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Abstract Previous studies have shown that Unsteady Reynolds-Averaged Navier–
Stokes (URANS) computations are able to reproduce the vortex shedding behind
a backward-facing step. The aim of the present work is to investigate not only the
quantitative predictions of the URANS methodology concerning the characteristic
frequencies, but also the amplitude of the energy of the resolved eddies, by using
the Elliptic Blending Reynolds Stress Model. This innovative low-Reynolds number
second moment closure reproduces the non-viscous, non-local blocking effect of the
wall on the Reynolds stresses, and it is compared to the standard k−ε and Launder,
Reece, Rodi (LRR) models using wall-functions. Consistent with previous studies,
in the 2D computations shown in the present article, the vortex shedding is captured
with the correct Strouhal number, when second moment closures are used. To
complete these previous analyses, we particularly focus here on the energy contained
in the unsteady, resolved part and its dependency on the numerical method. This
energy is less than 5% of the total energy and is strongly dependent on the mesh.
Using a refined mesh, surprisingly, a steady solution is obtained. It is shown that
this behaviour can be linked to the very small spatial oscillations at the step corner,
produced by numerical dispersion, which act as perturbations that are sufficient to
excite the natural mode of the shear layer, when the local Peclet number, comparing
convection and diffusion effects, is high enough. This result suggests that URANS is
not appropriate to quantitatively predict the amplitude of the large-scale structures
developing in separated shear-layers, and that URANS results must be interpreted
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with care in terms of temporal variations of forces, temperatures, etc., in industrial
applications using marginally fine meshes.

Keywords Turbulence modelling · Unsteady flow · Near-wall flow · Elliptic blending

1 Introduction

Recently, a considerable interest has emerged in relatively low-cost (compared to
Large Eddy Simulation) time-dependent computations of complex flows, in different
fields of industrial activities, e.g., for thermal fatigue studies, fluid/structure interac-
tion, noise prediction, etc. In particular, the Unsteady Reynolds-Averaged Navier–
Stokes (URANS) methodology has become quite popular, because of its successes
in predicting the most energetic modes and their Strouhal number, in particular
for vortex shedding behind bluff bodies [4, 13, 17, 18, 20]. The methodology is
straightforward: it simply consists in solving standard RANS-model equations in
a time-accurate mode. However, fundamental questions remain about the general
definition of the URANS decomposition when the flow is stationary, since the
ensemble average is independent of time, while URANS computations provide an
unsteady solution. Moreover, even for non-stationary flows, like pulsed flows or flows
around moving obstacles, for which the ensemble average is time-dependent, it is also
worth pointing out that using standard RANS models in an unsteady computation is
questionable. Indeed, although they sometimes provide satisfactory solutions, they
are mainly formulated under the assumption of equilibrium, which can lead to a
significant misrepresentations of the physical mechanisms present in unsteady flows:
for instance, Carpy and Manceau [5] have shown that linear eddy-viscosity models
give a completely wrong dynamics in a pulsed jet, due to the lack of representation
of the stress–strain misalignment. On the contrary, second-moment closures (SMCs)
are able to reproduce the global dynamics of this flow without any case-specific
modification.

In the case of separated shear layers, it was shown by Lasher and Taulbee [21]
that SMCs are able to reproduce the vortex shedding in a backward-facing step flow,
as soon as sufficiently accurate numerical methods are used. Despite the fact that
separation is fixed by the geometry, which avoids the appearance of an unsteady
separation point, as can be observed on smooth surfaces, the backward-facing
step flow is a challenging test case for unsteady computations, since it conjugates
several fundamental mechanisms: vortex shedding, convection and pairing of these
structures downstream, interaction between the vortices and the wall, flapping of the
recirculation region at a low frequency. Numerous RANS studies (steady compu-
tations) of backward-facing step flows (e.g., [1, 7, 16, 28]) have shown the difficulty
in reproducing the main characteristics of the flow (recirculation length, backflow
intensity, boundary-layer recovery), especially for small expansion ratios, where
turbulence has a strong influence on the mean flow. On the other hand, only Lasher
and Taulbee [21] have investigated this flow using a time-dependent computation
(URANS) with a SMC. However, their model was based on wall functions, and
the initial aim of the present work was to evaluate, by performing 2D computa-
tions, the performance of a recent near-wall SMC, the Elliptic Blending Reynolds
Stress Model (EB-RSM) [25, 26], formulated in order to replicate the non-viscous,
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non-local blocking effect of the wall. This evaluation does not only concern the mean
quantities, but also the quantitative prediction of the characteristic frequencies and
the kinetic energy content of the resolved, unsteady large-scale structures. This study
has actually revealed that the most important aspect of such computations is the
influence of the numerics on the nature of the solution (steady/unsteady). Therefore,
the main part of the present work is devoted to the analysis and understanding of
this influence, and to the identification of the limitations of URANS for this type
of flows.

2 Governing Equations

The instantaneous flow is driven by the Navier–Stokes and continuity equations. The
instantaneous velocity U∗

i is decomposed into a resolved part Ũi, including mean
value and large-scale fluctuations, and a residual fluctuating part u

′′
i such that

U∗
i = Ũi + u′′

i . (1)

The resolved velocity is obtained by the convolution product of a filter G with the
instantaneous velocity as [15]

Ũi(�x, t) = 〈
U∗

i

〉 =
∫

�r∈V

∫

τ∈[−∞,t]
G

(�x − �r, t − τ
)
U∗

i

(�r, τ)
d�rdτ, (2)

where V is the fluid domain and the brackets denote the URANS filter, which can
be defined as a phase average in the present case, corresponding to a filter function
given by

G(�x, t) = δ(�x)

[

lim
N→∞

1

N + 1

N∑

n=0

δ(t + nT0)

]

, (3)

with T0 the shedding time scale. The long-time average of U∗
i is denoted by Ui, so

that the large-scale fluctuation is u′
i = Ũi − Ui, and the total fluctuation is ui = U∗

i −
Ui = u′

i + u′′
i . The URANS continuity and Navier–Stokes equations are formally

identical to the RANS equations: the unknown correlation
〈
u′′

i u′′
j

〉
, appearing in

the momentum equation concerning Ũi, is the residual stress tensor, and has to be

modelled. Using a second moment closure, the transport equations for
〈
u′′

i u′′
j

〉
and

the kinetic energy dissipation rate ε can be written in a general form

D̃

D̃t

〈
u′′

i u′′
j

〉
= P̃ij + φij − εij + ∂l

(
νδlm + CμT

σk

〈
u′′

l u′′
m

〉)
∂m

〈
u′′

i u′′
j

〉
, (4)

D̃ε

D̃t
= C′

ε1

P̃
T

− Cε2

ε

T
+ ∂l

(
νδlm + CμT

σε

〈
u′′

l u′′
m

〉)
∂mε. (5)

where D̃/D̃t = ∂t + Ũk∂k. The stress production term P̃ij and P̃ = 1
2 P̃kk are exact and

do not need to be modelled; εij denotes the dissipation rate tensor, with ε = 1
2εkk; φij
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is the velocity-pressure-gradient correlation, known as the pressure term. In standard
models, this term is modelled using strong hypotheses like locality and local quasi-
homogeneity, not valid in wall-bounded flows [27]. In order to avoid the use of these
hypotheses, Durbin [11, 12] proposed the elliptic relaxation model, derived from the
exact integral equation for φij [11, 27], which implies the resolution of six differential
equations for φij

φij − L2∇2φij = φh
ij, (6)

where φh
ij is any “homogeneous” (valid away from the wall) model. In order to

avoid the resolution of six additional equations with numerically stiff boundary
conditions, Manceau [25] suggests, following Manceau and Hanjalić [26], to blend
the homogeneous model and a near-wall model of φij as

φij = (
1 − α2

)
φw

ij + α2φh
ij, (7)

where α is a blending coefficient which goes from zero at the wall to unity far from
the wall.

Contrary to Eq. 6, Eq. 7 is not a differential, elliptic equation, and consequently,
in order to preserve the non-local influence of the wall, which yields the progressive
transition from the homogeneous form to the near-wall form, Manceau [25] proposes
to use an elliptic equation for α, similar to the elliptic relaxation equations

α − L2∇2α = 1. (8)

For the “homogeneous” part of the pressure term φh
ij, any existing model can be

used. The SSG model [30] is used here

φh
ij = −

(

g1 + g∗
1

P̃
ε

)

εb ′′
ij +

(
g3 − g∗

3

√
b ′′

klb
′′
kl

)
k

′′
S̃ij

+ g4k′′
(

b ′′
ik S̃ jk + b ′′

jk S̃ik − 2

3
b ′′

lm S̃lmδij

)

+ g5k′′
(

b ′′
ik
̃ jk + b ′′

jk
̃ik

)
, (9)

with

k′′ = 1

2

〈
u′′

j u
′′
j

〉
, b ′′

ij =
〈
u′′

i u′′
j

〉

2k′′ − 1

3
δij, (10)

S̃ij = 1

2

(
∂ jŨi + ∂iŨ j

)
, 
̃ij = 1

2

(
∂ jŨi − ∂iŨ j

)
. (11)

For the near-wall part of the pressure term, φw
ij has to satisfy the balance between the

pressure term, the molecular diffusion and the dissipation term, in the vicinity of the
wall, which can be written as

φij + ν∇2
〈
u′′

i u′′
j

〉
− εij = 0. (12)
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Using the simple model of Rotta [29] for the near-wall part of the dissipation term
(Eq. 16), Manceau and Hanjalić [26] showed that φw

ij can be written in a general
frame as

φw
ij = −5

ε

k′′
( 〈

u′′
i u′′

k

〉
n jnk +

〈
u′′

j u
′′
k

〉
nink − 1

2

〈
u′′

ku′′
l

〉
nknl

(
δij + nin j

) )
. (13)

Since α is zero at the wall, the wall-normal unit vector �n can be evaluated from

�n = ∇α

||∇α|| . (14)

This definition enables the use of the model in complex geometries because the �n
vector continuously adapts itself to the shape of the wall, as shown in Fig. 1, and
there is no need to define the nearest wall, which can be ill-defined, as in the step
corner, for example.

Similarly to φij, the standard, homogeneous model for the dissipation rate εij is not
valid in the near-wall region. Manceau and Hanjalić [26], using a Direct Numerical
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Fig. 1 Wall-normal unit vector at the step corner, calculated from Eq. 14
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Simulation (DNS) database, have shown that the dissipation tensor can be modelled
in a way similar to φij

εij = (
1 − α2

)
εw

ij + α2 2

3
εδij. (15)

Away from the wall, the dissipation rate is assumed isotropic. The simple Rotta
model [29] is used for the near-wall part, as previously mentioned

εw
ij =

〈
u′′

i u′′
j

〉

k′′ ε. (16)

To take into account the increase of the production of dissipation in the near-wall
zone, the coefficient of the generation term in the dissipation equation is taken as

C′
ε1

= Cε1

⎛

⎜
⎝1 + A1(1 − α2)

√√√√
k′′

〈
u′′

i u′′
j

〉
nin j

⎞

⎟
⎠ . (17)

This formulation gives the classical value Cε1 far from the walls, and a value larger
than Cε1 in the near-wall zone. The length and time scales appearing in the model
equations are the turbulent scales bounded by the Kolmogorov scales, to avoid
singularities at the walls and to replicate the physical behaviour observed in DNS
analyses [27]

L = CL max

(
k′′3/2

ε
; Cη

ν3/4

ε1/4

)

, (18)

T = max

(
k′′

ε
; CT

√
ν

ε

)
. (19)

Table 1 Values of the
EB-RSM constants Constant Value

Cε1 1.44
Cε2 1.83
Cμ 0.21
σk 1.0
σε 1.15
A1 0.03
CL 0.161
Cη 80.0
CT 6.0
g1 3.4
g∗

1 1.8
g3 0.8
g∗

3 1.3
g4 1.25
g5 0.4
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Table 2 Wall boundary
conditions Conditions

Ũi = 0
< u′′

i u′′
j >= 0

ε = 2ν lim
y→0

k′′

y2

α = 0

The model constants are given in Table 1. Exact wall boundary conditions used for
all variables are given in Table 2. Comparing to the original model of Manceau
and Hanjalić [26], the version of Manceau [25] improves the robustness by getting
rid of nonlinearities. The two-component limit of turbulence near the wall is well
predicted in a channel flow [25], and the model has been successfully applied to
different configurations [3, 6, 31]. Another advantage of the model is that there is
no explicit dependency on the distance to the wall, and it can therefore be used in
complex geometries. Moreover, the derivation of the elliptic relaxation equations
(6) from the Poisson equation for the fluctuating pressure [27] is independent of
the steady/unsteady character of the resolved field (velocity Ũi and pressure P̃),
which indicates that the procedure leading to the elliptic blending model can still be
applied in an unsteady context. The only possible influence of unsteadiness could be
a modification of the near-wall balance of the Reynolds stress equations, from which
the near-wall term φw

ij is derived. However, the analysis of the near-wall asymptotic
behaviours given by Manceau and Hanjalić [26] shows that the time-derivative is
negligible compared to the other terms, meaning that the near-wall modelling is also
valid in unsteady flows, contrary to usual methods based on damping functions.

3 Flow Configuration and Numerical Methods

The 2D backward-facing step flow configuration is presented in Fig. 2. The test case
of Driver and Seegmiller [9] has been chosen for several reasons: the expansion ratio
is low enough to ensure that the pressure effects do not overwhelm the turbulence

Fig. 2 Geometry and computational domain of the backward-facing step flow
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Table 3 Mesh characteristics
for the high-Reynolds number
models (k−ε and LRR)

Mesh

1 2 3 4 5 6

fr 1 1.5 2 2.5 3 4
Ncell 1396 3396 5970 9842 14234 25154
y+

1 150 100 75 60 50 37

effects [21], the experimental inlet conditions are well defined, and the aspect ratio
is sufficiently large to neglect the effects of the lateral walls. The Reynolds number
based on the inlet centerline velocity U0 and the step height h is Reh = 37500, and
the Reynolds number based on the inlet momentum thickness θ and the velocity
U0 is Reθ = 5000. The experiment [10] underlines the existence of two dominant
frequencies. A high frequency is associated with the vortex shedding due to the
Kelvin-Helmholtz instability, with a Strouhal number of 0.20, based on the local
vorticity thickness and shear velocity (U0/2), and a low frequency (St ≈ 0.06),
characteristic of a flapping motion. In the present work, the EB-RSM is compared to
the standard k−ε [22] and LRR (Rotta+IP version) [23] models, using wall functions.
Computations are performed with Code_Saturne, a parallel, finite volume solver
on unstructured grids, developed at EDF [2]. Space discretization is based on a
collocation of all the variables at the centre of gravity of the cells. Velocity/pressure
coupling is ensured by the SIMPLEC algorithm, with a Rhie and Chow interpolation
in the pressure-correction step [14]. The Poisson equation is solved with a conjugate
gradient method. Time advancement is based on an implicit Euler scheme, and
time-step convergence has been checked carefully, by refining the time step up to
a factor of 10. The convection terms of all the equations (for resolved momentum
and turbulent quantities) are approximated by a second-order central-difference
scheme (CDS). Some computations where also performed using a first-order upwind-
difference scheme (UDS) for comparison.

All the computations shown in the present article are 2D. This is justified by the
fact that the purpose is to reproduce the primary instability of the shear layer which
is 2D [32]. The reproduction by URANS of the secondary instabilities leading to 3D
structures is only possible if the primary instability is found. Six meshes, numbered
from 1 to 6, are used for the high-Reynolds number models (k−ε and LRR, see
Table 3). Six other meshes, numbered from 7 to 12, are also used for the EB-RSM
low-Reynolds number model (see Table 4). The parameter fr, used in Table 3 and
Table 4, is the factor of refinement in each direction compared to the reference mesh
(mesh 1 for the high-Reynolds number models, and mesh 7 for the EB-RSM); Ncell is
the total number of cells and y+

1 is the distance to the wall, in wall units, of the centre

Table 4 Mesh characteristics
for the low-Reynolds number
model (EB-RSM)

Mesh

7 8 9 10 11 12

fr 1 1.2 1.4 1.6 1.8 2
Ncell 3954 5936 7920 10816 13838 17256
y+

1 3 2.5 2.1 1.9 1.6 1.5
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Fig. 3 Mean velocity profile at the inlet (x/h=−4). Comparison between models and experiment [9]

of gravity of the first cell, evaluated at the inlet of the domain. As shown by Manceau
and Hanjalić [26], the EB-RSM does not require very fine meshes close to the wall,
contrary to most of the other near-wall resolving SMCs. Mesh 7 corresponds to the
most refined mesh used by Lasher and Taulbee [21].

A particular attention was paid to the inlet conditions to which the backward-
facing step flow is very sensitive. Since they do not correspond to a fully developed
channel flow, separate computations of a developing channel flow were performed
with each turbulence model to extract the boundary layer profiles, which are applied
at the inlet of the domain in order to match the boundary layer thickness 4h upstream
of the step corner observed in the experiments. Figure 3 shows the mean velocity
profile obtained with each turbulence model compared to the experimental data.
Figures 4 and 5 show respectively the Reynolds stresses and the total fluctuating
kinetic energy profile, in comparison with the experiment, where it is assumed that
w2 
 1/2(u2 + v2), the overbar denoting the long-time average.

4 Results

4.1 Mean flow

In comparison to the standard k−ε and LRR models with wall functions (denoted
by WF), Figs. 6 and 7 show that the EB-RSM significantly improves the skin friction
coefficient C f in a region covering the whole recirculation bubble (0 < x/h < 8).The
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Fig. 4 Reynolds stress profiles at the inlet (x/h = −4). Comparison between models and experiment
[9]. ◦ u2, � v2 , � uv
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Fig. 5 Fluctuating kinetic energy profile at the inlet (x/h = −4). Comparison between models and
experiment [9]
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Fig. 6 Mean skin friction coefficient. All the computations with the EB-RSM are superimposed
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Fig. 7 Mean skin friction coefficient. Close up of the recirculation region. Same legend as Fig. 6
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Table 5 Mean reattachment length

Experiment k−ε LRR EB-RSM

lr/h 6.26 5.14 4.72 6.51

Mesh 6 for the high-Reynolds models and mesh 12 for the EB-RSM

skin friction coefficients obtained with the EB-RSM, using the different meshes, are
superimposed, showing that the results are not sensitive to a reasonable coarsening
of the near-wall mesh. This point was also noticed by Manceau and Hanjalić [26]
in a channel flow and is very interesting for industrial applications where the
meshes are marginally fine. Table 5 shows that the mean reattachment length lr is
underestimated by 20% by the high-Reynolds models, as expected, and estimated
within 5% error by the EB-RSM. However, Fig. 8 shows that the recirculation region
is too thick: the shear strain is thus too weak, which implies an underestimation of
the shear stress in the recirculation region, as can be seen in the figure. This is a
shortcoming common to most of the RANS models (see, for instance, [24]). The

0 1 2 3 4 5

0

1

2

x/h=1 x/h=3 x/h=5 x/h=6 x/h=7 x/h=10 x/h=12 x/h=14 x/h=16 x/h=20 x/h=32

0 0.02 0.04 0.06 0.08 0.1
0

1

2

Fig. 8 Mean velocity and shear stress profiles. Symbols: experiments [9]; lines: EB-RSM computation
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EB-RSM friction coefficient in Fig. 6 and mean velocity profiles in Fig. 8 moreover
reveal that the recovery of the boundary layer downstream of reattachment is not
satisfactory. This feature is common to all the turbulence models, SMCs as well
as eddy-viscosity models [1, 7, 13, 16]. The prediction of the mean flow with the
EB-RSM is very similar to previous results obtained with the same class of models
(near-wall SMCs [7, 16]).

4.2 Instantaneous flow

All the k−ε computations give steady solutions, whatever the mesh or the spatial
discretization used. This model is based on the Boussinesq approximation which as-
sumes alignment of the Reynolds stress anisotropy and the strain. As a consequence,
the turbulent production is overestimated. For instance, in a 2D flow, as shown by
Carpy and Manceau [5], the exact production can be written as

P̃ = k′′β(λ1 − λ2) cos(2ϕ), (20)

where ϕ is the angle between the eigenvectors of the strain rate tensor and the
eigenvectors of the anisotropy tensor in the x–y-plane, β is the positive eigenvalue
of the strain rate tensor and λ1 and λ2 are the two eigenvalues of the anisotropy
tensor in the x–y-plane (λ1 > λ2). The Boussinesq approximation implies that ϕ = 0,
leading to a systematic overestimation of production when turbulence and strain are
not aligned, which is the case if the strain is unsteady. This leads to an overestimated
rate of transfer from resolved to modelled energy, leading to a rapid decrease of the
former [5]. Therefore, linear eddy-viscosity models should be avoided in unsteady
computations.

On the contrary, the steady/unsteady character of the solution using the SMCs is
strongly dependent on the numerics. Using an UDS, whatever the meshes and the
model, the solution is steady due to the diffusive character of this scheme. Using
a CDS and meshes similar to those used by Lasher and Taulbee [21] (mesh 7 for
the EB-RSM), the solution is unsteady, exhibiting a single frequency, consistent
with the results found by these authors. The correct order of magnitude of the
Strouhal number is found with EB-RSM (St = 0.21) whereas St = 0.16 with LRR.
This frequency is associated with the vortex shedding which can be visualized in
Fig. 9, by isocontours of vertical resolved velocity fluctuations. Seven probes are
positioned in the shear layer (y/h = 1) going from x/h = 1 to x/h = 7. The resolved
velocity signal as a function of time, not shown here, is purely sinusoidal. Therefore,
the measure of the convection velocity Uc of the large-scale structures is easy and is
given by the time delay between these probes. The measure gives a constant value
Uc 
 0.5U0 independent of the streamwise location, as reported in the experiment
[19]. However, in the experiments, it is observed that some of the vortices created
in the shear layer are incorporated into the recirculation zone rather than convected
downstream, which is not observed in our computations: consequently, the flapping
motion, which is linked to the incorporation and release of this vortices, is missed.

However, the resolved, large-scale structures contain a very limited part of the
total fluctuating energy: indeed, the ratio kres/ktot is less than 5% on the coarse mesh
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Fig. 9 Isocontours of vertical, resolved velocity fluctuations (mesh 10, EB-RSM computation).
Dashed lines are negative values

(mesh 7), where kres is the kinetic energy of the resolved structures and ktot = kres +
kmod is the sum of the resolved and the modelled kinetic energies. These quantities
are given by

kres = 1

2
u′

iu
′
i = 1

2

(
ŨiŨi − UiUi

)
, (21)

kmod = k′′ = 1

2

〈
u′′

i u′′
i

〉
. (22)

One could expect that refining the mesh would intensify the resolved energy, by
reducing the numerical errors. Let us define the parameter M(x) by

M(x) = max
y

(
kres(x, y)/ktot(x, y)

)
, (23)

which is the maximum value of the ratio resolved energy/total energy on a vertical
line at a given streamwise location. This ratio characterizes the energy contained in
the resolved, large-scale eddies of the shear layer, coming from the vortex shedding.
Fig. 10 shows the streamwise evolution of M(x) for each mesh used in the EB-RSM
computation: a drastic reduction of the resolved energy and a steady solution for the
finest mesh (mesh 12), meaning that M(x) = 0, are obtained.

It is worth pointing out that this behaviour is not linked to the fact that the
computations are 2D. Indeed, the primary instability of this flow being 2D [32], 3D
structures generated by secondary instabilities cannot be reproduced if the primary
instability is missed. Therefore, 3D computations give exactly the same steady
solution as 2D computations, which has been checked by using the same mesh (12)
extended in the z-direction by adding 40 cell layers covering a width of 4h.

The results with the LRR model are qualitatively similar, and are therefore not
shown here. The next section proposes an explanation for this surprising behaviour.
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Fig. 10 Maximum value M(x) of the ratio resolved energy/total energy as a function of the streamwise
location (EB-RSM computation). Mesh 12 gives a steady solution such that M(x) = 0

5 Investigation of the Steady/Unsteady Behaviour

First, it is worth emphasizing that, contrary to LES, the URANS model is indepen-
dent of the grid. Refining the grid enables the solution of the discretized equations
to approach the solution of the continuous equations (the model), while in LES,
where the filter is usually dependent on the local characteristics of the mesh, grid
convergence cannot be obtained (except in the DNS limit). Therefore, in URANS, a
modification of the solution when refining the grid can only be due to discretization
errors. Actually, the nature of the solution (steady/unsteady) can be traced to the
excitation of the most unstable mode of the shear layer by weak spatial oscillations
at the step corner, due to the CDS. Indeed, it is well known, at least for a 1D con-
vection/diffusion equation, that central differencing can generate spatial numerical
oscillations in a region of strong gradients in the streamwise direction, if the Peclet
number exceeds 2 [14]. These oscillations do not appear when using a diffusive
scheme, such as the UDS, which explains why the solution always remains steady
with this scheme. In a one-dimensional situation, the Peclet number compares the
time scales of diffusion τD and convection τC over the length of the cell. In the two-
dimensional boundary layer just upstream the step corner, the convection and dif-
fusion processes can be considered as essentially in the streamwise and wall-normal
directions, respectively, and associated time scales can be locally approximated by
τC = �x/U and τD = �y2/νeff . Thus, a local Peclet number can be defined as

Pe(x, y) = τD

τC
= U�y2

νeff �x
. (24)
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In a turbulent boundary layer, νeff accounts for the effective (molecular + turbulent)
viscosity and is given by the Daly-Harlow model [8], used in both SMCs:

νeff = ν + Cμ

σk
T

〈
v′′2〉. (25)

The wall-normal distance δ influenced by the total diffusion during the transport time
τC is equal to δ = √

νeff�x/U , meaning that δ/�y = Pe−1/2. As in a one-dimensional
situation, we conjecture that for large values of the local Peclet number, δ is much
smaller than the wall-normal cell size �y, which leads to spatial oscillations. Figure 11
shows the streamwise evolution of the local Peclet number at y+ = 15, which is the
location of the streamline passing through the inflexion point of the shear layer
just after the step, where the velocity profile is the most sensitive to perturbations,
according to linear stability [32]. It can be seen, comparing Figs. 10 and 11, that
there is at least a qualitative link between the orders of magnitude of the local Peclet
number and the energy contained in the resolved eddies. This comparison suggests
that, for coarse meshes, the spatial numerical oscillations due to the high local Peclet
number in a region of strong mean velocity gradient ∂xU (very close to the step, say
−0.1 < x/h < 0) act as perturbations that are sufficient to excite the natural mode
of the shear layer. Figure 12 attempts to highlight the existence of these very small
numerical oscillations on the mean velocity. Since they are not directly visible on
the mean velocity itself, the streamwise evolution of the long-time averaged velocity
derivative ∂xU is plotted instead, at the height y+ = 15. It is seen that numerical
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Fig. 11 Streamwise evolution of the local Peclet number at y+ = 15 (EB-RSM computation)
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Fig. 12 Streamwise evolution of ∂xU at y+ = 15 (EB-RSM computation)

oscillations exist and their amplitude decreases when the mesh is refined. These
oscillations are not the footprint of the unsteadiness due to the vortex shedding, since
what is plotted is the long-time averaged velocity.

The steady solution was not observed by Lasher and Taulbee [21] because their
most refined mesh corresponds to the coarsest mesh used in the present work (mesh
7). It is also important to note the existence of an unsteady solution, even on the most
refined mesh (mesh 12), during a transient phase which can last for a long time, about
twenty shedding time scales. Thus, computations must be performed on a sufficiently
large duration to reach the steady solution.

When the solution is unsteady on the coarse meshes, the Strouhal number of the
large-scale structures is reliable because it does not depend much on the mesh, since
it corresponds to the most amplified mode of the shear layer, as predicted by linear
stability [32]. On the contrary, the amplitude of these structures is strongly dependent
on the amplitude of the perturbations, which is driven by the numerical oscillations.
Thus, obtaining an unsteady solution is a numerical artefact, which makes the use
of URANS uncertain in such flows, in particular as concerns the prediction of the
amplitude of the large-scale oscillations, which are of major interest for industrial
applications.

Another important remark can be made by considering two meshes, denoted by
the subscripts a and b . It is assumed that mesh b is finer than mesh a, with a factor
of refinement in streamwise and wall normal directions denoted by fab ≥ 1 and
gab ≥ 1 respectively. If the mean velocity and the turbulent viscosity are converged
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numerically, using definition (24), it is easy to show that the ratio of the Peclet
numbers associated with each mesh is

Peb

Pea
=

(
�yb

�ya

)2
�xa

�xb
=

(
1

gab

)2

fab . (26)

Considering, for example, that meshes a and b are mesh 7 and 12 (EB-RSM computa-
tion), we have in this case fab = gab = fr = 2 (see Table 4) and then Pe12/Pe7 = 1/2,
which is approximately verified in Fig. 11. Expression (26) suggests that it is more
favourable to numerical stability to refine only in the wall normal direction than in
both directions, leading to elongated cells.

6 Conclusions

The 2D computations of the backward-facing-step flow have shown that obtaining an
unsteady solution, whatever the model used (high or low-Reynolds number model),
is due to the amplification of numerical oscillations in a region very close to the
step, where the velocity gradients and local Peclet number are high. These numerical
oscillations act as perturbations that are sufficient to excite the natural mode of the
shear layer. A diffusive scheme, such as the UDS, do not exhibit such oscillations
and, therefore, gives a steady solution whatever the mesh.

The present work thus shows that the grid-converged solution of 2D URANS
computations of the backward-facing step flow is a steady (RANS) solution. This
indicates that the primary instability of this flow is not reproduced by URANS.
Consequently, more complex structures, like those due to secondary instabilities
cannot be obtained either, and 3D URANS computations also give a steady solution.
The observations made using CDS and UDS schemes can be extended to more
sophisticated schemes (upwind-biased second-order schemes, TVD schemes, etc.):
the appearance of unsteady solutions can only be a numerical artefact due to the
combination of a too coarse mesh and an oscillation-generating scheme.

As shown by previous studies [21], URANS is able to reproduce the correct
Strouhal number of the vortex shedding, since it is imposed by the mean velocity
profile, according to the linear stability [32]. However, the amplitude of the vortices
is strongly dependent on the numerics, and therefore, its prediction with the URANS
methodology does not seem to be reliable. This result suggests that, whatever the
convection scheme, in industrial applications using URANS, the reproduction of
vortex shedding in separated shear layers will be driven by the competition between
numerical diffusion and dispersion. This issue can be problematic in complex 3D
applications for which the mesh is often only marginally fine. The interpretation of
the results in terms of, e.g., temporal variations of forces or wall temperatures, is to be
considered with care. This remark suggests that future work should be devoted to the
development of hybrid RANS-LES methods, which enable to control the parameter
resolved energy/total energy.

The present work also showed that the EB-RSM [25, 26], a recent near-wall
second-moment closure, is sufficiently robust to be used in unsteady computations,
although the grid-converged solution is steady in the present case. The steady results
are very similar to previous results obtained with near-wall SMCs [7, 16], both in the
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recirculation and recovery regions. The mean skin friction in the recirculation region
and the mean reattachment length are improved compared to the standard k−ε

[22] or LRR [23] models with wall-functions, and are not sensitive to a reasonable
coarsening of the near-wall mesh. On the contrary, the reproduction of the recovery
region after the reattachment point is not satisfactory. The EB-RSM is much more
robust than previous models based on Elliptic Relaxation [12, 26] and can be easily
implemented in RANS codes using SMCs.
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