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Abstract The genetic identity of Rhipicephalus sanguineus tick was determined for the

first time in Taiwan. The phylogenetic relationships were analyzed by comparing the

sequences of mitochondrial 16S ribosomal DNA gene obtained from 32 strains of ticks

representing six species of Rhipicephalus, two species of Dermacentor and two outgroup

species (Haemaphysalis inermis and Ixodes ricinus). Seven major clades can be easily

distinguished by neighbour-joining analysis and were congruent by maximum-parsimony

method. All R. sanguineus ticks of Taiwan were genetically affiliated to the tropical

lineage group of R. sanguineus sensu lato with highly homogeneous sequence (99.7–100%

similarity), and can be discriminated from the temperate lineage group of Rhipicephalus

sp. II and R. turanicus with a sequence divergence ranging from 1.7 to 5.2%. In contrast,

the nucleotide variations among other Rhipicephalus spp. and other species/genus of ticks

compared with the R. sanguineus ticks of Taiwan were measured from 10.6 to 25.5%.

Moreover, intra- and inter-species analysis based on the genetic distance (GD) values

indicated a lower level (GD\ 0.003) within tropical lineage group compared with tem-

perate lineage group (GD[ 0.055) of Rhipicephalus, as well as other (GD[ 0.129) and

outgroup (GD[ 0.236) species. Our results provide the first genetic identification of R.

sanguineus ticks collected from Taiwan and demonstrate that all these R. sanguineus of

Taiwan affiliated to the tropical lineage group of R. sanguineus sensu lato.
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Introduction

Ticks are obligate hematophagous arthropods that parasitize every class of vertebrates in

almost every region of the world and it may act as vectors with the ability to transmit

various pathogens including bacteria, rickettsiae, and protozoan (Balashov 1972). The

medical and veterinary importance with the recent emergence of human babesiosis (Shih

et al. 1997), Lyme borreliosis (Shih and Chao 1998; Chao et al. 2011) and canine

babesiosis (Lee et al. 2010) in Taiwan raises the focus of research attention on vector ticks.

The brown dog tick, Rhipicephalus sanguineus, is the most widespread tick species around

the world and is recognized as the dominant ectoparasite of dogs that can occasionally

parasitize other vertebrate hosts, including humans (Felz et al. 1996; Dantas-Torres 2010).

In addition, R. sanguineus has been recognized as the primary vector for the transmission

of Babesia vogeli, Ehrlichia canis, Rickettsia rickettsii, and R. conorii in humans and

animals (Walker et al. 2000; Otranto et al. 2009; Eremeeva et al. 2011; Dantas-Torres et al.

2012). Although the hard tick of R. sanguineus had been identified as the incriminated

vector tick for the zoonotic transmission of B. vogeli in Taiwan (Chao et al. 2016), the

genetic identity of R. sanguineus collected from endemic sites of Taiwan remain

undefined.

Although species determination and differentiation of Rhipicephalus ticks have tradi-

tionally been based on morphological features of the adult stages of these ticks, the

taxonomic status of the R. sanguineus ticks has been repeatedly debated (Gray et al. 2013;

Dantas-Torres and Otranto 2015; Nava et al. 2015). Because of the high level of mor-

phological similarity among brown dog ticks within the R. sanguineus complex, ambiguity

in taxonomy of the R. sanguineus ticks was reiterated by using molecular tools for phy-

logenetic analysis (Szabo et al. 2005; Burlini et al. 2010; Moraes-Filho et al. 2011; Levin

et al. 2012; Liu et al. 2013). Indeed, a DNA-based approach provides the feasibility to

investigate the genetic variance at the individual base-pair level and gives much more

direct pathway for measuring the genetic diversity between and within species of Ixodidae

(Black and Piesman 1994; Caporale et al. 1995; Black and Roehrdanz 1998). Current

studies based on the mitochondrial 16S ribosomal DNA (rDNA) target region have

revealed the existence of at least two separate groups (tropical vs. temperate lineage) of R.

sanguineus ticks (Szabo et al. 2005; Moraes-Filho et al. 2011; Zemtsova et al. 2016). Thus,

molecular analysis based on the genetic polymorphism of mitochondrial 16S rDNA gene

has made possible in facilitating the identification and discrimination of taxonomically

similar Rhipicephalus ticks.

It may be that the vector tick of R. sanguineus for canine babesiosis in Taiwan is a

genetically distinct lineage, as compared with the existing common vector ticks of

Rhipicephalus species around the world and the potential of genetic variation in relation to

the geographical distribution may also exist among these R. sanguineus ticks characterized

with similar morphology. Thus, the objective of this study intends to investigate the

phylogenetic relationships between and within the species of R. sanguineus ticks by

analyzing the mitochondrial 16S rDNA gene. The genetic divergence of R. sanguineus

ticks collected from endemic sites of Taiwan was analyzed by their differential nucleotide

composition, as compared with other tick species identified from various geographical

sources which have been documented in GenBank.
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Materials and methods

Collection and identification of tick specimen

All specimens of adult ticks including 28 strains of Rhipicephalus ticks, two strains of

Dermacentor ticks, and two outgroup species (Haemaphysalis inermis and Ixodes ricinus)

were used for genetic analysis in this study (Table 1). Of these, 14 strains of R. sanguineus

Table 1 Source of tick specimens used for phylogenetic analysis in this study

Tick strain Specimen source GenBank accession numbersa

Rhipicephalus sanguineus (Taiwan)

99KHDS09EN6 Kaohsiung, Taiwan KX685412

99KHDS04M2 Kaohsiung, Taiwan KX685413

99KHDS09EN5 Kaohsiung, Taiwan KX685414

99KHDS04M1 Kaohsiung, Taiwan KX685415

98KHCJ10PEA Kaohsiung, Taiwan KX685416

98KHCJ08M Kaohsiung, Taiwan KX685417

100KHAL04PEA1 Kaohsiung, Taiwan KX685418

100KHAL04M1 Kaohsiung, Taiwan KX685419

100KHCH07PEA2 Kaohsiung, Taiwan KX685420

100KHCH07EN1 Kaohsiung, Taiwan KX685421

99KHYC06PEA2 Kaohsiung, Taiwan KX685422

99KHYC06M2 Kaohsiung, Taiwan KX685423

99KHZY01M9 Kaohsiung, Taiwan KX685424

98KHZY09EN2 Kaohsiung, Taiwan KX685425

R. sanguineus American Samoa KT382446

R. sanguineus Thailand JX997387

R. sanguineus Cuba JX997389

R. sanguineus Brazil GU553075

R. sanguineus China KC203362

R. sanguineus Spain JX997393

R. sanguineus Argentina JX195167

R. sanguineus Chile GU553077

R. turanicus South Africa GU553080

R. microplus Brazil EU918178

R. microplus South Africa EU918182

R. australis Australia EU918192

R. australis Indonesia EU918190

R. appendiculatus USA L34301

Dermacentor marginatus China KF547985

D. nuttalli China KF547991

Haemaphysalis inermis USA U95872

Ixodes ricinus Germany JF928527

a GenBank accession numbers (KX685412*KX685425) were submitted by this study
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were collected from dogs captured at various districts of Kaohsiung City (22�360N,
120�180E; 22�390N, 120�170E; 22�430N, 120�250E; 22�470N, 120�220E; 22�530N, 120�190E;
22�530N, 120�280E) in southern Taiwan (Fig. 1). All these ticks were subsequently stored

in separate mesh-covered and plaster-bottomed vials. All tick specimens of R. sanguineus

were identified to species level on the basis of their morphological characteristics, as

described previously (Chao et al. 2016). Ultrastructural observations by stereo-microscope

were used to delineate the morphological features of all stages of R. sanguineus ticks in

Taiwan. Briefly, tick specimens were cleaned by sonication in 70% ethanol solution for

5–10 min and then washed twice in sterile distilled water. Afterwards, each stage of tick

specimen was placed on a glass slide and photographed using a stereo-microscope (SMZ

1500, Nikon, Tokyo, Japan) equipped with a fiber lamp. The external features of the R.

sanguineus ticks were recorded for species identification.

DNA extraction from tick specimen

Total genomic DNAwas extracted from individual tick specimens used in this study. Briefly,

tick specimens were cleaned by sonication for 3–5 min in ethanol solution and then washed

twice in sterile distilled water. Afterwards, the individual tick specimen dissected into pieces

was placed in amicrocentrifuge tube filledwith 180-lL lysing buffer solution suppliedwith a

DNeasy Tissue Kit (catalogue no. 69506, Qiagen, Taipei, Taiwan) and then homogenized

with a TissueLyser II (catalogue no. 85300, Qiagen, Germany), instructed by the manufac-

turer. The homogenate was centrifuged at room temperature and the supernatant fluid was

further processed by a DNeasy Tissue Kit, as instructed by the manufacturer. After filtration,

the filtrate was collected and the DNA concentration was determined spectrophotometrically

with a DNA calculator (Nanovue Plus Spectrophotometer).
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Fig. 1 Map of Taiwan and its adjacent islands, showing the collection site for tick specimens
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DNA amplification by polymerase chain reaction (PCR)

DNA samples extracted from the tick specimens were used as a template for PCR

amplification. A specific primer set of 16S ? 1 (50-CTGCTCAATGATTTTTTAAATT
GCTGTGG-30) corresponding to the 30 end of the mitochondrial 16S rDNA and 16S - 1

(50-CCGGTCTGAACTCAGATCAAGT-30) corresponding to the 50 end of the mito-

chondrial 16S rDNA were designed to target the mitochondrial 16S rDNA gene, as

described previously (Black and Piesman 1994). All PCR reagents and Taq polymerase

were obtained and used as recommended by the supplier (Takara Shuzo, Japan). Briefly, a

total of 0.2-lmol of the appropriate primer set and adequate amounts of template DNA

were used in each 50-ll reaction mixture. In contrast, adequate amounts of sterile distilled

water were added for serving as a negative control. PCR amplification was performed with

a Perkin-Elmer Cetus thermocycler (GeneAmp system 9700) and was amplified for 40

cycles with the conditions of denaturation at 92 �C for 1 min, annealing at 54 �C for 35 s,

and extension at 72 �C for 90 s., as described previously (Chao et al. 2009). Thereafter,

amplified DNA products were electrophoresed on 2 % agarose gels in Tris–Borate-EDTA

(TBE) buffer and visualized under ultraviolet (UV) light after staining with ethidium

bromide. A DNA ladder (1-kb plus, catalogue no. 10787-018, Invitrogen, Taipei, Taiwan)

was used as the standard marker for comparison. A negative control of distilled water was

included in parallel with each amplification.

Sequence alignments and phylogenetic analysis

After purification (QIAquick PCR Purification Kit, catalog No. 28104), sequencing reac-

tion was performed with 25 cycles under the same conditions and same primer set of initial

amplification by dye-deoxy terminator reaction method using the Big Dye Terminator

Cycle Sequencing Kit in an ABI Prism 377-96 DNA Sequencer (Applied Biosystems,

Foster City, CA, USA). The resulting sequences were initially edited by BioEdit software

(V5.3) and aligned with the CLUSTALW software (Thompson et al. 1994). Thereafter, the

aligned sequences of 14 tick strains of Taiwan were further analyzed by comparing with

other 18 strains of tick specimens based on the different genus and different geographical

origin of Rhipicephalus ticks that are available in GenBank. Phylogenetic analysis was

performed by neighbour-joining (NJ) compared with maximum parsimony (MP) methods

to estimate the phylogeny of the entire alignment using MEGA 6.0 software package

(Tamura et al. 2013). The genetic distance values of inter- and intra-species variations were

also analyzed by the Kimura two-parameter model (Kimura 1980). All phylogenetic trees

were constructed and performed with 1000 bootstrap replications to evaluate the reliability

of the construction, as described previously (Felsenstein 1985).

Nucleotide sequence accession numbers

The nucleotide sequences of PCR-amplified mitochondrial 16S rDNA genes of 14 strains of

R. sanguineus ticks determined in this study have been registered and assigned the following

GenBank accession numbers: strains 99KHDS09EN6 (KX685412), 99KHDS04M2

(KX685413), 99KHDS09EN5 (KX685414), 99KHDS04M1 (KX685415), 98KHCJ10PEA

(KX685416), 98KHCJ08M (KX685417), 100KHAL04PEA1 (KX685418), 100KHAL04M1

(KX685419), 100KHCH07PEA2 (KX685420), 100KHCH07EN1 (KX685421), 99KHYC

06PEA2 (KX685422), 99KHYC06M2 (KX685423), 99KHZY01M9 (KX685424), and
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99KHZY09EN2 (KX685425), respectively. For phylogenetic analysis, the nucleotide

sequences of 16S rDNA genes from other 14 strains of Rhipicephalus, two strains of Der-

macentor, and two outgroup ticks (i.e.H. inermis and I. ricinus)were included for comparison

and their GenBank accession numbers are shown in Table 1.

Results

Sequence alignment and genetic analysis

To clarify the genetic identity of R. sanguineus ticks of Taiwan, the sequences of mito-

chondrial 16S rDNA fragments of 14 Taiwan strains of R. sanguineus performed by this

study were aligned and compared with the downloaded sequences of eight different geo-

graphical strains of R. sanguineus, six strains of Rhipicephalus, two strains of Derma-

centor, and two outgroup strains of H. inermis and I. ricinus from GenBank. Results

indicate that the lengths of the aligned sequences were measured from 369 to 397 bp, and

the nucleotide sequences between the 14 strains of R. sanguineus of Taiwan were highly

conserved with only a few point mutations/substitutions. All these R. sanguineus ticks of

Taiwan were genetically affiliated to the tropical lineage group of R. sanguineus sensu lato

with highly homogeneous sequence (99.74–100% similarity), and can be distincted from

the temperate lineage group of Rhipicephalus sp. II and R. turanicus with a sequence

divergence ranging from 1.68 to 5.17% (Table 2). In contrast, the nucleotide variations

among other Rhipicephalus ticks and other species/genus of ticks compared with the R.

sanguineus ticks of Taiwan were measured from 10.59 to 25.47% (Table 2). In addition,

intra- and inter-species analysis based on the genetic distance (GD) values indicated a

lower level (GD\ 0.003) of genetic divergence within the tropical lineage group of R.

sanguineus ticks as compared with the temperate lineage group (GD[ 0.055) of R. san-

guineus, as well as other (GD[ 0.129) and outgroup (GD[ 0.236) species of ticks

(Table 3).

Phylogenetic analysis of tick specimens

Phylogenetic relationships based on the sequence alignment of mitochondrial 16S rDNA

were performed to demonstrate the genetic divergence among 32 strains of ticks investi-

gated in this study. Bootstrap analysis was used to analyze the repeatability of the clus-

tering of specimens represented in phylogenetic trees. Phylogenetic trees constructed by

both NJ (Fig. 2) and MP (Fig. 3) analyses showed congruent basal topologies with seven

major branch of distinguished clades (Figs. 2, 3). All these R. sanguineus ticks of Taiwan

constitute a monophyletic clade closely affiliated to the tropical lineage group of R. san-

guineus ticks, and can be easily discriminated from the temperate lineage group (Rhipi-

cephalus sp. II) and R. turanicus ticks with a bootstrap value of 97 and 95 in NJ analysis

(Fig. 2). The phylogenetic tree of MP analysis was identical to the NJ tree and strongly

support the separation of different lineages between the R. sanguineus from Taiwan and the

temperate lineage group of Rhipicephalus ticks with a bootstrap value of 97 (Fig. 3). These

results reveal a lower genetic divergence within the same species of R. sanguineus ticks

from Taiwan, but a higher genetic variations among different lineage or genus of Rhipi-

cephalus ticks.
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Discussion

This study describes the first genetic identification of the mitochondrial 16S ribosomal

gene among R. sanguineus ticks collected on Taiwan. In previous investigations, sequence

analysis of the mitochondrial 16S rDNA have been used to distinguish closely related R.

sanguineus ticks (Burlini et al. 2010; Moraes-Filho et al. 2011; Levin et al. 2012; Nava

et al. 2012; Dantas-Torres et al. 2013; Zemtsova et al. 2016) and to assess the phylogenetic

relationships of diverse species of Rhipicephalus ticks (Erster et al. 2013; Low et al. 2015;

Zemtsova et al. 2016) by comparing their nucleotide variations of the mitochondrial 16S

rDNA. Indeed, current investigations demonstrate that the existence of at least two dis-

tinguished groups of R. sanguineus ticks around the world. The tropical lineage group

represented by R. sanguineus sensu lato collected from the countries of Brazil, Cuba,

Colombia, Costa Rica, Japan, Kenya, Marshall island, Mozambique, South Africa, Thai-

land, and USA-FL. In contrast, the temperate lineage group includes ticks from Chile,

Spain, France, Italy, Germany, Argentina, and USA-GA (Dantas-Torres et al. 2013;

Zemtsova et al. 2016). Results from this study demonstrate that the nucleotide composition

of the mitochondrial 16S rDNA derived from these R. sanguineus ticks of Taiwan is highly

homogeneous (99.74–100% sequence similarity) with the tropical lineage group of R.

Table 2 The nucleotide divergence of mitochondrial 16S rDNA sequences between various strains and
genus of ticks, as compared with the R. sanguineus (99KHZY01M9) of Taiwan

Tick strain Sequence
length

Number of
variant positions

% of nucleotide
divergence

Rhipicephalus sanguineus (Taiwan)

99KHZY01M9 388 0 0

99KHYC06M2 388 0 0

98KHCJ10PEA 388 0 0

100KHAL04PEA1 388 0 0

100KHCH07EN1 388 0 0

99KHDS04M2 388 1 0.26

R. sanguineus (American Samoa) 387 0 0

R. sanguineus (Thailand) 387 0 0

R. sanguineus (Cuba) 388 0 0

R. sanguineus (Brazil) 358 0 0

R. turanicus (South Africa) 358 6 1.68

R. sanguineus (Argentina) 364 22 6.04

R. sanguineus (Spain) 384 19 4.94

R. sanguineus (Chile) 356 20 5.62

R. sanguineus (China) 387 20 5.17

R. appendiculatus (USA) 387 41 10.59

R. microplus (Brazil) 374 47 12.57

R. australis (Australia) 387 46 11.89

Dermacentor marginatus (China) 397 70 17.63

D. nuttalli (China) 393 68 17.30

Haemaphysalis inermis (USA) 388 60 15.46

Ixodes ricinus (Germany) 369 94 25.47
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sanguineus ticks. Thus, our study demonstrates the first molecular evidence confirming the

genetic identity of R. sanguineus ticks collected in southern Taiwan and provides the first

convincing sequences (GenBank accession numbers: KX685412*KX685425) of R. san-

guineus ticks in Taiwan.
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 Ixodes ricinus (JF928527)

R.s.-Taiwan

R. sanguineus s.l.

Tropical lineage

Rhipicephalus sp. II

Temperate lineage

Fig. 2 Phylogenetic relationships based on the 16S ribosomal DNA (rDNA) gene sequences between 14
strains of R. sanguineus ticks from southern Taiwan and 18 other strains belonging to five species of
Rhipicephalus, one species of Dermacentor and Haemaphysalis, and one strain of Ixodes ricinus served as
outgroup comparison. The trees were constructed and analyzed by neighbour-joining (NJ) method using
1000 bootstraps replicates. Numbers at the nodes indicate the percentages of reliability of each branch of the
tree. Branch lengths are drawn proportional to the estimated sequence divergence
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Because of the genetically high conservation and strictly maternal inheritance, the

mitochondrial 16S rDNA sequences appear to provide a reliable and convenient method

for distinguishing the lineages among diverse populations of Rhipicephalus ticks. In pre-

vious studies, two mitochondrial ribosomal genes, 12S and 16S rDNA, have been

sequenced entirely for phylogenetic analysis of ixodid ticks focused on the family and
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Fig. 3 Phylogenetic relationships based on the 16S ribosomal DNA (rDNA) gene sequences between 14
strains of R. sanguineus ticks from southern Taiwan and 18 other strains belonging to five species of
Rhipicephalus, one species of Dermacentor and Haemaphysalis, and one strain of Ixodes ricinus served as
outgroup comparison. The trees were constructed and analyzed by maximum parsimony (MP) method using
1000 bootstraps replicates. Numbers at the nodes indicate the percentages of reliability of each branch of the
tree. Branch lengths are drawn proportional to the estimated sequence divergence
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subfamily levels (Black and Roehrdanz 1998; Campbell and Barker 1999). Indeed, genetic

analysis of the mitochondrial 16S rDNA sequences of various species of Rhipicephalus

ticks also permits quantitative assessment of their relatedness (Moraes-Filho et al. 2011;

Nava et al. 2012; Dantas-Torres et al. 2013; Erster et al. 2013; Low et al. 2015; Zemtsova

et al. 2016). Results from this study also demonstrate the closely related individuals of R.

sanguineus ticks of southern Taiwan and the genetic divergence among various species of

Rhipicephalus ticks based on the genetic variations of 16S rDNA (Table 2; Fig. 1).

Intraspecific analysis reveals that nucleotide compositions within Taiwan and the tropical

lineage group of R. sanguineus ticks averaged less than 0.3% sequence variations may

fully represent a distinct species discriminated from the temperate lineage group of R.

sanguineus ticks (Tables 2, 3). However, interspecific analysis also indicates the nucleo-

tide variations between R. sanguineus ticks of Taiwan and other Rhipicephalus species or

genus of ticks averaged more than 10.59% sequence variations (Tables 2, 3). Further

investigation on the sequence divergence based on various targets of the mitochondrial

genes of R. sanguineus ticks collected from different localities of Taiwan and its adjacent

islands would be required to clarify the genetic divergence as well as the evolutionally

origin among and within R. sanguineus ticks from Taiwan and its adjacent islands.

Phylogenetic relationships among Rhipicephalus ticks can be determined by analyzing

the sequence heterogeneity of the mitochondrial 16S rDNA. Indeed, sequence analysis of

the mitochondrial 16S rDNA among various species of Rhipicephalus ticks had been

shown to be useful for evaluating the taxonomic relatedness of tick specimens collected

from various geographical sources (Moraes-Filho et al. 2011; Nava et al. 2012; Dantas-

Torres et al. 2013; Erster et al. 2013; Low et al. 2015; Zemtsova et al. 2016). In previous

studies, two distinct lineages of R. sanguineus ticks are evident by comparing their

mitochondrial 16S rDNA sequences collected from different regions of Latin America

(Moraes-Filho et al. 2011; Nava et al. 2012; Zemtsova et al. 2016). Phylogenetic analysis

of tick species related to the members of the Rhipicephalus complex also revealed

intraspecific variation between different geographical collections (Moraes-Filho et al.

2011; Erster et al. 2013; Low et al. 2015). In this study, the phylogenetic analysis based on

the mitochondrial 16S rDNA sequences among various tick species demonstrated a high

genetic heterogeneity between R. sanguineus and other species of ticks (Figs. 2, 3).

Although a low intraspecific variation was observed among the same species of R. san-

guineus ticks, all the 14 strains of R. sanguineus ticks from Taiwan represented as a

monophyletic group that can be distinguished from the temperate group of R. sanguineus

and other species/genus ticks (Table 3; Fig. 2). The phylogenetic trees constructed by

either NJ or MP analysis strongly support the discrimination recognizing the separation of

different lineages between the R. sanguineus collected from Taiwan and the temperate

group of R. sanguineus. Accordingly, these observations demonstrate that genetic identities

of R. sanguineus ticks collected from southern Taiwan were verified as a unique group

affiliated to the tropical lineage of R. sanguineus sensu lato.

In conclusion, this report provides the first genetic identification of the mitochondrial

16S rDNA gene of R. sanguineus ticks collected from the Taiwan area. Based on the

sequence divergence of the mitochondrial 16S rDNA, all these R. sanguineus ticks of

Taiwan were genetically related to a monophyletic group and were represented as a unique

lineage distinguished from the temperate group of R. sanguineus ticks as well as other

Rhipicephalus ticks including the common vector ticks for canine babesiosis. Further

application of this molecular tool to investigate the genetic variability of R. sanguineus

collected from different localities of Taiwan may help to elucidate the phylogenetic
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relationships among tick populations in relation to the epidemiological features of tick-

borne pathogens in Taiwan.
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