations an analysis of this type of convergence removes
the main conceptual difficulty—although properties of the flow exist locally and
instantaneously those properties are known accurately only at a fairly sparse set of
particles and evaluation of all local and instantaneous properties is possible only if
the observation scales are increased or more particles are added.

The sparse particle distribution effectively applies a filtering operation on the
field as explained below. The fluctuations at the sub-Lagrangian-grid (or Lagrangian
filter) scale are modelled by the fluctuations of the particle values z = Z − 〈Z 〉. In
this section, we consider a selected scalar and the index “α” is omitted for clarity.
In the stochastic differential equations (1) and (2) governing the Lagrangian FDF
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the mixing operator is the only term which involves an interaction between particles
(either directly or via a mean) and the remaining spatial transport and chemical
reaction terms are applied to individual particles in isolation. Therefore it is only
the mixing operation which is affected by the spacing between particles and hence
affected by the number of particles used in the simulations. The practices employed
in sparse simulations [11], when very few particles are present, is to select particles
for mixing which are closest to each other in the extended physical space. This space
is defined as the product of physical space and MMC reference space. We denote
the characteristic mixing distance in physical space as rm. For sparse simulation
conditions rm coincides with the characteristic distance between the mixing particles.
The characteristic time of the mixing operation should be selected in compliance with
the relationships of the inertial interval

τmix ≡
〈
z2

〉

N̄
∼ τm ≡

(
r2

m

ε̄

)1/3

(4)

where N̄ and ε̄ are the filtered averages of scalar dissipation and dissipation of
kinetic energy, respectively. Here, the angular brackets denote averages over the
ensemble of realisations of the stochastic processes ω

j
p while the filtering operation

is introduced in the following section. The sparse model does not resolve scalar fields
at distances r ≤ rm.

Mixing between particles separated by a finite distance generates a substantial
diffusion which was called “numerical diffusion” in previous publications [8, 28]. In
the present work, this diffusion will be interpreted differently and is referred to
as mixing-induced diffusion. As the number of Pope particles increases, we have
two major options: (1) to reduce the mixing distance; or (2) to keep the mixing
distance approximately the same. In case I we keep τmix unchanged from its value
for sparse conditions; indeed, if we reduce τmix, this would enforce a new model,
similar to the original sparse model but with a higher resolution. Progressive refining
of the resolution corresponds to convergence to DNS and is not of interest here.
Reducing the mixing distance while keeping τmix the same will result in inconsistent
modelling unless the model is modified in some other way—mixing induced diffusion
is negligible under conditions of complete localization and 〈Z 〉 represents a fully
resolved scalar field but since τmix is not reduced an excessive variance

〈
(z)2

〉 = N̄τmix

will be present in the simulations. Thus consistent modeling for case I requires
the introduction of a modified turbulent diffusion associated with the scale rm and
defined by

Dt ∼ (
ε̄r4

m

)1/3 = r2
m

τm
(5)

The turbulent diffusion removes the smallest fluctuations from 〈Z 〉 and these are
emulated instead by the fluctuations z. As shown in the next section the modification
required for case I is achieved by selecting A = Ū and using B = D + Dt. The small-
scale fluctuations induced by u = U − Ū are now modelled by the turbulent diffusion
Dt and setting A = U instead would result in an excessive level of small-scale random
particle motions. (As previously noted, we assume that fully resolved velocity fields
are available in the simulations.)

The other approach, case II, preserves the original mixing length given by rm

although this length is not linked any more to the distance between the particles.
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This means that within a distance of rm of a given particle there are many particles
of which any one can be selected randomly for mixing. In this case, mixing-induced
diffusion with coefficient Dm plays the role of turbulent diffusion. This convergence
case is the closest of the two cases to the conditions observed under the (original)
sparse simulation conditions. The differences to the original conditions are related
to variations of distances between the particles. Indeed, under the original sparse
conditions, mixing couples are formed by the closest particles. The PDF of a
distance between closest particles can be easily determined as follows. Since positions
of randomly walking particles are statistically independent from each other, the
probability of having no other particles in a volume Vr around a given particle is
given by

P(nVr = 0) =
(

1 − Vr

Vn

)n

=
(

1 − ρn
Vr

n

)n

→
n�1

exp (−ρnVr) . (6)

Here, ρn is the number density of particles, Vn = n/ρn is the effective volume of the
domain containing n particles and we assume that the number of particles n is large so
that n − 1 ≈ n. The volume, Vr, depends on the parameter r which can be selected as
the physical distance between particles or in any other suitable way. The distribution
of distances between closest particles, which is linked to the probability of having no
other particles within volume Vr is given by

Pr =
∣∣∣
∣
∂P(nVr = 0)

∂r

∣∣∣
∣ = ∂Vr

∂r
ρn exp (−ρnVr) . (7)

If we increase the number of particles and specify mixing vicinity by condition
r ≤ rm, the distribution of distances between particles is subject to changes. Since
the model for case II is close to the original sparse model the differences between
two such simulations are interpreted as numerical errors according to our present
considerations. As noted previously, the numerical errors do not always represent
a negative feature of the simulations. In principle, particle mixing pairs in a case II
simulation can be selected in accordance with the PDF Pr given by (7). However, as
the magnitude of the characteristic distance between mixing particles has a far more
significant impact on simulations than does the PDF of this distance, such a selection
algorithm seems unnecessary.

To summarise, we consider two limiting approaches for convergence to a model

Case I subfilter turbulent diffusion is modelled by particle random walk and
Case II subfilter turbulent diffusion is modelled by mixing-induced diffusion

(previously called “numerical diffusion”)

Case II is closest to the conditions in the original sparse simulations while the
modelling strategy of case I is closer to conventional (intensive) simulations.

4 Modelling the FDF Equation

For the reactive scalars Y(α) which are governed by the equation

∂Y(α)

∂t
+ ∂Y(α)Ui

∂xi
− D0

∂2Y(α)

∂xi∂xi
= W(α) (8)
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the FDF transport equation is given by [3, 4]

∂ F̄
∂t

+ ∇ · (
ŪY F̄

) + ∂(W(α) + D0(∇Y(α))Y)F̄
∂Y(α)

= 0 (9)

where

F ≡ δ(Y − Y◦) (10)

is the fine grained distribution, whose filtered average F̄ represents an FDF. In the
above a sum is evaluated over repeated indicies. The variable Y◦ is the sample space
variable for Y, although we omit superscript “◦” when the use of sample space
variables is obvious from the context. The subscript “Y” is used to denote filtering
conditional on Y

ϕY = ϕF

F̄
(11)

for any ϕ. The filtered quantities are introduced by applying the following filtering
operation

ϕ(x) =
∫

∞
ϕ(x◦)
r(x − x◦)dx◦ (12)

to any fully resolved field ϕ(x) where the filter kernel 
r is characterized by
the filtering scale r. As differential diffusion effects are neglected here, the FDF
governing equation can be rewritten in the form

∂ F̄
∂t

+ ∇ · (
ŪY F̄

) + ∂W(α) F̄
∂Y(α)

= D0∇2 F̄ − ∂2 N̄(αβ)

Y F̄
∂Y(α)∂Y(β)

(13)

where N(αβ) = D0∇Y(α) · ∇Y(β) is the dissipation tensor and D0 is assumed to be
constant.

4.1 Model for case I dominated by the random walk

The random walk model (case I) simulates subfilter turbulent diffusion by the
random walk of Pope particles and presumes the following approximations

Ai = Ū i (x, t) + ∂ B
∂xi

, Bij = δijB, B = Dt + D0 (14)

where Dt is the effective turbulent diffusion coefficient for subfilter fluctuations. The
PDF equation (3) takes the form

∂ PZ

∂t
+ ∇ · (ŪPZ ) + ∂W(α) PZ

∂ Z (α)
= ∇ · (B∇(PZ )) +

[
dPZ

dt

]

mix0
(15)

Here, we use the index “mix0” to stress that mixing is fully localized (i.e. performed
between particles located at distances r → 0). The specific form of mixing in this
equation is not important for matching the FDF equation as long as mixing is
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compliant with the well-known mixing constraints [3, 4]. Here, we stress two of these
constraints

∫ [
dPZ

dt

]

mix0
dZ = 0 (16)

and
∫

Z (α)

[
dPZ

dt

]

mix0
dZ =

[
d

〈
Z (α)

〉

dt

]

mix0

= 0. (17)

One can see that (15) is a consistent model for (13) with the following modelling
approximations

−ūY F̄  Dt∇ PZ (18)

and

− ∂2 N̄(αβ)

Y F̄
∂Y(α)∂Y(β)


[

dPZ

dt

]

mix0
(19)

where ūY ≡ ŪY − Ū and the symbol “” means “is modeled by”. These approxima-
tions are conventional in FDF modelling [3, 4, 25, 29].

4.2 Model for case II with diffusion generated by mixing

In this case the subfilter turbulent diffusion is simulated using diffusion induced by
mixing, which is not fully localized. Unlike in [14], we do not apply any explicit
filtering operation to PZ while implicit filtering is effectively performed by non-
local mixing effects. The scales smaller than the mixing distance, which is assumed
to belong to the inertial interval of turbulence, can be called “submixing” scales
in accordance with conventional LES terminology. Surrounding each particle is a
mixing volume or mixing vicinity from which mixing partners for that particle are
selected. The size of the mixing volume is determined by mixing distance. The
modelling approximations depend significantly on the type of mixing used in the
simulations. In this work, we consider only Curl’s mixing [30] (or modified Curl’s
mixing [31]) which can be specified by the following equations for mixing of any two
particles denoted here as particles “1” and “2” [8]

Z1 = Z◦
1 + η̃(Z◦

2 − Z◦
1)

[
dPZ (Z |x1)

dt

]

mix
= (n − 1)Px

∫
θ12 [PZ (Z |x1) ∗ PZ (Z |x2)]mix dx2

[P1(Z1|x1) ∗ P2(Z1|x2)]mix ≡
∫

Pt
(
Z1|Z ◦

1 , Z ◦
2

)
P1(Z ◦

1 |x1)P2(Z ◦
2 |x2)dZ ◦

1dZ ◦
2 (20)

where the superscript “◦” is used to denote the values before mixing, parameter θ

determines intensity of mixing as discussed in [8], Pt is transitional probability, and
a new operator [P1 ∗ P2]mix has been introduced for convenience of notation. We
presume that the extent of mixing η is randomly selected as suggested in modified
Curl’s model [31]. As previously noted, the particle values are treated as being
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statistically independent; that is P(Z1, x1, Z2, x2) = PZ (Z1, x1)PZ (Z2, x2). We also
use Bayes theorem P(Z ◦

1 , x1) = PZ (Z ◦
1 |x1)Px and note that

Px

[
dPZ (Z |x1)

dt

]

mix
=

[
dP(Z , x1)

dt

]

mix
= (n − 1)

∫
θ12 [P(Z , x1) ∗ P(Z , x2)]mix dx2.

As shown in the Appendix, the mixing operator can be represented by the
following expansion

[
dPZ

dt

]

mix
=

[
dPZ

dt

]

mix0
+

[
dPZ

dt

]

mix2D
+

[
dPZ

dt

]

mix2N
+ ...

where “mix0” denotes a fully localized mixing compliant with the constraint (17),
“mix2D” denotes the diffusive effect of mixing and “mix2N” denotes a diffusion-
related generation or dissipation term

[
dPZ

dt

]

mix0
= θ̂ [PZ ∗ PZ ]mix

[
dPZ

dt

]

mix2D
= ∇ ·

(
θ̂ I
2

[PZ ∗ ∇ PZ ]mix

)

(21)

[
dPZ

dt

]

mix2N
= − θ̂ I

2
[∇ PZ ∗ ∇ PZ ]mix (22)

where I = r̂2
1 is dependent on the radius of the mixing volume which is assumed to

be spherical with r̂1 ∼ rm. A more complete set of equations than presented above
can be found in the Appendix and also [8]). All of these terms are compliant with
constraint (16). The term “mix2D” is diffusive and changes the mean values,

〈
Z (α)

〉
,

while the term “mix2N” satisfies (17) and represents a generation of variance due
to non-localness of mixing. Existence of this term can be illustrated by applying a
Curl’s mixing operation to a field with z = 0 and a constant gradient ∇Z = const.
Mixing that is not fully localized results in appearance of some variance z2 > 0 due
to exchanges between particles with different values of Z .

With the following selection of the parameters

A = Ū (x, t) , B = D0 (23)

where formula for Ai does not involve gradients of density ρ and molecular
diffusivity D0 since these values are assumed constant. The PDF equation now takes
the form

∂ PZ

∂t
+ ∇ · (APZ ) + ∂W(α) PZ

∂ Z (α)
=

[
dPZ

dt

]

mix0
+

[
dPZ

dt

]

mix2N

+ ∇ ·
(

B∇ PZ + θ̂ I
2

[PZ ∗ ∇ PZ ]mix

)

(24)
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This equation is consistent with the exact FDF equation (i.e. PZ  F̄) by making the
following modelling approximations:

−ūY F̄  θ̂ I
2

[PZ ∗ ∇ PZ ]mix (25)

− ∂2 N̄(αβ)

Y F̄
∂Y(α)∂Y(β)


[

dPZ

dt

]

mix0
+

[
dPZ

dt

]

mix2N
(26)

We note that the modelled turbulent transport terms of (25) appear in the FDF/PDF
equations in a consistent divergent form (see discussion in the Appendix) and that
the modelled terms of (26) preserve mean values (Ȳ and 〈Z 〉).

Another issue relevant to convergence to a model that needs to be mentioned here
is generation of conditional fluctuations by the mixing operators—the performance
of Curl’s mixing in this respect is dependent on the details of the mixing scheme.
As the number of Pope particles increases, generation of conditional fluctuations
by Curl’s mixing needs to be controlled. Generation of conditional fluctuations was
specifically analysed in [32] and is not further considered here.

5 Equations for the Scalar Mean and Variance

In this section we investigate how the two models (cases I and II) perform in
simulating transport of means and variances. For the sake of simplicity, the index
“α” is again omitted although equations are valid for any of the scalars α = 1, ..., nZ

The equations for the first and second moments can be derived from the FDF
equation as

∂Y
∂t

+ ∇ ·
(

UY
)

− D0∇2Ȳ = W (27)

and

∂Y2

∂t
+ ∇ ·

(
UY2

)
− D0∇2Y2 = 2WY − 2D0(∇Y)2. (28)

The equation for the variance can be obtained from the moment equations as

∂
〈
y2

〉
F̄

∂t
+ ∇ · (〈

Uy2〉
F̄

) − D0∇2 〈
y2〉

F̄ = 2 〈wy〉F̄ − 2∇Ȳ

· 〈uy〉F̄ − 2D0

(
(∇Y)2 − (∇Y)2

)
(29)

where y = Y − Ȳ and the angular brackets indicate averaging by integration with the
FDF [33, 34], for example

〈
Uy2〉

F̄ =
∫

(Y − Ȳ)2ŪY F̄(Y)dY. (30)

Although 〈Y〉 = Ȳ, this is not necessarily valid for other quantities. For example,
〈y〉 = 0 but ȳ �= 0. Note that some of the quantities (e.g. (∇Y)2) may be not defined
in terms of F̄(Y).



Flow Turbulence Combust (2010) 85:567–591 579

The corresponding moment and variance equations for the models are given by

∂ 〈Z 〉
∂t

+ ∇ · (Ã 〈Z 〉) − ∇(B∇ 〈Z 〉) = 〈W〉 +
[

d 〈Z 〉
dt

]

mix
(31)

∂
〈
Z 2

〉

∂t
+ ∇ · (Ã

〈
Z 2〉) − ∇(B∇ 〈

Z 2〉) = 2 〈W Z 〉 +
[

d
〈
Z 2

〉

dt

]

mix

(32)

∂
〈
z2

〉

∂t
+ ∇ · (Ã

〈
z2〉) − ∇(B∇ 〈

z2〉) = 2B (∇ 〈Z 〉)2 + 2 〈wz〉 +
[

d
〈
z2

〉

dt

]

mix

(33)

where we introduce Ã = A − ∇ B.

5.1 Mean and variance for model case I

In the model case I dominated by the random walk we obtain

∂ 〈Z 〉
∂t

+ ∇ · (Ū 〈Z 〉) − ∇(B∇ 〈Z 〉) = 〈W〉 (34)

∂
〈
z2

〉

∂t
+ ∇ · (

Ū
〈
z2〉) − ∇ (

B∇ 〈
z2〉) = 2B (∇ 〈Z 〉)2 + 2 〈wz〉 − 2

〈
z2

〉

τmix
(35)

where

Ū = A − ∇ B = Ã, B = Dt + D0, τmix ≡ 1

〈γ̃ 〉 θ̂
, γ̃ ≡ η̃ − η̃2.

Where θ̂ is overall intensity of mixing as specified in the Appendix and [8]. It is easy
to see that consistency of the model and the transport equations is based on the
following modelling approximations

〈uy〉  −Dt∇ 〈Z 〉 (36)

〈
uy2〉  −Dt∇

〈
z2〉 (37)

D0(∇Y)2 
〈
z2

〉

τmix
(38)

These approximations are conventional in LES and FDF modelling.

5.2 Mean and variance for model case II

Equations for the moments of Curl’s mixing operator accounting for non-local
mixing effects are derived in the Appendix. With the assumption that mixing volume
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is spherical such that Iij = δij I then the equations for the mean and variance take
the form

∂ 〈Z 〉
∂t

+ ∇ · (A 〈Z 〉) − ∇ ((
B + D(1)

m

)∇ 〈Z 〉) = 〈W〉 (39)

∂
〈
z2

〉

∂t
+ ∇ · (

A
〈
z2〉) − ∇ ((

B + D(2)
m

) ∇ 〈
z2〉)

= 2B (∇ 〈Z 〉)2 + 2 〈wz〉 − 2

〈
z2

〉 + G

τmix
+ 2D(1)

m (∇ 〈Z 〉)2 (40)

where for consistency with the moments of the FDF transport equation the model
parameters are given by

A = Ū, B = D0, τmix = 1

〈γ̃ 〉 θ̂
, γ̃ = η̃ − η̃2, (41)

D(1)
m = θ̂ I 〈η̃〉

2
, D(2)

m = θ̂ I
〈
η̃2

〉

2
, I = r̂2

1, G = I
2

(∇ 〈Z 〉)2 (42)

Note that D0 is assumed constant. The derived equations are consistent with scalar
transport equations with the following modelling approximations

〈uy〉F̄  −D(1)
m ∇ 〈Z 〉 (43)

〈
uy2〉

F̄  −D(2)
m ∇ 〈

z2〉 (44)

D0(∇Y)2 
〈
z2

〉 + G

τmix
(45)

It can be seen that, unlike in case I, the transport coefficients for the two moments
can be different, although both coefficients D(1)

m and D(2)
m have the correct magnitude

of ∼ r̂2
1/τmix provided that τmix is selected according to (4). The additional dissipation

term G/τmix in the above is related to the fact that variance within the mixing volume
is greater than

〈
z2

〉
due to changes in the scalar mean 〈Z 〉 within this volume. Indeed,

the dissipation rate is determined by the difference Z2 − Z1 averaged over the
mixing volume

G2 ≡ 〈
(Z2 − Z1)

2〉
V = 〈

z2
1

〉 + 〈
z2

2

〉
V + 〈

(〈Z2〉 − 〈Z1〉)2〉
V ≈ 2

(〈
z2〉 + G

)
(46)

The variance G2 exceeds 2
〈
z2

〉
by 2G inducing additional dissipation within the

mixing volume.
The coefficient A is selected in (41) as the filtered velocity Ū. However velocity

filtering is not recommended for highly sparse conditions. Indeed, putting A = Ū
would restrict the random stirring of particles by subfilter turbulent fluctuations to
the level corresponding to molecular diffusion and the particles would be forced to
repeatedly form the same mixing couples. This would increase stochastic dependen-
cies between particle values. This is not a problem when many particles are present
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in the mixing volume and couples are stirred up by random selection of mixing
partners. The particles can, of course, be stirred up by increasing B and intensifying
the random walk. This, however, introduces additional diffusion and corresponds to
an effective combination of model cases I and II. Velocity filtering may also represent
a problem for MMC mixing as considered in the next section.

Replacing A = Ū by A = U in (24), (39) and (40) results in the appearance of
subfilter frequencies induced by u = U − Ū. The influence of these frequencies on
the scalar field is small due to the dominating influence of mixing-induced diffusion
over modelled scalar fields at these scales. In the diffusion-dominated inertial
region the spectrum of scalar fluctuations decays rapidly (∼ k−17/3 according to
Batchelor et al. [35], where k is the wave vector), although not exponentially. These
fluctuations, although small and not detectable under truly sparse conditions (highly
sparse simulations reproduce equivalent statistics but not small-scale structures
of scalar fields), affect the value of 〈Z 〉 but can not be interpreted as resolved
components. The interpretation of these variations depends on the definition of
the converged model: they represent numerical errors if A = Ū at the limit of
n → ∞. These errors (interpreted as numerical) can be eliminated by progressive
filtering of the velocity field as the number of Pope particles n increases and the
constraint related to independence of particles vanishes. Independence of particles
can be practically ensured by A) having a sufficient random component in particle
motions or by B) having a sufficiently large number of particles in the mixing
vicinity [8]. Complying with condition B makes enforcing condition A unnecessary:
under these conditions filtering out high-frequency components of velocity does not
affect independence of particles.

The present analysis of the sparse model results in conclusions that may seem
paradoxical: mixing-induced diffusion previously considered as a numerical error is
treated as a modelling quantity while fully resolved high-frequency oscillations of
velocity are used for numerical purposes (of stirring particles without generating
additional diffusion) and induce numerical errors. It is possible, of course, to filter
(24) and assume that F̄  P̄ [14] but this is not the interpretation considered in the
present work.

6 Remarks on MMC in Sparse-Lagrangian Simulations

In general, sparse-Lagrangian simulations may work with different mixing models
but so far only MMC-Curl has been demonstrated to work under sparse conditions
[10, 11]. Multiple Mapping Conditioning or MMC [20] is one of the tools that can
ensure a high quality of simulations while using only relatively few Pope particles.
Although MMC may involve many reference (i.e. conditioning) variables, here we
consider only a single MMC reference variable—the DNS-evaluated (Eulerian)
mixture fraction f ≡ Y f . Note that the simulations involve another mixture fraction
Z f —a Lagrangian quantity assigned to Pope particles.

In the original MMC [20], the reference variables were represented by continuous
Markov processes, while in generalised MMC [32], only some of the reference
variables represented by a Markov family are used for localisation (conditioning) of
the mixing operation. Once we accept generalised MMC, we can use any stochastic
process to simulate reference variables as any (generally non-Markovian) process
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can be approximated well by a Markov family of a much larger dimension. For
example, it is an arguable point that Lagrangian particle trajectories in a turbulent
flow are not Markovian, while tracing these particles with the use of LES or DNS
is a Markov family of a very large dimension, which is determined by the total
number of parameters at every grid point and at every particle location. Thus, it
is legitimate to consider evaluation of the mixture fraction and velocities by LES or
DNS supplemented by a particle tracing algorithm as means of creating reference
stochastic process for proper localisation of mixing. The goal of these simulations
is to obtain a reference mixture fraction which is as close to real mixture fraction
as possible. This interpretation corresponds to interpreting generalised MMC as a
PDF method with LES/DNS used simply for producing good reference variables,
which are used to improve simulation of mixing. In this case, the values carried
by Pope particles are expected to match the joint PDFs of reacting scalars but are
not required to reproduce filtered fields. The present work gives an alternative
interpretation for MMC-LES/DNS as an FDF method with a Lagrangian filtering
scale determined under sparse conditions by distance between particles, presuming
that this filter may be quite coarse compared to the Eulerian LES filter but still
has a reasonable resolution (i.e. the Lagrangian filtering scale belongs to the inertial
interval of turbulence).

Application of MMC principles becomes more transparent under conditions of
convergence to the model. Since the mixing volume Vp of a particle p contains
many particles under these conditions, a mixing partner for particle p can be
selected among these particles indiscriminately or, if MMC ideas are employed, with
preference given to particles that have the same (or close) value of f as the particle
p. The scale of the mixing volume rm determines the filtering scale but, in accordance
with MMC principles [11, 20, 36], the mixing time τmix is now selected as

τmix = cτm (47)

and with c < 1 is smaller than that specified by (4). Indeed, in MMC we distinguish
minor and major variations of Z f in the mixing volume GV = Gmj + Gmn [20, 36]
where GV = 〈

(Z f − 〈
Z f

〉
V)2

〉
V

is the overall variation of Z f within the mixing
volume, and Gmj = 〈

(Z̄ f − 〈
Z f

〉
V)2

〉
V

, Z̄ f = 〈
Z f | f

〉
V and Gmn = 〈

(Z f − Z̄ f )
2
〉
V are

the major and minor variations, respectively. In major variations, Z f fluctuates
jointly with f while minor variations of Z f are independent of f . The MMC
mixing dissipates directly only minor variations and N̄ f = Gmn/τmix while, if MMC is
not used, the dissipation is determined by overall variations N̄ f = GV/τmix. Since
Gmn < GV and the dissipation rate is a macro-parameter and should be model-
invariant, the value of τmix must be smaller under MMC conditions and c < 1. The
condition of having minor dissipation time τmix being essentially smaller than the
overall characteristic dissipation time τm is common for MMC models [36].

The MMC constraint on mixing can be expressed by defining the effective distance
dpq between particles p and q

d2
pq =

∑

i=1,2,3

(
x(q)

i − x(p)

i

)2

r2
i

+
(

f (q) − f (p)
)2

f 2
m

(48)

that depends on the selection of characteristic scales r1, r2, r3 and fm. This means that
instead of selecting particles with a given value of f in a spherical mixing volume,
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one can define a stretched mixing volume such that all particles within this volume
have close values of f . Mixing between particles p and q is allowed (i.e. θpq > 0)
if d2

pq ≤ d2
0 where d0 ∼ 1. Although selecting different physical scales in different

directions can be beneficial for MMC mixing, we select here r1 = r2 = r3 = rm. The
MMC mixing has another scale r f = (

ε̄/N̄3
f

)1/2
f 3
m associated with the process and the

parameters rm and fm are selected so that r f is noticeably smaller than rm enforcing
close proximity of mixing couples in the mixture fraction space. The volume of mix-
ing vicinity can be estimated by Vm = r2

m(rm/r f )
2/3r f ∼ r8/3

m r1/3
f ∼ (

ε̄/N̄3
f

)1/6
r8/3

m fm

assuming that the surfaces of f = const are fractals having the dimension of 8/3
[17, 37].

The MMC mixing volume has two characteristic scales rm and r f and, conse-
quently, two characteristic coefficients for mixing-induced diffusion Dm ∼ r2

m/τmix

and D f ∼ r2
f /τmix are associated with these scales. Here, we denote Dm as an

estimation of D(1)
m , D(2)

m and other mixing-related diffusion coefficients. We note that
if τmix < τm then r2

f can not be larger than r2
f ∼ ε̄τ 3

mix (that is f 2
m can not be larger

than f 2
m ∼ N̄ f τmix), otherwise the diffusion D f would be disproportionally large and

generate excessive diffusion in f -space (according to CMC [19], the correct value
of the diffusion coefficient in f -space is N̄ f ). At the same time, selecting f 2

m much
smaller than N̄ f τmix does not improve localisation in the composition space due to
presence of minor fluctuations Gmn ≈ N̄ f τmix but, as for any other grid refinement,
it does requires additional computational resources. Hence, the optimal choice of fm

should be in line with the following estimation f 2
m ∼ N̄ f τmix . There is, however, a

side-effect of reducing τmix from τm to cτm and that is the corresponding increase in
the diffusion coefficient Dm from ∼ r2

m/τm to ∼ c−1r2
m/τm. The main spatial effect of

the mixing operation on the model is determined by the mixing-induced diffusion
coefficients and we may wish to keep these coefficients the same as τmix decreases.
This requires using a new scale r′

m = c1/2rm as the scale defining the mixing vicinity;
the filtering scale though remains rm. Note that this reduction is not possible under
the original sparse conditions when the mixing volume on average contains only a
single particle. Improvement in the resolution in f -space results in an increase in rm

and a decreased resolution in other (less important) directions.
Under truly sparse conditions, there is only one partner particle within the mixing

volume surrounding a given particle; Vm ∼ 1/n. We also note the mixing volume
estimate Vm ∼ r8/3

m fm, which was derived previously in this section. If the number
of particles changes from n1 to n2, we may wish, or if n2 < n1 be forced, to keep
simulations sparse but preserve the original simulating conditions as much as it is
possible. Since these conditions are highly dependent on the treatment of the mixture
fraction, we assume fm2 = fm1. Hence (rm2/rm1)

8/3 = Vm2/Vm1 = n1/n2 or for the
parameter rm/ fm, which determines the strength of mixture-fraction conditioning in
MMC simulations, we obtain rm/ fm ∼ n−3/8. This equation represents an estimate
for the expected optimal dependence of the MMC conditioning parameter on the
number of particles used in sparse simulations. This estimate is obtained under
specific assumptions given above and needs further investigation but the trend of
increasing rm/ fm with decrease in n should be noted.

In many practical cases the relatively higher value of diffusion along the surfaces
of f = const would not have a significant impact on the quality of the simulations as
long as the simulations are well-resolved in f -space. In principle, there could be cases
when diffusion Dm is excessive and its effect is detrimental: for example high levels
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of extinction may need a stricter control over diffusional exchanges between burning
and extinct areas (although we have not observed these difficulties in simulations
of the flames D and E that we performed so far [10, 11, 41]). Possible solutions
may involve an increase in the number of Pope particles and/or the introduction
of double-conditioning [38], which requires a second reference variable in order to
minimise minor fluctuations. This second reference variable must be indicative of the
locations of extinction zones and their transport by turbulence, while also possessing
a significant degree of independence from particle scalar values.

It is noted that using filtered velocity may present a problem for MMC-LES
simulations. Indeed, the scales ∼ r f of velocity components across iso-scalar surfaces
need to be resolved in order to accurately represent the process of diffusion in f -
space while a rougher resolution of ∼ rm can be sufficient for other directions. In
principle, it is possible to tackle this problem by introducing highly non-isotropic,
flow-dependent filtering; 
r(x) in (12) could be stretched along the surfaces of
f = const. But filtering velocity field in this way is complicated. It seems that leaving
velocity without Lagrangian-scale filtering is a more practical solution, which is used
in actual sparse MMC-LES simulations [11] where the Eulerian filter scale is much
smaller than the Lagrangian filter scale. As previously noted, our analysis assumes
that DNS-generated velocity fields are available to avoid the confusion of having two
filtering scales (Lagrangian and Eulerian). Our analysis remains similar for LES but
velocity U must replaced by ŪE and molecular diffusivity D0 must be replaced by
turbulent diffusivity D0 + DEt where the subscript “E” is used to emphasise that this
filtering and this turbulent diffusivity are associated with the Eulerian filtering scale.
The scalar transport (8) is now replaced by

∂Ȳ(α)

E

∂t
+ ∂Ȳ(α)

E Ūi

∂xi
− ∂

∂xi

(

(D0 + DEt)
∂Ȳ(α)

E

∂xi

)

= W̄(α)

E (49)

If LES are used in simulations, ŪE is a always a filtered velocity but, under highly
sparse conditions, we do not recommend an additional Lagrangian-scale filtering of
the particle velocities.

We now give an illustration for the effect of the numerical or mixing-induced
diffusion, observed in sparse-Lagrangian simulations under practical grid resolutions.
We consider only one scalar—the mixture fraction represented by f̄E = ȲE and
Z f with W = 0. Since the same diffusion coefficient D0 + DEt is used in both
Eulerian and Lagrangian simulations (that is bij = δij(2D0 + 2DEt)

1/2 in (1)), both
Eulerian mixture fraction f̄E and the particle average mixture fraction

〈
Z f

〉
satisfy

the same (49) [8]. In other words, without numerical diffusion induced by finite-
difference nature of the Eulerian numerical scheme and mixing-induced diffusion of
the Lagrangian scheme, profiles of f̄E and

〈
Z f

〉
must coincide. The same statement

obviously applies to the mean profiles
〈

f̄E

〉

m
and

〈
Z f

〉
m which are fully averaged over

the ensemble of turbulent fluctuations. Assuming that the averages are evaluated

accurately, any observed differences between profiles of
〈

f̄E

〉

m
and

〈
Z f

〉
m can be

attributed only to the numerical diffusion of the Eulerian scheme or mixing-induced
diffusion of the Lagrangian scheme.

The simulation results shown here are for Sandia Flame E [39, 40] for which
detailed experimental data are available. The details of modelling methodology,
results of the simulations and overall performance of the model are discussed in other
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Fig. 1 Radial profiles of
average and rms mixture
fraction in Sandia Flame E at
the axial distance of one
nozzle diameter. Lines
adorned with closed symbols
are for Eulerian LES while
unadorned lines are for the
sparse-Lagrangian FDF. Open
triangular symbols represent
experimental data [39, 40]
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publications [10, 11, 41]. For these simulations the cylindrical computational domain,
which extends 70 jet diameters in the axial direction, contains 1024 × 55 × 32 cells
and the smallest finite volume cells at the axis are 0.5 mm × 0.5 mm × π/32 radians.
This grid resolution is in line with reasonable resolutions used in practical LES. The
maximum ratio of subgrid to total variance in the shear layer close to the nozzle is
about 30%. The sparse-Lagrangian FDF calculations with MMC conditioning shown
below use nominally only one Pope particle per 32 LES cells.

Figure 1 demonstrates mean profiles of Eulerian and Lagrangian mixture fractions
close to the nozzle. As expected both profiles are consistent with each other and
have a reasonable match with the experimental data. However, the same profiles,
shown for another location further downstream (Fig. 2), indicate that the Eulerian
mixture fraction appears to be more diffusive than the Lagrangian mixture fraction.
As previously discussed, this can be attributed only to the numerical diffusion of
the Eulerian scheme. The numerical diffusion effects tend to be accumulated at
downstream locations. This accumulation is less pronounced for the scalar variance,

Fig. 2 Radial profiles at
30 nozzle diameters. The
simulation case and notations
are the same as in Fig. 1
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Fig. 3 Axial profiles versus
normalised distance from the
nozzle. The simulation case
and notations are the same as
in Fig. 1
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which is also shown in both figures, due to the balance of production and dissipation
of the variance in the jet. Figure 3 demonstrates the same effect for axial values of
the mixture fraction. The Lagrangian curve is given without smoothing to show the
effect of stochastic scattering associated with averaging over the particle values.

It should be remembered that Lagrangian simulations presented here are coupled
with the Eulerian LES and, of course, do not represent an autonomous method.
Lagrangian simulations, however, can effectively utilise realistic topological prop-
erties of the noticeably diffusive Eulerian mixture fraction and make evaluation
of the mixture fraction by Pope particles less diffusive even if these particles are
used at a much lower resolution than the Eulerian grid. This example illustrates
effectiveness of Pope particles (in general and with MMC conditioning in particular)
for controlling numerical diffusion in low-resolution Lagrangian simulations.

7 Conclusions

The case of “convergence to a model” for sparse-Lagrangian FDF model is consid-
ered. The number of Pope particles (i.e. stochastic particles used in the simulations)
is deemed to approach the limit of infinity in a way that maximally preserves the
properties of the original sparse model. This is a conceptual consideration only as
an expensive model utilising many particles but behaving like a computationally
efficient sparse model can never be practical. Diffusion generated by mixing between
Pope particles with non-zero spacing, which was previously seen as a source of
numerical error, is now treated as a modelling tool in order to examine convergence
of a particle PDF to the FDF.

The main difference between the effectively sparse conceptual model (i.e. a
model populated by a large number of particles but preserving the features of the
sparse model) and the truly sparse simulations is the possibility of simulating more
detailed structures of the scalar fields in the former while the latter can only model
equivalent statistics at the smallest scales. The main effect of introducing a large
number of particles in the effectively sparse model is the disappearance of stochastic
dependencies between particles. Although the analysis of the model is simpler when
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velocity is filtered at the Lagrangian filter scale, we show that such Lagrangian-
scale velocity filtering may have a number of detrimental effects that can bring
unnecessary complications into the simulations.
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Appendix: Diffusive Effects in Curl’s Mixing

Analysis of the mixing term in the PDF equation

We now consider expansion of the PDF into the Taylor series

PZ (Z◦
2|x2) = PZ (Z◦

2|x1) +
(

∂ PZ (Z◦
2|x)

∂xi

)

1
�xi + 1

2

(
∂2 PZ (Z◦

2|x)

∂xi∂x j

)

1
�xi�x j + ...

(50)
where �xi = xi

2 − xi
1 is introduced. This expansion corresponds to the following

representations of the mixing operator
[

dPZ

dt

]

mix
=

[
dPZ

dt

]

mix0
+

[
dPZ

dt

]

mix1
+

[
dPZ

dt

]

mix2
+ ... (51)

[
dPZ (Z|x)

dt

]

mix0
= θ̂

[
PZ (Z◦|x) ∗ PZ (Z◦|x)

]
mix (52)

[
dPZ

dt

]

mix1
= 0 (53)

[
dPZ (Z◦|x)

dt

]

mix2
= θ̂ Iij

2

[
PZ (Z◦|x) ∗ ∂2 PZ (Z◦|x)

∂xi∂x j

]

mix
(54)

where

Iij = 〈
�xi�x j〉

V ≡ 1
θV

∫
θ12�xi�x jdV, θV =

∫
θ12dx2 (55a)

θ̂ ≡ θV(n − 1)Px ≈ θVρn (56)

since n − 1 ≈ n for large n. The first order term in the expansion vanishes as the
mixing volume is selected so that x1 is located at its mass centre. Using the following
identity

PZ
∂2 PZ

∂xi∂x j
= ∂

∂xi

(
PZ

∂ PZ

∂x j

)
− ∂ PZ

∂xi

∂ PZ

∂x j
(57)
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The second term in the expansion becomes

[
dPZ

dt

]

mix2
= ∂

∂xi

(
θ̂ Iij

2

[
PZ ∗ ∂ PZ

∂x j

]

mix

)

︸ ︷︷ ︸
mix2D

− θ̂ Iij

2

[
∂ PZ

∂xi
∗ ∂ PZ

∂x j

]

mix︸ ︷︷ ︸
mix2N

(58)

Here, we place θ̂ Iij under differentiation sign since the divergent form of the term
“mix2D” is consistent with the conservation property

∫ [
d

〈
Z (α)

〉

dt

]

mix

dx = 0 (59)

of Curl’s mixing. Note that the term “mix0” in (52) and, as shown below, the term
“mix2N” in (58) satisfy constraint (17) and, consequently, the condition specified by
(59). Since Curl’s mixing is compliant with (59), so must be the term “mix2D” but in
its originally derived form (with θ̂ Iij placed outside the differentiation sign), this term
is not consistent with (59). The explanation for this lays in the fact that we consider
only a truncated representation of Curl’s mixing in (51) and this non-compliance
factor is hidden in the higher order terms. These terms were neglected in our analysis.
The physical reason for this is that the parameters of Curl’s mixing are the same for
any mixing couple and, thus, have limited variations within the mixing volume while
there are no similar restrictions imposed on values Z1 and Z2. Essentially, we neglect
gradients of θ̂ Iij in comparison with gradients of Z . Hence, it is reasonable for us to
reinstate the conservation property (59) by making a higher order adjustment to the
equation and moving θ̂ Iij under the differentiation sign in the term “mix2D”.

Evaluation of the first moment of the term “mix2N” yields
[

d
〈
Z (α)

〉

dt

]

mix2N

= θ̂ Iij

2
〈η̃〉

∫ (
Z (α)

2 − Z (α)
1

) ∂ PZ (Z1|x)

∂xi

∂ PZ (Z2|x)

∂x j
dZ1dZ2

= θ̂ Iij

2
〈η̃〉

(
∂

〈
Z (α)

〉

∂xi
− ∂

〈
Z (α)

〉

∂x j

)

= 0 (60)

due to symmetry of the tensor Iij. Assuming that the mixing volume is spherical
and that density variations within this volume are not significant, we obtain Iij = δij I
where I = r̂2

1 is determined by the radius of the mixing volume.

Evaluation of the first and second moments

The moments of Curl’s mixing are evaluated according to equations
[

∂ 〈Z1〉
∂t

]

mix
= θ̂ 〈η̃〉 〈Z2 − Z1〉 (61)

[
∂

〈
Z 2

1

〉

∂t

]

mix

= 2θ̂ 〈γ̃ 〉 〈
Z1 Z2 − Z 2

1

〉 + θ̂
〈
η̃2〉 〈Z 2

2 − Z 2
1

〉
(62)
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so that the effect of mixing on variance takes the form
[

∂
〈
z2

1

〉

∂t

]

mix

= θ̂
(−2 〈γ̃ 〉 〈

z2
1

〉 + 〈
η̃2〉 〈z2

2 − z2
1

〉 + 〈
η̃2〉 (〈Z2〉 − 〈Z1〉)2) (63)

where γ̃ ≡ η̃ − η̃2. The superscript “(α)” is omitted here and further in the subsec-
tion. With the use of Taylor series expansions

〈Z2〉 = 〈Z1〉 +
(

∂ 〈Z 〉
∂xi

)

1
�xi + 1

2

(
∂2 〈Z 〉
∂xi∂x j

)

1
�xi�x j + ... (64)

〈
z2

2

〉 = 〈
z2

1

〉 +
(

∂
〈
z2

〉

∂xi

)

1

�xi + 1
2

(
∂2

〈
z2

〉

∂xi∂x j

)

1

�xi�x j + ... (65)

we obtain
[

∂ 〈Z1〉
∂t

]

mix
= θ̂ 〈η̃〉 Iij

2

(
∂2 〈Z 〉
∂xi∂x j

)

1
+ ... (66)

[
∂

〈
z2

1

〉

∂t

]

mix

= −2 〈γ̃ 〉 θ̂
〈
z2

1

〉 + θ̂
〈
η̃2

〉
Iij

2

(
∂2

〈
z2

〉

∂xi∂x j
+ 2

∂ 〈Z 〉
∂xi

∂ 〈Z 〉
∂x j

)

1

(67)

The first order terms disappear since as we assume that particle “1” is located in the
centre of the mixing volume. Finally, we invoke the same arguments as we did for
the term “mix2D” in (58) and place the term θ̂ Iij under the differentiation sign of the
diffusion-type terms. The last equations can now be rewritten as

[
∂ 〈Z1〉

∂t

]

mix
= ∂

∂xi

(
θ̂ 〈η̃〉 Iij

2
∂ 〈Z 〉
∂x j

)

+ ... (68)

[
∂

〈
z2

〉

∂t

]

mix

= −θ̂ 〈γ̃ 〉
(

2
〈
z2〉 + Iij ∂ 〈Z 〉

∂xi

∂ 〈Z 〉
∂x j

)
+ ∂

∂xi

(
θ̂

〈
η̃2

〉
Iij

2
∂

〈
z2

〉

∂x j

)

+ θ̂ 〈η̃〉 Iij ∂ 〈Z 〉
∂xi

∂ 〈Z 〉
∂x j

. (69)

If the mixing volume possesses spherical symmetry then Iij = δij I. Assuming that θ12

is given by θ12 = θ0 for r2 ≡ �xi�xi ≤ r2
m and θ12 = 0 for r > rm, we obtain I = r̂2

1
where r̂2

1 = r2
m/5 in a three-dimensional space [8].
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