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Abstract
The Eriophyoidea, notable for specific morphological characters (four-legged mites) and 
gall-formation in host plants (gall mites), is one of the most species-rich superfamilies of 
Acari. Monophyly of the superfamily Eriophyoidea is accepted by all acarologists; how-
ever, monophyly of most genera has not been evaluated in a molecular phylogenetic net-
work. Furthermore, most eriophyoid mites, especially species in the genus Diptilomiopus, 
are morphologically similar, challenging their identification. Here we test the phylogeny 
and cryptic diversity of Diptilomiopus species using fragments of two mitochondrial (COI 
and 12S) and two nuclear (18S and 28S) genes. Our results revealed the monophyly of Dip-
tilomiopus. Sequence distance, barcode gap, and species delimitation analyses of the COI 
gene allowed us to resolve cryptic diversity of Diptilomiopus species. Additionally, we sup-
posed that characteristics of genu fused with femur on both legs and seta ft′ absent on leg 
II evolved only once within Diptilomiopus, which are potential morphological synapomor-
phies. In contrast, characteristics of both setae ft′ and ft″ divided into a short branch and a 
long branch were supposed evolving multiple times independently. Our findings contribute 
to the understanding of phylogeny and morphological evolution of Diptilomiopus species 
and provide a DNA-based approach for species delimitation of Diptilomiopus mites.
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Introduction

The Eriophyoidea is one of the most species-rich superfamilies of Acari, consisting 
of more than 4400 described species (Zhang 2011). Eriophyoid mites are notable for 
their specific and distinct morphological characters, e.g., two pairs of legs (four-legged 
mites), very small body size (200 µm long on average), fusiform or vermiform body 
shape, and ringed opisthosoma (Amrine et  al. 2003). They are totally phytophagous, 
having high host-plant specialization and specificity (Skoracka et  al. 2010). Some are 
of economic importance, e.g., Aceria tosichella Keifer (wheat curl mite), a major pest 
of the world’s grain industry (Navia et  al. 2013). Most eriophyoid mites are vagrant 
on their host plant, whereas some induce galls (gall mites), erinea, large buds, curved 
leaves, or dried branches (Petanovic and Kielkiewicz 2010).

The Eriophyoidea comprises three families: Phytoptidae, Eriophyidae and Diptilomi-
opidae. The genus Diptilomiopus, established by Nalepa (1916), belongs to the Diptilo-
miopidae (Amrine et al. 2003). Based on morphological characters, 116 Diptilomiopus 
species have been described worldwide (Table S1). The majority of these species have 
been recorded in the Oriental realm (Capinera 2008), whereas only a few have been 
reported from the remaining realms, i.e., three in the Palearctic realm, two in the Nearc-
tic realm, three in the Afrotropical realm, and two in the Australasian realm (Fig. 1).

Current eriophyoid mite taxonomy relies mostly on a few external morphological 
characters (Amrine et al. 2003), of which the pattern of prodorsal shield is widely used 
for species delimitation. The prodorsal shield of eriophyoid mites may have one median 
line, two admedian lines and several submedian lines (Fig. 2); however, Diptilomiopus 
species typically have a network-like prodorsal shield pattern (median, admedian and 
submedian lines are connected by short transverse lines; Fig. 2), which provides limited 
information to differentiate one species from another, challenging the species delimita-
tion in Diptilomiopus.

Previous molecular studies of eriophyoid mites were performed on the mitochondrial 
genomes (Xue et al. 2016), high-level (superfamily) phylogenetic positions of Eriophy-
oidea (Xue et al. 2017; Klimov et al. 2018), low-level (subfamily, tribe or genus) phy-
logeny of Eriophyoidea (Li et al. 2014a; Chetverikov et al. 2015), and genetic diversity 
of Ac. tosichella (Eriophyidae) (Skoracka et al. 2018) and Tetra pinnatifidae Xue et al. 
(Eriophyidae) (Li et al. 2014b). By using the mitochondrial cytochrome oxidase subunit 
I (COI) gene and nuclear D2 region of 28S (28S) rDNA, Lewandowski et  al. (2014) 
revealed the genetic and morphological diversity of Trisetacus species (Phytoptidae), 
Cvrković et al. (2016) revealed the cryptic speciation of Phytoptus avellanae s.l. Nalepa 
(Phytoptidae), Duarte et  al. (2019) revealed Abacarus species on sugarcane plants, 
Skoracka and Dabert (2010) revealed the Abacarus hystrix (Nalepa) complex (Eriophyi-
dae), and Skoracka et al. (2013) revealed the Ac. tosichella complex (Eriophyidae). By 
using the COI, 18S and 28S genes, Guo et al. (2015) revealed the protogyne and deu-
togyne of Tegolophus celtis Guo et al. (Eriophyidae). These studies show that the COI 
gene can well resolve the identification and classification of species within Phytoptidae 
and Eriophyidae. However, no molecular studies have been performed on the genera in 
Diptilomiopidae, and the phylogeny and genetic diversity of Diptilomiopus species are 
largely unknown.

In this study, we sequenced two mitochondrial (COI and 12S) and two nuclear (18S 
and 28S) gene fragments of representative species (25 terminals). By constructing phy-
logenetic trees and using integrative taxonomy approaches, we attempted to (1) test the 
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monophyly of Diptilomiopus, (2) resolve the delimitation of Diptilomiopus species and 
cryptic diversity, and (3) reveal the morphological evolution of legs and demonstrate 
synapomorphies of Diptilomiopus.
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Fig. 1  Global records/localities map of Diptilomiopus species. The red, blue, pink, black, and green dots 
represent the records/localities where Diptilomiopus species have been found in the Palearctic, Nearctic, 
Afrotropical, Oriental, and Australasian realms, respectively. (Color figure online)
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Materials and methods

Specimen collection and morphological identification

Twenty-five Diptilomiopus samples were collected randomly on host plants with the help 
of a hand-lens (30 ×) in China and Malaysia in 2017 and 2018 (Table 1). Some mite speci-
mens were used immediately for DNA extraction, whereas the remaining were preserved 
in 100% ethanol at − 20 °C prior to DNA extraction. Specimens of each species were also 
slide mounted as vouchers, using modified Berlese medium (Amrine and Manson 1996) 
for morphological checking with a Zeiss A2 microscope equipped with the AxioCam MRc 
camera. Microphotographs were taken with a Zeiss A2 research microscope with phase 
contrast or differential interference, using × 100 oil magnification; the microscope was con-
nected to a computer using Axiovision image analysis software. The morphological ter-
minology used herein follows that of Lindquist (1996); the generic classification is made 

Fig. 2  Patterns of prodorsal shield in Diptilomiopus species. a D. milletus, b D. rotundus, c D. octandrus, 
d D. nobilus, e D. broussonetus, f D. fortunus, g D. sabahus, h D. callicarpus, i D. melastomae, j D. kenin-
gaus, k D. ligustri, l D. bischofiae; m, median line; am, admedian line; sm, submedian line
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according to Amrine et al. (2003). All of the specimens and vouchers were deposited in the 
Arthropod/Mite Collection of the Department of Entomology, Nanjing Agricultural Uni-
versity (NJAU), Jiangsu Province, China (Zhang 2018).

DNA extraction and PCR amplification

Genomic DNA was extracted from one specimen for each sample of eriophyoid mites, 
using a DNeasy Blood and Tissue Kit (Qiagen), following a previously reported modified 
protocol (Dabert et al. 2008). We amplified the fragments of two mitochondrial genes (COI 
and 12S) and two nuclear genes (18S and 28S) using published or modified PCR primer 
pairs for each fragment (Table 2). The PCR cycling conditions were as follows: 3 min of 
denaturation at 94 °C; 35 cycles of 30 s of denaturation at 94 °C, 30 s of annealing at 
42–55 °C (depending on the primers) and 1 min of extension at 72 °C; 5 min final exten-
sion at 72 °C; holding at 4 °C. Each PCR contained 12.5 µl of PCR SuperMix (Transgen 
Biotech, Beijing, China), 2 µl of template DNA, and 0.4 µM of each primer, in a total 
volume of 25 µl. PCR products were visualized on a 1% agarose gel. Products were puri-
fied and sequenced in both directions at General Biosystems (Anhui, China) on an ABI 
3730XL DNA Analyzer (Applied Biosystems).

Data matrices and sequence alignments

Sequences of four gene (COI, 12S, 18S and 28S) fragments of 25 Diptilomiopus sam-
ples representing 17 morphospecies were blasted in GenBank and checked for possible 
contaminants. All the sequences were deposited in GenBank under accession numbers: 
MK440001–MK440064, and MK516816–MK516842 (Table  1). The sequences of four 
outgroups (Nematalycidae), five phytoptid mites, four eriophyid mites and one diptilomi-
opid species were retrieved from GenBank (Table 1). Three rRNA genes were aligned indi-
vidually using MAFFT v.7.423 web server (Katoh and Standley 2013) (http://mafft .cbrc.
jp/align ment/serve r/) with G-INS-i strategy for global homology and manually inspected 
before concatenation. For COI, a preliminary alignment was generated using ClustalW in 
MEGA 6.0 (Tamura et al. 2013). Large gaps and ambiguous sites were deleted manually. 
Alignments of individual genes were concatenated in Geneious v.8.1.9 (Kearse et al. 2012). 
The final concatenated DNA dataset consisted of 4989 bp: 18S rRNA = 2297 bp, 28S 
rRNA D2–D5 = 916 bp, 28S rRNA D9–D10 = 752 bp, COI = 658 bp, and 12S rRNA = 366 
bp. We analyzed the dataset as nucleotide sequences. Dataset partitioning was performed 
by PartitionFinder 2 (Lanfear et al. 2017), based on an initial total of five data blocks (18S, 
28S D2–D5, 28S D9–D10, COI, and 12S). Models were predicted by PartitionFinder 2 
using the Bayesian information criterion (BIC). PartitionFinder used unlinked branch 
lengths, the greedy search algorithm for nucleotide sequences and the MrBayes model. The 
GTR + G substitution model was chosen by PartitionFinder as the best for two partitions 
(18S + 28S D2–D5 + 28S D9–D10 and COI + 12S).

To test the monophyly and its phylogenetic position of Diptilomiopus within Eriophy-
oidea, we constructed an additional data matrix including four species of Nematalycidae, 
eight species of Phytoptidae, 21 species of Eriophyidae, and 30 species of Diptilomiopidae 
(Table S2). The nucleotide sequences of 18S rRNA of these species were retrieved from 
GenBank. Alignments were performed by MAFFT, and the substitution model (GTR + G) 
was predicted by PartitionFinder.

http://mafft.cbrc.jp/alignment/server/
http://mafft.cbrc.jp/alignment/server/
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Phylogenetic analyses

Phylogenetic analyses were conducted using maximum likelihood (ML) and Bayesian 
inference (BI) methods. ML analyses were performed using the GTRGAMMAI model 
in RAxML-HPC-PTHREADS (Stamatakis 2006) implemented in raxmlGUI 1.3 (Silves-
tro and Michalak 2011). Clade support was assessed using a nonparametric bootstrapping 
with 1000 replicates. Nodes supported by bootstrap values (BSP) ≥ 70% were considered 
strongly supported (Hillis and Bull 1993). BI analyses were performed with MrBayes 
v.3.2.2 (Ronquist et al. 2012). For MrBayes v.3.2.2, we used separate data partitions plus 
mixed models and conducted two independent runs each with four Markov Chains Monte 
Carlo (one cold chain and three heated chains). The combined dataset was run for 20 
million generations, with trees sampled every 1000 generations. The convergence of the 
parameter estimates was performed with Tracer v.1.6. A conservative burn-in of 25% was 
then applied. The consensus tree was edited with FigTree1.4.0. Nodes supported by poste-
rior probabilities (BPP) ≥ 95% were considered strongly supported (Alfaro 2003).

Genetic distance, barcode gap discovery, and species delimitation

Sequence genetic distances were calculated for COI, 18S and 28S (Table 1) using MEGA 
6.0 (Tamura et  al. 2013) under the Kimura two-parameter (K2P) model (Kimura 1980). 
The substitution model was chosen by d: transitions + transversions. Heatmaps were drawn 
by R v.3.5.2 (R Core Team 2018). Pairwise distances of 12S gene were not measured 
because only a few Diptilomiopus species were successfully sequenced.

Barcode gap was analyzed by Automatic Barcode Gap Discovery (ABGD) (Puillandre 
et al. 2012) web server https ://bioin fo.mnhn.fr/abi/publi c/abgd/ using X value 0.9 and K2P 
distance. We applied ABGD to each of the three genes (COI, 18S, 28S) with the following 
Pmax settings: 0.002–0.130 in COI, 0.001–0.033 in 18S, 0.001–0.023 in 28S, which were 
consistent with the range of intraspecific distances of each gene dataset (Table S3).

All phylogenetic trees constructed from the concatenated dataset showed that the Dipti-
lomiopus was a monophyletic clade. We therefore used Diptilomiopus species as a reduced 
dataset (excluding outgroups and other eriophyoid mite species) for species delimitation 
analysis. The General Mixed Yule Coalescent (GMYC) model identifies the transition 
points between inter-and intraspecific processes on an ultrametric tree (Pons et al. 2006). 
Ultrametric trees were constructed in BEAST v.1.8.0 (Drummond and Rambaut 2007) 
through the CIPRES Science Gateway (Miller et al. 2010), using GTR + G model, a Yule 
speciation prior and a lognormal uncorrelated relaxed clock. As COI is one of protein cod-
ing genes in the mitochondrial genome, the 1st, 2nd and 3rd codon positions have different 
evolutionary rates. The COI data were either not partitioned or partitioned into 1st, 2nd 
and 3rd codon positions. Two independent runs of 100 million generations were executed 
with sampling every 1000 generations. Post burn-in trees were merged and re-sampled at a 
lower frequency (every 10,000 generations) using the LogCombiner of BEAST. The final 
ultrametric trees were entered into R (R Core Team 2018) package splits v.1.0–19 (Ezard 
et al. 2014) with the single threshold option as recommended by Fujisawa and Barraclough 
(2013). bPTP analyses were performed in the bPTP server (http://speci es.h-its.org/) (Zhang 
et al. 2013) with default values. We used MrBayes v.3.2.2 to reconstruct input trees of COI, 
18S and 28S to bPTP. The reduced datasets were run for 5 million generations, with trees 
sampled every 5000 generations.

https://bioinfo.mnhn.fr/abi/public/abgd/
http://species.h-its.org/
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Results

Molecular phylogeny of Diptilomiopus species

The ML and BI analyses showed very similar topologies (Figs. 3, 4, S1–S4). Our results 
demonstrate that the Diptilomiopus is monophyletic with strong support (BSP > 95, 
BPP = 1) based on the dataset of nucleotide sequences of a single gene (18S) or multi-
ple genes (18S, 28S, COI, and 12S) (Figs. 3, 4, S1–S4). Monophyly of the Diptilomiopus 
ligustri Wang et al. group was recovered with strong support (BSP > 87, BPP = 1) based 
on the dataset of a single gene (18S) (Figs. 3, S2) and multiple genes (Figs. 4, S4). The 
Diptilomiopus bischofiae Li et al. group is monophyletic with strong support (BSP = 100, 
BPP = 1) based on the dataset of multiple genes (Figs. 4, S4) or a single gene (Figs. 3, S2). 
Two representatives of Diptilomiopus fortunus Liu et al. were grouped with strong support 
(BSP = 100, BPP = 1) (Figs. S1–S4). Except for these species groups, some clades within 
Diptilomiopus was observed with low or very low support; species from the same regions 
(China or Malaysia) or having characteristics of divided setae ft′ and ft″ were not grouped 
(Figs. 3, 4).

Outgroups

Phytoptidae

Eriophyidae+
Diptilomiopidae

Diptilomiopus sabahus KK17

Loboquintus subsquamatus

0.5

Diptilomiopus ligustri YN

Diptilomiopus bischofiae S11

Tergilatus sparsus

Diptilomiopus milletus FJ20

Tegolophus sp.

Psammolycus sp.

Aculus broussonetiae

Diptilomiopus cayratus Q84

Diptilomiopus ligustri ML

Trisetacus ehmanni

Diptilomiopus ligustri YN253

Cunliffea sp.

Calacarus carinatus

Diptacus sp.

Diptilomiopus ligustriS6

Epitrimerus sabinae

Setoptus koraiensis

Diptilomiopus broussonetus KK18

Asetacus cunninghamiae

Diptacus persicae

Diptilomiopus bischofiae WM

Phyllocoptes pyrivagrans

Diptilomiopus octandrus GD120

Diptilomiopus bischofiae BY

Phyllocoptes pyrivagrans

Diptilomiopus keningaus KK16

Neotetra bambusae

Calepitrimerus fopingi

Eriophyidae sp.

Oziella atherodes

Phyllocoptacus camelliae

Trisetacus pini

Aculops chinonei

Quadracus urticarius

Osperalycus tenerphagus

Diptilomiopus callicarpus KK23b

Eriophyes sp.

Diptilomiopus engelhardterQ210

Cecidophyopsis ribis

Diptacus aceris

Diptilomiopus fortunus KK21a

Novophytoptus rostratae

Diptilomiopus meliae SZ

Aculops pelekassi

Tegonotus celtis

Diptilomiopus nobilus GD137

Neoshevtchenkella liquidambaris

Tetrameracarus taiwanensis

Gordialycus sp.

Diptilomiopus melastomaeKK27

Trisetacus juniperinus

Heterotergum artemisiae

Tegonotus platycaryanis

Shevtchenkella acer

Diptilomiopus pamithus MM

Diptilomiopus rotundus GD112

Diptilomiopus fortunus KK19

Calepitrimerus sp.

Diptilomiopus buxusis 493

Fig. 3  Phylogenetic trees inferred from nucleotide sequences of 18S gene using maximum likelihood 
method. Branch lengths presented here follow the maximum likelihood analysis using the best partition 
found by PartitionFinder. Nodes, marked with a blue dot, indicate bootstrap values (BSP) ≥ 70%. Red stars 
indicate the species having divided seta ft′ and ft″. (Color figure online)
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Genetic distance and molecular delimitation of Diptilomiopus species

The pairwise K2P interspecies distances of COI gene fragment ranged from 25.3 to 41.3%, 
and the intraspecies variation ranged from 0.2 to 13% (Fig.  5a, Table  S3). The greatest 
genetic intraspecies distances occurred in D. fortunus, possibly indicating cryptic species. 
For 18S, the interspecies distances ranged from 1.6 to 14%, and the intraspecies varia-
tion ranged from 0.0 to 3.3% (Fig.  5b, Table  S3). The greatest genetic intraspecies and 
interspecies distances occurred in D. ligustri (YN253). For 28S, the interspecies distances 
ranged from 2.4 to 30.4%, and the intraspecies variation ranged from 0.0 to 2.3% (Fig. 5c, 
Table S3). The greatest genetic intraspecies variation occurred in D. ligustri (YN253).
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Fig. 4  Phylogenetic trees inferred from nucleotide sequences of two mitochondrial (COI and 12S) and two 
nuclear (18S and 28S) gene fragments using maximum likelihood method. Nodes, marked with a blue disc, 
indicate bootstrap values (BSP) ≥ 70%. Characters of potential synapomorphies were traced: genu on both 
legs, scapular tubercles, scapular setae (sc), network prodorsal shield design, shape of the empodium (em), 
tarsal setae ft′ and ft″, setae 1b and setae c2. (Color figure online)
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ABGD of COI delimited 12 initial partitions with prior intraspecific divergences (P) 
varying from 0.2 to 13% (Fig. 5a). Barcode gaps were observed at K2P distances of 4–11% 
and 13–26% (Fig.  5a). Initial partitions were identical at 12 molecular operational taxo-
nomic units (MOTUs), corresponding to our morphologically identified 12 species. For 
18S, ABGD delimited initial partitions of 19 MOTUs with P varying from 0.1 to 1.03% 
(Fig.  5b), which was consistent with our 18 a prior morphospecies, except populations 
of D. ligustri were split into two groups, ML + YN, GX + S6 + YN253. No barcode gap 
was observed. For 28S, ABGD delimited 17 MOTUs with P varying from 0.1 to 1.15% 
(Fig. 5c), corresponding to our morphologically identified 17 species. No barcode gap was 
observed.

The single-threshold GMYC analyses of COI gene identified 13 entities with significant 
support (not partitioned, p = 0.02; partitioned by codon, p = 0.004), which were consistent 
with our morphologically identified 12 species, except D. fortunus KK19 and D. fortu-
nus KK21a which were inferred as distinct species (Figs. S5A, S5B). For 18S, the single-
threshold GMYC analyses gave the same results as the ABGD analysis (see above) (Fig. 
S5C). For 28S, the single-threshold GMYC analyses identified 19 entities with significant 
support (p = 0.002), which were inconsistent with our morphologically identified 17 spe-
cies, as populations of D. ligustri were split into two entities (ML + YN, GX + S6 + YN253) 
and also populations of D. bischofiae were split into two entities (S11, BY + WM) (Fig. 
S5D). bPTP analyses of COI, 18S and 28S genes resulted in similar species delimitation as 
the GMYC analyses (Fig. S5).

Morphological evolution of legs in Diptilomiopus species

We mapped some morphological characters (at the generic or species level) on the phylo-
genetic tree (Fig. 4), i.e., genu on both legs, scapular tubercles, scapular setae (sc), network 
prodorsal shield design, shape of the empodium (em), tarsal setae ft′ and ft″, setae 1b and 
setae c2, and found that Diptilomiopus species were united by some genetic morphologi-
cal characters (genu fused with femur on both legs, scapular tubercles and setae absent, 
empodium divided, setae 1b and setae c2 absent). Intriguingly, the species sharing divided 
tarsal setae ft′ and ft″ (D. octandrus, D. milletus, D. fortunus, D. callicarpus, D. keningaus, 
D. retusus, and D. sabahus) were not grouped (Fig. 4), indicating these characteristics may 
have evolved multiple times independently. However, characteristics of genu fused with 
femur on both legs and tarsal setae ft″ absent from leg II were suggested evolving only 
once, indicating they are morphological synapomorphies of Diptilomiopus (Fig. 4).

Discussion

The Eriophyoidea comprises more than 357 genera (Zhang 2011); however, the mono-
phyly of these genera has seldom been tested by morphological characters or molecular 
approaches (Lewandowski et al. 2014). Herein, we inferred the phylogeny of Diptilomio-
pus by nucleotide sequences of multiple genes for the first time. Our phylogenetic results 
demonstrated the monophyly of Diptilomiopus with strong support (BSP > 95, BPP = 1) 
(Figs. 3, 4, S2, S4). All Diptilomiopus species in our molecular analyses were collected 
from the Oriental realm. Therefore, more Diptilomiopus species, especially from the 
remaining realms, should be explored and included in future analyses.
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In addition to molecular evidence, the monophyly of Diptilomiopus might be supported 
by some morphological synapomorphies: genu fused with femur on leg I and leg II, seta 
ft′ absent on leg II, scapular setae sc absent, empodium divided, coxal setae 1b absent, and 
setae c2 absent from the opisthosoma (Fig. 4). The combination of character states – genu 
fused with femur on both legs and seta ft′ absent on legs II – are specific to Diptilomiopus 
species and were not found in other extant species of Eriophyoidea (Amrine et al. 2003) or 
fossil species of Triasacaroidea (Sidorchuk et al. 2015). We propose that these characters 
have evolved and occurred only once within Diptilomiopus, indicating they are synapomor-
phies (Fig. 4). However, new genera of eriophyoid mites were consistently erected in recent 
years, and more new genera, having those characters, cannot be ruled out in future studies. 
The remaining potential synapomorphies were found in the species of more than one genus 
of Eriophyoidea or Triasacaroidea. For instance, scapular setae sc absent is characteris-
tic for Cecidophyini tribe (Eriophyidae), which includes 11 genera (Amrine et al. 2003), 
and for Calacarini tribe (Eriophyidae), which includes 15 genera (Amrine et  al. 2003; 
Huang and Wang 2004; Xue et al. 2007; Chandrapatya et al. 2016); and it is characteristic 
for four genera (Pseudocalepitrimerus, Knorella, Schizacea, and Namengia) of Acarica-
lini (Eriophyidae) (Amrine et  al. 2003; Zhao et  al. 2018), 14 genera of Diptilomiopinae 
(Diptilomiopidae) (Amrine et al. 2003), and two genera (Asetacus and Sakthirhynchus) of 
Rhyncaphytoptinae (Diptilomiopidae) (Amrine et al. 2003). A deeply divided empodium 
is the main character of the subfamily Diptilomiopinae that differentiates it from the other 
subfamily Rhyncaphytoptinae (Amrine et al. 2003). However, this is also characteristic of 
Acaricalini tribe (Eriophyidae), which comprises 23 extant genera (Amrine et  al. 2003; 
Flechtmann 2004; Chandrapatya et  al. 2016; Chetverikov et  al. 2018; Zhao et  al. 2018), 
and of two fossil genera (Triasacarus and Minyacarus) (Sidorchuk et al. 2015). The char-
acter of coxal setae 1b absent or setae c2 absent was consistently found in many genera of 
Eriophyidae and Diptilomiopidae.

Most eriophyoid mites have normal tarsal seta ft′ and seta ft″ on legs I and II (Fig. 6). 
Intriguingly, seta ft′ and seta ft″, divided into a short branch and a long branch, respec-
tively (Fig. 6), has been found in a few Diptilomiopus species (Craemer et al. 2017). These 
divided setae were not observed in four fossil species (Schmidt et al. 2012; Sidorchuk et al. 
2015). Moreover, the Diptilomiopus species, sharing these characters, were not grouped in 
our phylogenetic topologies (Figs. 3, 4), indicating that divided seta ft′ and seta ft″ were 
evolved at the species level.

The genus Diptilomiopus comprises 116 currently described species (Table S1). Mor-
phological similarity challenges the delimitation of Diptilomiopus species. Our ABGD, 
GMYC and bPTP results showed that most of our tested morphospecies of Diptilomio-
pus, except three (D. fortunus, D. ligustri and D. bischofiae), were resolved by fragments 
of COI, 18S or 28S genes. However, those resolved morphospecies were based on single 
sequences from one population. More Diptilomiopus species, especially species from dif-
ferent populations, are needed in future collections. Inferred by different methods (ABGD, 
GMYC or bPTP) or genes (COI, 18S or 28S), three species (D. fortunus, D. ligustri and 
D. bischofiae) showed inconsistency between morphospecies and MOTUs, indicating the 
presence of cryptic species. However, monophyly of each of these species was always 
recovered in our ML and BI trees. Further, most eriophyoid mites were reported hav-
ing high host-plant specificity (Skoracka et  al. 2010). The various population of each of 
our tested species of D. fortunus, D. ligustri or D. bischofiae were all collected from the 
same corresponding host plant (i.e., one host plant species per mite species; Table 1). We 
therefore suggest that the high sequence genetic diversity (distance) within populations 
of those three mite species may be an effect of host-constrained isolation, which leads to 
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incomplete lineage sorting (Toews and Brelsford 2012). It is widely accepted that simply 
relying on one approach to delimitate species, especially when they are highly morphologi-
cally similar or have two forms (protogyne an deutogyne in eriophyoid mites), is problem-
atic (Cvrković et  al. 2016; Guo et  al. 2015; Skoracka et  al. 2013). Herein, we underline 
the integrative taxonomy approach, combining morphological characters and molecular 
approaches, in resolving species delimitation of eriophyoid mites.

Eriophyoid mites are distributed worldwide; however, most genera are distributed 
regionally (Amrine and Stasny 1994) due to low dispersal ability (Michalska et  al. 
2010), high host-plant specificity (Skoracka et  al. 2010), or possibly uneven regional 
field surveys. Similarly, most Diptilomiopus species have been reported from the Ori-
ental realm, only a few have been recorded in the remaining realms (Fig. 1). Consistent 
with a previous hypothesis of Craemer et al. (2017), the most parsimonious explanation 
for this uneven distribution could be that Diptilomiopus species originated in the Ori-
ental realm, and some dispersed to the remaining realms. Eriophyoid mites have a low 

Fig. 6  Hypothesized schematic evolutionary route of legs. a Legs of Epitrimerus gaotainensus, b legs of D. 
fortunus, c legs of D. rotundus; L1, leg I; L2, leg II; fm, femur; ge, genu; tb, tibia; t, tarsus; bv, femural seta; 
l″, genual seta; l’, tibial seta; ft′, tarsal seta ft′; ft″, tarsal seta ft″; u’, seta u’; em, empodium; ω, solenidion.



341Experimental and Applied Acarology (2019) 79:323–344 

1 3

positive dispersal ability (Sabelis and Bruin 1996). Long-distance dispersal is achieved 
by aerial dispersal (Zhao and Amrine 1997), phoresy on host-specific insects (Sabelis 
and Bruin 1996; Liu et  al. 2016), or probable transportation of host plants (Craemer 
et al. 2017). If the Oriental origin of Diptilomiopus is true, then Diptilomiopus species 
should occasionally occur in the Palearctic realm, Nearctic realm, Ethiopian realm, and 
Australasian realm due to such dispersal modes. Additional field surveys of Diptilomio-
pus spp. worldwide are obviously necessary to decipher the biogeographical distribution 
and dispersal routes of Diptilomiopus species.

Conclusions

In this study, we demonstrated that the genus Diptilomiopus is monophyletic by multiple 
lines of evidence from molecular approaches and morphological synapomorphies. Most 
Diptilomiopus species are highly similar in morphology, what may hinder their cor-
rect indentification and induce species complexes. We provide an integrative taxonomic 
approach to the resolution of cryptic Diptilomiopus species or other eriophyoid mite com-
plexes. These findings highlight the cryptic species diversity within Diptilomiopus; more 
descriptions of new Diptilomiopus species and new findings related to their biogeographi-
cal distributions are expected.
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