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Abstract We investigated the oribatid mite density, community structure and the per-

centage of parthenogenetic individuals in four different forest types across three regions in

Germany in 2008 and once again in 2011. We compared temporal (inter-annual) fluctu-

ations in population densities between sexually and parthenogenetically reproducing spe-

cies of oribatid mites. We hypothesized that population densities in parthenogenetic

oribatid mite species fluctuate more than in sexual ones. Further, we expected species

composition and dominance of parthenogenetic species to differ between forest types and

regions. Oribatid mite community structure did not differ between years but varied with

forest type and region, indicating low species turnover in time. As hypothesized, temporal

fluctuations were more pronounced in parthenogenetic as compared to sexual species. The

percentage of parthenogenetic individuals was significantly higher in coniferous than in

beech forests and significantly higher in Schorfheide-Chorin than in Hainich-Dün and

Schwäbische Alb. The results indicate that parthenogenetic species flourish if populations

are controlled by density-independent factors and dominate at sites were resources are

plentiful and easily available, such as coniferous forests, and in regions with more acidic

soils and thick organic layers, such as Schorfheide-Chorin. However, historical factors also

may have contributed to the increased dominance of parthenogenetic species in the

Schorfheide-Chorin, as this region was more heavily glaciated and this may have favoured

parthenogenetic species. Overall, our study supports the hypothesis that parthenogenetic

species benefit from the lack of density-dependent population control whereas the opposite

is true for sexual species.
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Introduction

Understanding the reasons for the evolution and maintenance of sexual reproduction and

its dominance in the animal kingdom for long poses a challenge for ecologists and evo-

lutionary biologists (e.g., Weismann 1889; Fisher 1930; Muller 1964; Maynard Smith

1968; Hamilton 1980; Bell 1982; Scheu and Drossel 2007). Despite the ‘‘twofold costs of

sex’’ due to producing males, sexual reproduction is widespread with about 99.9 % of

animal species reproducing sexually (White 1978; Bell 1982).

A number of ecological and evolutionary theories have been proposed to explain how

sexual reproduction outweighs this twofold disadvantage. The Red Queen Hypothesis

postulates a coevolutionary arms race between host and parasites or predator and prey

(Jaenike 1978; Hamilton 1980). It states that species have to evolve continuously to survive

in a temporally changing environment conferring sexuality an advantage over asexuality.

The Tangled Bank Hypothesis attributes the prevalence of sexual taxa to their ability to

produce genetically diverse offspring able to occupy a larger variety of niches in spatially

structured environments as compared to genetically more uniform offspring produced by

parthenogenetic reproduction (Maynard Smith 1971; Bell 1982). Building on the latter, the

‘Structured Resource Theory of Sexual Reproduction’ (SRTS) assumes that sexual taxa

outcompete asexual ones in habitats where resources are in short supply or are difficult to

access (Scheu and Drossel 2007). In contrast, asexual taxa prevail in environments where

resources are easily available, little structured or replenish quickly. Additionally, asexuals

dominate in habitats where death rates are so high that available resources are not fully

exploited. Hence, the SRTS predicts that sexual species prevail at conditions where den-

sity-dependent factors predominate (e.g., predation, resource competition, parasites),

whereas asexual species are favoured if density-independent factors prevail, such as des-

iccation, frost or flooding. This implies that temporal fluctuations should be more pro-

nounced in parthenogenetic than in sexual species; this hypothesis, however, has never

been tested until today.

Testing the different theories on the advantage of sexual reproduction is difficult, in part

as they are making similar predictions (Bell 1982), but also due to the scarcity of taxa that

include closely related parthenogenetic and sexual species. Moreover, parthenogenetically

reproducing species tend to form singular terminal offshoots in phylogenetic trees, whereas

clusters of species rarely occur. The few existing clusters of species reproducing

parthenogenetically often exhibit very different ecological characteristics to those repro-

ducing sexually and do not allow straightforward comparisons. For example, the

parthenogenetically reproducing bdelloid rotifers live very different to the (predominantly)

sexually reproducing monogonont rotifers and are difficult to compare in respect to forces

regulating their populations (Segers 2008).

A promising group allowing straightforward comparison of sexually and partheno-

genetically reproducing species of similar ecology are oribatid mites (Oribatida, Acari;

Maraun et al. 2003a; Heethoff et al. 2007; Schaefer et al. 2010). Oribatid mites are a

diverse cosmopolitan taxon often numerically dominating soil animal communities (Walter

and Proctor 2013). To date more than 10,000 species have been described of which

approximately 8–9 % reproduce via thelytokous parthenogenesis scattered across phylo-

genetic distinct groups (Norton and Palmer 1991; Palmer and Norton 1991). Additionally,

sexual and asexual species co-occur in the same habitat and therefore their population

dynamics can be compared.
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Parthenogenetically reproducing oribatid mite species are not evenly distributed over

different ecosystems but dominate in freshwater, in agricultural systems and in acidic habitats

such as peat bogs or boreal forest soils (Karg 1967; Norton and Sillman 1985; Beckmann

1988; Behan-Pelletier 1989; Behan-Pelletier and Bissett 1994), whereas they rarely occur on

the bark of trees (Erdmann et al. 2006) or in montane tropical forest soils (Illig et al. 2010).

The incidence of parthenogenesis is generally high in forest soils, but it markedly differs

between forest types (e.g., coniferous vs. deciduous), suggesting that environmental condi-

tions and niches differ in these ecosystems (Erdmann et al. 2012; Maraun et al. 2012). On a

larger scale, regional factors may also affect the reproductive mode of soil animals due to

differences in climate, landscape history and pedogenic processes, e.g. different parent rock,

which affect the pH of the respective systems (Maraun et al. 2012; Zaitsev et al. 2013).

Recently, evidence supporting the SRTS has been provided in showing that the pro-

portion of parthenogenetic individuals correlates with overall oribatid mite density indi-

cating that ample resources favour asexual reproduction (Maraun et al. 2012). Further, in

tropical as well as temperate regions sexual oribatid mite taxa have been shown to dominate

at higher altitudes (Maraun et al. 2013; Fischer et al. 2014). Since resource quality (as

indicated by high litter C/N ratio) decreases with increasing altitude (Wilcke et al. 2008) this

supports the hypothesis that poor accessibility of resources promotes sexual reproduction.

We investigated if community structure and the relative density (dominance) of

parthenogenetic individuals differ between regions of different climate, between forest

types (beech vs. coniferous) and between years (2008 vs. 2011). We further analysed if

temporal fluctuations differ between sexual and parthenogenetic taxa of oribatid mites. We

hypothesized that population fluctuations in parthenogenetic species exceed those of sexual

species, since the former flourish if populations are controlled by density-independent

factors. We further hypothesized that forest type and region affect the dominance of

parthenogenetic species with the dominance of parthenogenetic species increasing with

forest disturbance and in regions with harsher abiotic conditions.

Materials and methods

Study sites

The study was carried out in three regions of Germany at the experimental forest sites of the

‘‘Biodiversity Exploratories’’, an integrative ecosystem research project (M. Fischer et al.

2010). The three regions included (1) the Schorfheide-Chorin (3–140 m a.s.l.), situated in the

lowlands of North-east Germany and characterized by a young glacial landscape with sandy

soils andmanywetlands, (2) the Hainich-Dün (285–550 m a.s.l.), located in the hilly lands of

central Germany featuring large unfragmented beech forests, and (3) the Schwäbische Alb

(460–860 m a.s.l.), located in the lowmountain ranges of South-west Germany.Mean annual

precipitation in the Schorfheide-Chorin, Hainich-Dün and Schwäbische Alb are 500–600,

500–800 and 700–1000 mm with mean annual temperatures of 8.0–8.5, 6.5–8.0 and

6.0–7.0 �C, respectively. Soils mainly comprise Cambisols and Luvisols in the Schorfheide-

Chorin and Hainich-Dün, and Cambisols and Leptosols in the Schwäbische Alb. Bedrock is

glacial till in the Schorfheide-Chorin, Triassic limestone in the Hainich-Dün and Jurassic

shell limestone in the Schwäbische Alb. Soil pH ranges from 3.00 ± 0.19 to 4.51 ± 0.72 to

4.59 ± 0.67 in the Schorfheide-Chorin, the Schwäbische Alb and the Hainich-Dün,

respectively. For more details on the study sites see M. Fischer et al. (2010).

Exp Appl Acarol (2016) 68:387–407 389

123



Sampling design, extraction and determination of soil animals

Within each region, four different forest types were selected: managed young and old

beech (Fagus sylvatica) forests with an average tree age of 30 (young beech) and 70 (old

beech) years, respectively, unmanaged beech forests taken out of management for at least

60 years (natural beech), with mature trees being 120–150 years old, and old managed

coniferous forests (coniferous) with an average tree age of 70 years (Pinus sylvestris in

Schorfheide-Chorin and Picea abies in Hainich-Dün and Schwäbische Alb). All managed

forests were planted as age class forests. The forest types were replicated four times in each

of the three regions resulting in a total of 48 forest plots.

Soil samples were taken from April to May in 2008 and 2011. At each date, two soil

samples per plot were taken from a 5 m2 subplot using a soil corer (Ø 5 cm); as we focus

on temporal variability, those samples were pooled for statistical analysis. Soil animals

were extracted by heat (Macfadyen 1961) and subsequently transferred into 70 % ethanol.

Oribatid mites were determined to species level, except for Brachychthoniidae, Sucto-

belbella and Phthiracarus, which were determined to family or genus level, using the key

of Weigmann (2006). Juvenile oribatid mites were counted but not determined. Data on the

reproductive mode of oribatid mite species were taken from Palmer and Norton (1991),

Norton et al. (1993), Cianciolo and Norton (2006), Domes et al. (2007) and B. M. Fischer

et al. (2010). We classified oribatid mite species on the basis of known information on their

ecology into the subgroups Enarthronota, Desmonomata, Phthiracaroidea, Tectocepheidae,

sexual Oppiidae, parthenogenetic Oppiidae, Suctobelbidae, Poronota and ‘Others’ (in-

cluding all oribatid mites not included to any of the groups above). Species of the

respective groups share similar life history characteristics and are therefore assumed to

respond in a similar way to changing environmental factors (Maraun and Scheu 2000;

Norton and Behan-Pelletier 2009).

Statistical analysis

Oribatid mite density, diversity and the proportion of parthenogenetic individuals and

taxonomical subgroups were analysed by repeated measures analysis of variance

(ANOVA) with the fixed factors region (Schwäbische Alb, Hainich-Dün, Schorfheide-

Chorin) and forest type (coniferous, young beech, old beech, natural beech), and time

(2008, 2011) as a repeated factor using R version 2.14.1 (R Development Core Team

2011). Data on oribatid mite density were log-transformed to improve homoscedasticity.

To investigate the fluctuations of oribatid mite communities, the density of sexual and

parthenogenetic species, and also for Enarthronota, Desmonomata, Phthiracaroidea, Tec-

tocepheidae, sexual Oppiidae, parthenogenetic Oppiidae, Suctobelbidae, Poronota and

‘Others’ of the dataset of 2008 were subtracted from those of 2011 for each of the 48 plots.

Algebraic signs were ignored since only the difference between the two years was of

relevance for this study, i.e. all values were positive. These differences were then

expressed as percentage of the mean of the respective group or taxon, i.e. sexual versus

parthenogenetic species, and of the respective taxonomical groups. These percentages were

analysed by three-factorial analysis of variance (ANOVA) with the fixed factors region

(Schorfheide-Chorin, Hainich-Dün, Schwäbische Alb), forest type (young beech, old

beech, natural beech, coniferous) and reproductive mode (sex, parthenogenesis) or taxo-

nomic group (Enarthronota, Desmonomata, Phthiracaroidea, Tectocepheidae, sexual

Oppiidae, parthenogenetic Oppiidae, Suctobelbidae, Poronota, Others).
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The relationship between oribatid mite communities and the factors region, forest type

and time was analysed by principal components analysis (PCA) with species occurring in

more than five samples using CANOCO 5 (Microcomputer Power, Ithaca, NY, USA;

Šmilauer and Lepš 2014). No rotation was used for the PCA. Subsequently, the coordinates

1–4 of the PCA were used in STATISTICA 11 (Statsoft, Tulsa, OK, USA) for Discrim-

inant Function Analyses (DFA) to inspect differences between treatment levels.

Results

Total density and diversity

Oribatid mite densities were similar in 2008 and 2011 in the Hainich-Dün and in the

Schwäbische Alb, but in the Schorfheide-Chorin significantly lower in 2011 than in 2008

(region 9 time interaction; Fig. 1a; Table 1). Generally, oribatid mite densities were

higher in coniferous forests (89,967 ± 68,877 ind./m2) than in the three beech forests
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(51,855 ± 39,195, 44,767 ± 43,085 and 44,678 ± 32,070 ind./m2 in young, old and

natural beech forests, respectively) with differences being most pronounced in the

Schwäbische Alb. Moreover, oribatid mite densities decreased in young and old beech

forests and in coniferous forests but increased in natural beech forests from 2008 to 2011

(forest 9 type time interaction; Fig. 1b).

Overall, 116 species of oribatid mites were recorded, 98 at each sampling date. Total

species number decreased from Schwäbische Alb (87) to Schorfheide-Chorin (68) to

Hainich-Dün (61) with on average 85 species in young beech, 82 in coniferous, 69 in

natural and 63 in old beech forests.

Average species number per sample was lower in 2011 than in 2008 in the Hainich-

Dün (16.8 ± 4.4 and 19 ± 4.8, respectively) and in the Schorfheide-Chorin (13.3 ± 5.0

and 18.1 ± 4.7, respectively) but higher in the Schwäbische Alb (20.3 ± 5.0 and

17.9 ± 4.5, respectively; region 9 time interaction, Table 1). Average species number

per sample was higher in coniferous than in beech forests in the Schwäbische Alb

(23.9 ± 3.5 %, 16 ± 2.7, 16.3 ± 3.8 and 20.3 ± 4.8 % in coniferous and young, old

and natural beech forests, respectively) and Schorfheide-Chorin (19.1 ± 4.9, 17.5 ± 6.0,

13.9 ± 4.6 % and 12.3 ± 3.7 in coniferous and young, old and natural beech forests,

respectively), whereas in the Hainich-Dün the number of species was higher in beech as

compared to coniferous forests (13.9 ± 3.4, 21.5 ± 5.0, 17.4 ± 3.6 and 18.8 ± 3.6 in

coniferous and young, old and natural beech forests, respectively; region 9 forest type

interaction).

Dominance of taxonomic groups

Variation with time

Dominance of most taxonomic groups did not vary significantly between the two

sampling dates except for Poronota and Desmonomata which were more dominant in

2011 (17.0 ± 15.5 and 6.9 ± 8.8 %, respectively) than in 2008 (11.2 ± 8.0 and

3.6 ± 5.5 %, respectively; Table 1), and Suctobelbidae which were less dominant in the

Schorfheide-Chorin in 2011 (12.8 ± 9.1 %) than in 2008 (25.0 ± 13.3 %; time 9 re-

gion interaction).

Variation between regions

Overall, Oppiidae represented the most abundant taxon of oribatid mites in each of the

three regions, but their dominance was significantly lower in the Schorfheide-Chorin

(26.8 ± 23.1 %) than in the Hainich-Dün (40.6 ± 15.4 %) and the Schwäbische Alb

(44.9 ± 18.8 %; Table 1). The dominance of sexually reproducing Oppiidae was signifi-

cantly lower (1.4 ± 2.9, 27.7 ± 15.6 and 34.1 ± 19.8 %, respectively) and that of

parthenogenetically reproducing Oppiidae was significantly higher in the Schorfheide-

Chorin than in the Hainich-Dün and Schwäbische Alb (25.5 ± 23.4, 12.9 ± 12.1 and

10.9 ± 9.6 %, respectively). The dominance of Enarthronota significantly increased from

the Schwäbische Alb (3.7 ± 4.7 %) to the Schorfheide-Chorin (8.6 ± 9.4 %) and the

Hainich-Dün (12.1 ± 15.5 %), whereas proportions of Desmonomata were significantly

higher in Schorfheide-Chorin (11.0 ± 9.5 %) than in the Schwäbische Alb (2.1 ± 4.3 %)

and Hainich-Dün (2.7 ± 3.6 %).
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Variations with forest type

The dominance of Oppiidae was significantly lower in coniferous (25.6 ± 17.4 %) as

compared to the three beech forests (39.2 ± 18.1, 40.3 ± 19.6 and 44.7 ± 23.0 % in

young, old and natural beech forests, respectively), and this was mainly due to sexual

species (14.0 ± 16.4, 23.1 ± 20.7, 21.8 ± 21.4 and 25.4 ± 21.7 % in coniferous and

young, old and natural beech forests, respectively; Table 1). In contrast, the dominance of

Enarthronota (17.1 ± 17.1, 6.8 ± 7.8, 5.7 ± 6.2 and 2.9 ± 3.1 % in coniferous and

young, old and natural beech forests, respectively) and Tectocepheidae (7.2 ± 8.2,

1.7 ± 2.9, 1.1 ± 2.8 and 2.6 ± 5.8 % in coniferous and young, old and natural beech

forests, respectively) was considerably higher in coniferous as compared to the three beech

forests. The dominance of Suctobelbidae also differed between forest types and decreased

from coniferous (20.9 ± 9.8 %) to young (18.9 ± 10.1 %) to old (14.9 ± 9.8 %) to nat-

ural beech forests (13.6 ± 12.4 %). Also, the dominance of Phthiracaroidea differed

between forest types, but this varied between regions; in the Schwäbische Alb it was

highest in old beech forests (7.2 ± 5.2 %, 13.5 ± 10.8 %, 23.3 ± 10.4 % and

7.1 ± 7.9 % in coniferous and young, old and natural beech forests, respectively), in the

Hainich-Dün in natural beech forests (6.1 ± 8.8, 9.9 ± 7.2, 7.5 ± 7.7, 16.6 ± 12.3 % in

coniferous and young, old and natural beech forests, respectively) and in the Schorfheide-

Chorin in coniferous forests (13.4 ± 17.4, 6.2 ± 6.2, 6.9 ± 6.8 and 8.9 ± 4.6 % in

coniferous and young, old and natural beech forests, respectively; region 9 forest type

interaction).

Variations with reproductive mode

The percentage of parthenogenetic individuals was significantly higher in Schorfheide-

Chorin than in Hainich-Dün and Schwäbische Alb (Fig. 2a; Table 1), and significantly

lower in 2011 than in 2008 (53.6 ± 23.2 and 62.3 ± 21.5 %, respectively). Further, the

percentage of parthenogenetic individuals significantly differed between forest types with a

higher percentage in coniferous forests than in the three beech forests (Fig. 2b).

Temporal fluctuations

Temporal fluctuations did not significantly differ between the taxonomic groups

(F8,324 = 1.39, P = 0.20), but were significantly higher in parthenogenetic

(98.0 ± 100.7 %) than in sexual species (61.1 ± 55 %; F1,72 = 4.61, P = 0.035). Further,

temporal fluctuations of oribatid mites were positively correlated with the percentage of

parthenogenetic individuals (linear regression; r2 = 0.18, t value = 3.17, F1,46 = 10.02,

P = 0.0028).

Variations in community structure

Oribatid mite communities differed significantly between each of the three regions (DFA:

Wilk’s Lambda = 0.20, F18,180 = 27.95; Mahalanobis Distance between Schorfheide-

Chorin and Schwäbische Alb: 13.38, F4,90 = 51.78, between Schorfheide-Chorin and

Hainich-Dün: 8.81, F4,90 = 34.12, and between Hainich-Dün and Schwäbische Alb: 3.24,

F4,90 = 12.55, all P\ 0.0001; Fig. 3).
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Oribatid mite communities also significantly differed between the forest types sepa-

rating coniferous from the three beech forests (DFA: Wilk’s Lambda = 0.43,

F12,235 = 7.47; Mahalanobis Distance between coniferous and young beech: 4.65,

F4,89 = 13.49, coniferous and old beech: 6.40, F4,89 = 18.56, and between coniferous and

natural beech: 8.49, F4,89 = 24.63, all P\ 0.0001).

Oribatid mite communities did not differ between 2008 and 2011 (DFA: Wilk’s

Lambda = 0.95, F4,91 = 1.13, P = 0.35).

Discussion

Density, species richness and community structure

Oribatid mite densities did not differ between the three regions studied and ranged between

49,000 and 62,000 ind./m2 (averaged over all forest types), being in the range typically

recorded from soils of mesophilic forests of the temperate zone (Maraun et al. 2003b;
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Maraun and Scheu 2000). Remarkably, oribatid mite communities of the Hainich-Dün and

Schwäbische Alb were dominated by Oppiidae, especially sexual species such as Oppiella

falcata, Berniniella bicarinata, Berniniella conjuncta, Dissorhina ornata, Oppiella obso-

leta, Quadroppia monstruosa which were rare or absent in the Schorfheide-Chorin. In

contrast, parthenogenetic Oppiidae, e.g. Oppiella nova and Microppia minus, dominated in

the Schorfheide-Chorin. Also, the parthenogenetic Desmonomata species Nanhermannia

nana, Nothrus silvestris and Platynothrus peltifer were more abundant in the Schorfheide-

Chorin than in the other regions.

Oribatid mite densities were generally higher in coniferous than in the beech forests, a

pattern recorded previously (Lindo and Visser 2004; Sylvain and Buddle 2010; Walter and

Proctor 2013). Differences in community structure between forest types were less pro-

nounced than between regions and mainly separated coniferous forests from the three

beech forests. Suctobelbella spp., Tectocepheus velatus and Brachychthoniidae dominated

in coniferous forests whereas species of Oppiidae, Poronota and Phthiracaroidea were more

abundant in beech forests. Similar patterns were reported earlier (Maraun and Scheu 2000).

Oribatid mite community structure was surprisingly constant between 2008 and 2011,

indicating low species turnover in time and suggesting that soil animal communities are

remarkably stable. However, mainly due to the decline of the predominantly partheno-

genetic Suctobelbidae oribatid mite density significantly varied between the two sampling

dates in the Schorfheide-Chorin.
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äb
is
ch
e
A
lb

H
ai
n
ic
h
-D

ü
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ü
n

S
ch
o
rf
h
ei
d
e-
C
h
o
ri
n

C
a
ra
b
o
d
es

su
b
a
rc
ti
cu
s
T
rä
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ü
n

S
ch
o
rf
h
ei
d
e-
C
h
o
ri
n

C
h
a
m
o
b
a
te
s
vo
ig
ts
i
(O

u
d
em

an
s)

C
h
am

V
o
ig

S
ex

1
1
3
0
±

1
5
0
0

1
1
9
4
±

1
2
3
3

7
3
2
±

7
5
9

E
u
ze
ti
d
ae

E
u
ze
te
s
g
lo
b
u
lu
s
(N

ic
o
le
t)

–
S
ex

0
±

0
0
±

0
6
4
±

2
7
4

M
y
co
b
at
id
ae

M
in
u
n
th
o
ze
te
s
p
se
u
d
o
fu
si
g
er

(S
ch
w
ei
ze
r)

–
S
ex

0
±

0
4
0
±

2
2
5

0
±

0

G
al
u
m
n
id
ae

A
cr
o
g
a
lu
m
n
a
lo
n
g
ip
lu
m
a
(B
er
le
se
)

–
S
ex

0
±

0
0
±

0
2
4
±

1
3
5

G
a
lu
m
n
a
a
la
ta

(H
er
m
an
n
)

–
S
ex

0
±

0
0
±

0
1
6
±

9
0

G
a
lu
m
n
a
la
n
ce
a
ta

O
u
d
em

an
s

G
al
u
L
an
c

S
ex

1
6
±

6
3

0
±

0
4
8
±

1
3
6

G
a
lu
m
n
a
ta
rs
ip
en
n
a
ta

O
u
d
em

an
s

–
S
ex

0
±

0
0
±

0
8
±

4
5

P
er
g
a
lu
m
n
a
n
er
vo
sa

(B
er
le
se
)

P
er
g
N
er
v

S
ex

0
±

0
0
±

0
7
2
±

1
7
4

P
il
o
g
a
lu
m
n
a
cr
a
ss
ic
la
va

(B
er
le
se
)

–
S
ex

8
±

4
5

0
±

0
1
6
±

9
0

P
il
o
g
a
lu
m
n
a
te
n
u
ic
la
va

(B
er
le
se
)

–
S
ex

8
±

4
5

0
±

0
0
±

0

Exp Appl Acarol (2016) 68:387–407 403

123



Parthenogenesis and temporal fluctuations

The relative abundance of parthenogenetic individuals varied significantly between forest

types. Coniferous forests favoured parthenogenetic species presumably due to higher

amounts of organic material accumulating on the forest floor as compared to beech forests.

Higher amounts of organic material promote fungal growth resulting in increased resource

availability (Blair et al. 1994). Accumulation of litter might be a consequence of low

numbers of macrodecomposers such as earthworms due to lower pH of coniferous forest

soils (Maraun and Scheu 2000). According to SRTS, higher amounts of resources,

mediated by the absence or reduction of macrofauna activity, favours parthenogenetic

reproduction. Generally, primary decomposers, in particular parthenogenetic species, such

as Platynothrus peltifer, Nanhermannia nana, Nothrus palustris, Tectocepheus velatus,

dominate in acidic coniferous forests, whereas sexual species dominate in tropical, sub-

tropical and base-rich forests (Maraun et al. 2012; Fischer et al. 2014; Mumladze et al.

2015).

Furthermore, the dominance of parthenogenetic species varied significantly with region;

densities in the Schorfheide-Chorin markedly exceeded those of the other two regions. A

number of factors might be responsible for the more favourable conditions for partheno-

genetic species in the Schorfheide-Chorin. On one hand, similar to coniferous forests, the

sandy soils of the Schorfheide-Chorin are of low pH (M. Fischer et al. 2010) which is

associated with thick organic layers and low earthworm density (Klarner 2013). This

indicates that, similar to coniferous forests, high amounts of resources favour partheno-

genetic species. Additionally, the continental climate of the Schorfheide-Chorin with low

precipitation and dry summers, likely is associated with high mortality due to density-

independent factors, supporting the prediction of the SRTS that abiotic forcing favours

parthenogenetic species. On the other hand, increasing elevation from north (Schorfheide-

Chorin) to south (Schwäbische Alb) coincided with an increase in parthenogenetic species

which is in agreement with studies investigating altitudinal gradients (Maraun et al. 2013;

Fischer et al. 2014). It has been demonstrated that resource quality declines with altitude

(Wilcke et al. 2008), thereby increasing resource control of detritivore species (Maraun

et al. 2013). Again, this is consistent with the prediction of the SRTS that the advantage of

sexual reproduction increases with increasing resource control, i.e. density-dependent

factors. However, historical factors also may have contributed to the increased dominance

of parthenogenetic species in the Schorfheide-Chorin, since, as compared to the Hainich-

Dün and Schwäbische Alb, the Schorfheide-Chorin was more heavily glaciated and this

may have favoured parthenogenetic species (Zaitsev et al. 2013). Parthenogenetically

reproducing species vigorously invade new habitats due to faster reproduction and the

ability to successfully colonize new habitats by single individuals, and therefore often

dominate at early stages, but are replaced by sexually reproducing species at later stages of

succession (Ryabinin and Pan’kov 1987; Norton and Palmer 1991). Since colonization of

new habitats by oribatid mite communities is slow due to low dispersal ability (Lehmitz

et al. 2011) and long generation times, establishment of climax communities in even small

areas may take decades (Hågvar et al. 2009; Farská et al. 2014). Accordingly, the oribatid

mite community of formerly glaciated regions such as the Schorfheide-Chorin still may not

have reached its ultimate composition.

Temporal fluctuations of parthenogenetic species exceeded those of sexuals, supporting

our hypothesis that parthenogenetic species are more heavily exposed to density-inde-

pendent population control. Fluctuations in both parthenogenetic and sexual species were
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most pronounced in the Schorfheide-Chorin, presumably due to harsher climatic conditions

in this region. Similar results were found when analysing mortality and recovery rates of

parthenogenetic and sexual species in a drought experiment in Sweden (Lindberg and

Bengtsson 2005). Oribatid mites were more sensitive to desiccation when reproducing via

parthenogenesis but recovered more quickly reflecting stronger population variations in

time in parthenogenetic species.

Conclusion

Overall, the results suggest that the structure of oribatid mite communities of forests in

temperate regions varies significantly in space, but is rather stable in time. Temporal

fluctuations in population density were more pronounced in parthenogenetic as compared

to sexual species suggesting that the latter are more heavily controlled by density-de-

pendent factors presumably predominantly by resource availability and quality. In contrast,

parthenogenetic species are more heavily affected by density-independent factors, such as

frost in winter and drought in summer, and flourish at sites where resources are plentiful

and easily available such as coniferous forests and regions with more acidic soils and thick

organic layers supporting the prediction of the SRTS.
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