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Abstract
Tetranychus urticae is an important pest worldwide. The auto-dissemination of spores of 
entomopathogenic fungi from an infected individual to conspecifics may be important for 
controlling pests that can build high populations. The current study was carried out to 
determine the auto-dissemination of the entomopathogenic fungus Cordyceps fumosoro-
sea strain PFs-1 (Priority®) between T. urticae females. The study consisted of four ex-
periments. First, the efficacy of entomopathogenic fungus bioassays was assessed in Petri 
dishes (experiment 1) and on potted bean plants (experiment 2). In the auto-dissemination 
trials (experiments 3 and 4, in Petri dishes and on potted plants, respectively), contami-
nated adult females (1–5) were released among uncontaminated females (10 individuals). 
All experiments were carried out separately, and observations were made on days 3, 5, and 
7. In exp. 1, the control was different from Priority on all observation days. In exp. 2, the 
average number of surviving individuals in the control was significantly higher than in the 
Priority treatment. In the auto-dissemination experiments, as the number of contaminated 
individuals increased, the mortality rate of uncontaminated individuals also increased, in 
exp. 3 (Petri dishes) on all observation days, and in exp. 4 (potted plants) only on days 
5 and 7. The median lethal time (LT50) decreased as the number of individuals contami-
nated with Priority increased in both Petri dish and pot trials. Consequently, the effective-
ness of biological control may increase with the occurrence of indirect contamination from 
infected to uncontaminated individuals.
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Introduction

Tetranychus urticae Koch (two-spotted spider mite) (Acari: Tetranychidae) is a polypha-
gous pest that feeds on more than 1100 plant species and varieties, including numerous 
commercial fruits and vegetables as well as ornamental plants (Migeon and Dorkeld 2010; 
Atalay and Kumral 2013). This pest has developed resistance to many pesticides. Its high 
fertility, short life cycle, and haplodiploid reproductive characteristics accelerate the devel-
opment of resistance (Denholm et al. 1998; Carrière 2003; Van Leeuwen et al. 2010; Der-
mauw et al. 2012). In addition, these features cause them to reach population levels that 
cause significant economic losses in cultivated plants (Sato et al. 2007; El-Saiedy and Fahim 
2021). Accordingly, it becomes increasingly difficult to control spider mites with only the 
use of pesticides. The phytophagous feeding feature and short life cycle of this pest allow it 
to develop resistance to many acaricides after a few applications (Cranham and Helle 1985; 
Keena and Granett 1990; Devine et al. 2001; Stumpf and Nauen 2001; Sato et al. 2005). 
Besides, individuals of this species can live individually or in groups. Tetranychus urticae 
females can establish colonies by arrhenotokous parthenogenetic reproduction and subse-
quently mate with their own sons (Yano 2008). In addition, T. urticae exhibits various forms 
of social behavior such as gathering or building a communal web (Saito 1983; Clotuche et 
al. 2009; Le Goff et al. 2009). Two-spotted spider mite builds complex three-dimensional 
webs on plant leaves (Saito 1983; Oku et al. 2009). A denser and more protective web pro-
vides continuity in group living characteristics, and their control in production areas may 
become harder as the dense webbing protects them from acaricides and also predators (Le 
Goff et al. 2010; Clotuche et al. 2011).

Cordyceps (formerly Isaria) fumosorosea (Wize) (Hypocreales: Cordycipitaceae) blas-
tospores have been used extensively in pest management programs around the world. The 
blastospores are easily produced and require only 6–8 h to germinate (Vega et al. 1999; 
Avery 2002; Lozano-Contreras et al. 2007; Avery et al. 2009). This entomopathogenic fun-
gus is eco-friendly with minimal impact on beneficial non-target arthropods (Sterk et al. 
1995a, b; Avery et al. 2009). Some strains of C. fumosorosea were proven to be pathogenic 
to multiple mite pests in various habitats and highly virulent against active individuals of T. 
urticae (Alves et al. 2002; Shi and Feng 2004, 2009; Kim et al. 2008; El-Sharabasy 2015).

Entomopathogenic fungi are important and selective in the control of arthropod spe-
cies. The inclusion of entomopathogenic fungi in pest control practices is increasing due 
to environmental awareness and concerns about food safety and pesticide use that lead to 
an increase in the number of insecticide-resistant species (Rai et al. 2014). Food safety, 
protection of biodiversity, minimization of pesticide residues, and the safety of non-target 
organisms are some of the advantages of microbial control agents over conventional chemi-
cal pesticides (Shahid et al. 2012). Mycoinsecticides are the first-choice organisms among 
entomopathogens in various ecosystems. Characteristics of entomopathogenic fungi such as 
high host specificity, negligible effect on non-target organisms, and easy mass production 
make them preferred in pest control (Rai et al. 2014; Singh et al. 2017). Entomopathogenic 
fungi are known to help regulate insect and mite populations through epizootics (Singh et 
al. 2017). The transfer of conidia from infected individuals to others is crucial as it causes 
the spread of infections and the onset of epizootics (Lacey et al. 1994; Hesket et al. 2010). 
Transmission of entomopathogenic fungi to healthy individuals is also achieved with the use 
of disseminating devices designed for attracting insects and infecting them through ento-
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mopathogenic fungi (Baverstock et al. 2010). Arthropods can mediate the horizontal trans-
mission of disease to susceptible hosts either through direct physical contact or indirectly 
by releasing infective propagules (fungal spores) in the habitat (Lin et al. 2019). Infected 
individuals remaining in the environment can be beneficial for the spread of fungal patho-
gens and transmission to healthy conspecifics (Long et al. 2000; Avery et al. 2009, 2010). 
Reaching dense populations of host individuals increases the possibility of contact between 
them. Cordyceps fumosorosea has an important potential in the management of T. urticae. 
This present study aimed to determine the dissemination of this entomopathogenic fungus 
(Priority®) to uncontaminated (healthy) individuals through infected T. urticae individuals.

Materials and methods

Mites were used from a 5-year-old laboratory colony of T. urticae, that was collected from 
Antalya vegetable greenhouses in 2018 and that has since then been reared on bean plants, 
Phaseolus vulgaris L. (Fabaceae), and maintained at 25 ± 1 °C, 60–70% RH, and L8:D16 
photoperiod. The identification of T. urticae was made using the keys in Bolland et al. 
(1998) and Jeppson et al. (1975). Bean leaves infested with T. urticae were cut and placed 
on non-contaminated plants to ensure the production of mites continued. Two commercial 
pesticides were used in the experiments: the mycopesticide Priority (1.5% C. fumosorosea 
strain PFs-1, 108 CFU/mL; MRFC [maximum field recommended concentration] = 250 mL/
decare) and the acaricide Torpedo (EC 18 g/L abamectin; MFRC = 25 mL/100 L water), 
obtained from Agrobest (İzmir, Turkey) and Hektaş (Antalya, Turkey), respectively.

The study consisted of four experiments. When bean plants are treated with entomo-
pathogenic fungi (1.5% C. fumosorosea strain PFs-1), the lethal effect on T. urticae females 
was determined in Petri dish conditions in exp. 1 and on bean plants in the climate room in 
exp. 2. In these two experiments, sterile distilled water was used as the negative control and 
abamectin as the positive control. Priority, abamectin, and the water control were sprayed 
onto leaf discs (6 cm diameter) with an apparatus (glass material that sprays the liquid under 
pressure at the tip of a motorized insect aspirator), with the ability to mist at 4 atm pressure 
for 10 s (0.6 mL).

In order to determine the dissemination of the same entomopathogenic fungus by con-
taminated individuals to conspecific individuals, varying numbers of contaminated indi-
viduals (in the range of 1–5 contaminated adults) were transferred to Petri dishes in exp. 3 
and bean plants in exp. 4. In these two experiments, 10 uncontaminated females (per repli-
cation) were previously transferred to leaf discs prepared in both Petri dishes and pots. For 
exp. 3 and 4, the entomopathogenic fungus was sprayed with a misting apparatus at 4 atm 
pressure for 10 s (0.6 mL) onto leaf discs. Then, 20 T. urticae adults were transferred with 
a fine brush on the bean leaf disc (6 cm diameter) in Petri dishes with 10 replications. After 
24 h, the contaminated individuals (a range of 1–5 contaminated females) were used. In exp. 
3 and 4, the bean plants were germinated in pots (11.5 cm diameter) containing sterile soil 
in a climatic chamber.

Petri dishes and pot trials (exp. 1–4) were carried out under climate chamber conditions 
(25 ± 1 °C, 60 ± 10% RH, and L16:D8 photoperiod). In exp. 1–4, a complete randomized 
block design was used, and sterile distilled water (dH2O) was applied in the control. The 
number of deaths was recorded on days 3, 5, and 7 after the applications (DAA). In all 
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experiments, cadavers of T. urticae were placed on potato dextrose agar (PDA) in Priority 
treatments, and fungal growth was observed in glass Petri dishes (9 cm diameter) by the 
method of Wraight et al. (1998) with some modifications. All experiments were repeated 
separately per observation day.

Experiment 1

Exp. 1 was conducted in Petri dishes with bean leaf discs (6 cm diameter) on moist cotton 
(Fig. 1). Priority, Torpedo, or distilled water were sprayed on leaf discs for 10 s. After-
wards, 10 uncontaminated females were transferred with a brush onto the leaf discs (10 
replications).

Experiment 2

In exp. 2, 2-week-old bean plants – with two leaves, in plastic pots (11.5 cm diameter) with 
sterilized soil mixture (soil + organic matter) – were used in the climatic chamber. For the 
applications in these plants, a leaf disc area of 6 cm diameter was constructed on each leaf 
with a Vaseline ring (it was placed around the leaf discs to prevent the escape of T. urticae) 
(Al-Azzazy et al. 2020) (Fig. 1). One leaf selected on each plant (with two leaves) was 
evaluated as one replication (total of 10 replications). The distilled water was sprayed on 
leaf discs selected per plant in the control (with 10 replications).

Experiment 3

The treatments were conducted in Petri dishes (9 cm diameter) in which bean leaf discs were 
placed on moist cotton. Contaminated females (1–5) were released with a brush to Petri 
dishes containing 10 non-contaminated individuals. Each Petri dish was one replication (in 
total 10 replications).

Fig. 1 Leaf disc method used in Petri and pot trials
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Experiment 4

In this experiment, 24 h after Priority application, contaminated individuals (1–5 females 
per application) were transferred onto leaves of bean plants in pots (1–5 contaminated 
females per application). After that, 10 uncontaminated individuals were released to these 
leaves to determine whether the entomopathogenic fungus could infect healthy individuals. 
Each plant was a replication and in total 10 replications were made per application.

Statistical analysis

One-way ANOVA was applied to the number of individuals surviving obtained from exp. 1 
and 2 followed by Tukey’s honestly significant difference (HSD) test (α = 0.05) (IBM SPSS 
v.20.0). Mortality rates obtained from exp. 3 and 4 were calculated using Abbott’s formula 
(Abbott 1925). One-way ANOVA was applied to the data followed by Tukey’s HSD test. 
The median lethal time (LT50) was calculated using mortality rates in exp. 3 and 4. The 
independent samples t-test was separately applied to compare the results of the Petri dish 
and pot trials with each other for mortality rates at each time point. Also correlation and 
regression analyses were done (α = 0.01). In addition, second order polynomials were used 
depending on the correlation coefficient appropriate to the obtained mortality rates.

Results

Experiment 1

The ANOVA indicated that treatments had a strong effect on mite survival on each observa-
tion day (3 DAA: F2,27 = 4.734, P = 0.017; 5 DAA: F2,27 = 24.927; 7 DAA: F2,27 = 47.499, 
both P < 0.001). The average number of surviving T. urticae females treated with Priority 
was not different from that treated with abamectin on 3 and 5 DAA, but it was significantly 
higher at 7 DAA (Fig. 2). Survival in the water control was higher than in the treatments on 
all observation days (Fig. 2).

Experiment 2

ANOVA indicated a strong effect of treatments on mite survival on each observation day (3 
DAA: F2,27 = 14.289; 5 DAA: F2,27 = 30.465; 7 DAA: F2,27 = 65.498, all P < 0.001). There 
was no statistical difference between Priority and abamectin on any observation day. The 
average number of surviving individuals in the control was higher than in the other applica-
tions (Fig. 2).

Experiment 3

In exp. 3, it was evaluated whether different numbers of Priority-contaminated T. urticae 
(1–5) would have an effect on the mortality rate in uncontaminated individuals in Petri 
dishes. ANOVA indicated strong effects of treatments on mite survival on each observation 
day (3 DAA: F4,45 = 43.321; 5 DAA: F4,45 = 23.573; 7 DAA: F4,45 = 14.616, all P < 0.001).
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At 3 DAA, the mortality rates were 8.2–29.3% in the trial with 1–5 contaminated adults 
released, respectively. These values were 17.3–44.7% on 5 DAA, and 29.6–56.4% on 7 
DAA (Fig. 3). Overall, mortality rates increased with increasing mite density (Fig. 3). 
The highest mortality rates were achieved in the trials with five contaminated individuals 
released on all observation days (Fig. 3).

Experiment 4

In exp. 4, it was investigated whether different numbers of Priority-contaminated T. urticae 
(1–5) would have an effect on the mortality rate of uncontaminated individuals on potted 
plants. Here, ANOVA indicated strong effects of treatments on mite survival on 5 and 7 days 
after application (5 DAA: F4,45 = 134.720; 7 DAA: F4,45 = 29.957, both P < 0.001), but not 
on 3 DAA (F4,45 = 1.336, P = 0.27).

At 3 DAA, the mortality rates were 8.2–11.7% in the trial with 1–5 contaminated adults 
released, at 5 DAA these values were 10.9–40% and at 7 DAA 14.6–40.7% (Fig. 3). Also 
here, overall mortality rates increased with increasing mite density (Fig. 3).

The LT50, a measure of the virulence of the entomopathogenic fungus, was calculated 
separately for experiments 3 and 4. In exp. 3, the LT50 decreased from 10.49 to 5.94 days, 

Fig. 3 Mean (± SE) mortality rates (%) of Tetranychus urticae females treated with 1–5 mycopesticide-
contaminated individuals at 3, 5 and 7 days after application (DAA), on bean leaf either in Petri dishes 
(exp. 3) or on potted plants (exp. 4). Means within a day capped with different letters are significantly 
different (Tukey’s test: P < 0.005)

 

Fig. 2 Mean (± SE) number of surviving Tetranychus urticae females treated with a mycopesticide (Prior-
ity), abamectin (Torpedo) or distilled water (control) at 3, 5 and 7 days after application (DAA), on bean 
leaf either in Petri dishes (exp. 1) or on potted plants (exp. 2). Means within a day capped with different 
letters are significantly different (Tukey’s test: P < 0.005)
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with 1 and 5 contaminated individuals released in Petri dishes, respectively (Fig. 4). In 
exp. 4, the LT50 decreased from 29.38 to 7.50 days, with 1 and 5 contaminated individuals 
released on potted plants, respectively (Fig. 4).

Comparison of Petri dish and pot trials (experiments 3 and 4)

Mortality rates in Petri dish and pot experiments, with 1–5 contaminated individuals, were 
compared per observation day. When 1 contaminated individual was released, mortality 
rates in Petri dishes and pot trials were the same on 3 and 5 DAA, but higher in Petri dishes 
on 7 DAA (Fig. 5). Almost all other comparisons – 2–5 contaminated individuals released, 
3–7 DAA – indicated higher mortality rates in Petri dishes than in pot trials; only at 5 DAA, 
the differences in mortality rate were not significantly different with 3 and 5 contaminated 
individuals released (Fig. 5).

Discussion

One of the major disadvantages of continuous chemical control against T. urticae is the fact 
that it gains resistance to pesticides over time (Herron and Rophail 1998; Van Leeuwen et al. 
2004). In order to overcome the resistance problem, it is preferred to use alternative control 
methods in pest management (Yeşilayer 2018). Auto-dissemination of entomopathogenic 
fungi has an important role in integrated pest management. This strategy can be used to dis-
seminate microbial organisms against pests that can coexist in the same habitat with natural 
enemies (Vega et al. 2000). Auto-dissemination can be provided using devices contain-
ing both entomopathogens and semiochemicals; pests enter the device, get infected by the 
pathogen, exit from the device, and transfer the inoculum (Vega et al. 2007; Baverstock et 
al. 2010; Lacey et al. 2015; Gonzalez et al. 2016). Dispersal of conidia of entomopathogenic 

Fig. 4 Median lethal time (LT50) of adult Tetranychus urticae females with 1–5 mycopesticide-contami-
nated individuals released in Petri dishes (exp. 3) or potted plants (exp. 4)
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fungi with devices has been reported to be simple, economical, and effective (Maniania and 
Ekesi 2013). Klein and Lacey (1999) and Maniania (2002) determined 95 and 100% infec-
tion in Popilia japonica Newman and Glossina fuscipes fuscipes Newstead, respectively, by 
conidia of Metarhizium anisopliae Petch.

An insect’s or mite’s behavioral response to a fungal pathogen has an important impact 
on the entomopathogenic fungus’ efficacy. In the literature, the effects of insect and mite 
behavior on the preference of fungal pathogens have been studied (Baverstock et al. 2010; 
Parker et al. 2011; Vezilier et al. 2015; Zélé et al. 2020). However, the effectiveness of ento-
mopathogens was associated with the contact between the pest and the entomopathogenic 
fungus (Wraight et al. 2001; FAO/IAEA 2019). A 3-min contact of M. brunneum (Gran-
Met®) with an adult P. japonica was sufficient to infect the insect and eventually kill it 
(Benvenuti et al. 2019). In the current study, individuals considered contaminated were also 
exposed to entomopathogenic fungus (1.5% C. fumosorosea) for 24 h.

An increase in the number of contaminated T. urticae adults in this study showed a signif-
icant effect on the mortality rate of healthy adults in Petri dishes as well as on potted plants. 
Yet, on the potted plants it took a bit longer for this effect to become significant, and overall 
the mortality rate was higher in the Petri dishes than on the potted plants – for instance, the 
mortality rate was 56.4% on day 7 when five contaminated individuals were released into 
Petri dishes, whereas this value was 40.7% on potted plants. Amjad et al. (2012) determined 
a mortality rate of 79% of adult T. urticae females on day 8 after direct application of C. 
fumosorosea (n32) at 108 conidia/mL.

The virulence of an entomopathogenic fungus can be determined by the LT50, the aver-
age lethal time from exposure to the pathogen to the death of an infected insect (FAO/IAEA 
2019). The virulence of each entomopathogenic fungus species depends on the host from 
which the fungus is isolated and the susceptibility of the target for which it is evaluated 
(Hajek and St. Leger 1994; De la Rosa et al. 2002; Roberts and Leger 2004; Rehner 2005; 
Meyling and Eilenberg 2007; Zélé et al. 2020). Differences between entomopathogenic fun-
gal strains and their effects on pest species may result from host–pathogen relationships 
(Lecuona 1996; FAO/IAEA 2019). In the present study, the LT50s obtained at all observa-
tion times in the pot trials were higher than in the Petri dishes. In addition, it was determined 
that the LT50 decreased as the number of contaminated individuals increased in both experi-
ments 3 and 4. Amjad et al. (2012) reported that the LT50 of C. fumosorosea (n32) was 4.6 
days in 108 conidia/mL in Petri dishes. In this study, the LT50 value was determined as 5.9 
days when five contaminated individuals were released into Petri dishes. In another study, 
the LT50 for T. urticae adults treated with Beauveria bassiana Bb101, another entomo-

Fig. 5 Mean (± SE) mortality rates (%) of Tetranychus urticae in Petri dish vs. potted plant trials, com-
pared at 3, 5 and 7 days after application (DAA). Mortality rates within a day and within a mite density 
marked with different letters are significantly different (t-test: P < 0.01; equations of the fitted lines are 
based on correlation and regression analyses)
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pathogenic fungus, has been detected as 81.8 h (3.4 days) (Saranya et al. 2013). Hence, the 
LT50 values in the current study were found to be close to those reported in other studies.

Similar to this study, Demirözer (2019) investigated the dissemination of Fusarium 
subglutinans 12 A through females of Frankliniella occidentalis Pergande. Mortality rates 
were 39.1, 51.8, 51.6, 48.2, and 50.1% on day 8 in Petri dishes in which, respectively, 1–5 
inoculated thrips were released together with 10 uninoculated females. In the present study, 
mortality rates were 29.6–56.4% on day 7 in Petri dishes in which 1–5 T. urticae adults were 
contaminated with C. fumosorosea strain PFs-1. In addition, Demirözer (2019) found that 
the mortality rate on day 7 remained < 30% in cell cage treatments where five inoculated 
females were used. In the pot trial of the current study, the mortality rate was 40.7% on day 
7 after release of five contaminated adults. In both studies, the mortality rates in pot trials 
were lower than in Petri dish trials.

In the current study, the disseminating ability of individuals exposed to an entomopatho-
genic fungus to uninfected individuals of the same species was evaluated. As the number 
of contaminated individuals increased, the mortality rate also increased. Thus, the effec-
tiveness of biological control may increase with the occurrence of indirect contamination 
from infected to non-contaminated individuals. This study may encourage similar studies on 
other harmful arthropods that have a high probability of contact with each other.
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