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Abstract Plants show defensive responses after exposure to volatiles from neighbouring

plants infested by herbivores. When a plant’s neighbours host only species of herbivores

that do not feed on the plant itself, the plant can conserve energy by maintaining a low

defence level. An intriguing question is whether plants respond differently to volatiles from

plants infested by herbivores that pose greater or lesser degrees of danger. We examined

the secretion of extrafloral nectar (EFN) in lima bean plants exposed to volatiles from

cabbage plants infested by common cutworm, two-spotted spider mites, or diamondback

moth larvae. Although the first two herbivore species feed on lima bean plants, dia-

mondback moth larvae do not. As a control, lima bean plants were exposed to volatiles

from uninfested cabbage plants. Only when exposed to volatiles from cabbage plants

infested by spider mites did lima bean plants significantly increase their EFN secretion

compared with the control. Increased EFN secretion can function as an indirect defence by

supplying the natural enemies of herbivores with an alternative food source. Of the three

herbivore species, spider mites were the most likely to move from cabbage plants to lima

bean plants and presumably posed the greatest threat. Although chemical analyses showed

differences among treatments in volatiles produced by herbivore-infested cabbage plants,

which compounds or blends triggered the increased secretion of EFN by lima bean plants

remains unclear. Thus, our results show that plants may tune their defence levels according

to herbivore risk level.
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Introduction

Plants emit specific blends of volatiles when infested by herbivores (Turlings et al. 1995;

Takabayashi and Dicke 1996; Dicke 1999; Heil 2008; Dicke et al. 2009; Dicke and

Baldwin 2010). The volatiles are known to attract carnivores (Turlings et al. 1995;

Takabayashi and Dicke 1996; Dicke 1999; Heil 2008), repel herbivores (Pallini et al. 1997;

De Moraes et al. 2001; Kessler and Baldwin 2001; Heil 2008), and mediate communication

between plants (Bruin et al. 1995; Baldwin et al. 2006; Heil 2008; Heil and Karban 2010).

For example, uninfested plants increase their defence levels when exposed to volatiles

from herbivore-infested conspecific plants (Dicke et al. 1990; Arimura et al. 2000; Dolch

and Tscharntke 2000; Choh et al. 2004a, 2006; Heil and Kost 2006; Kost and Heil 2006;

Frost et al. 2007). Furthermore, the volatiles can signal within an individual plant; plants

increase resistance in undamaged parts when exposed to volatiles from damaged parts of

themselves (Frost et al. 2007; Heil and Silva Bueno 2007; Karban and Shiojiri 2009).

Volatiles from herbivore-infested plants can indicate the presence of specific herbivores.

Because plants emit different blends of volatiles when infested by different herbivore

species (De Moraes et al. 1998; Turlings et al. 1998; Ozawa et al. 2000; Shiojiri et al. 2001;

de Boer et al. 2004; Bruinsma et al. 2009), the volatiles may indicate which species of

herbivore has attacked. Although natural enemies of herbivores are known to discriminate

among volatile blends from plants infested by different herbivore species (Turlings et al.

1995; Takabayashi and Dicke 1996; Dicke 1999; Heil 2008; Dicke et al. 2009; Dicke and

Baldwin 2010), whether plants discriminate similarly has not been tested. Recently, Kikuta

et al. (2011) reported that seedlings of Chrysanthemum cinerariaefolium induced bio-

synthesis of the natural insecticide pyrethrin only when exposed to a specific concentration

of volatiles from mechanically-damaged conspecifics. These results showed that plants

sometimes but do not always increase their defence levels in response to volatiles from

herbivore-infested plants.

Although plants that are exposed to volatiles from herbivore-infested neighbours would

benefit by responding defensively (Dicke et al. 1990; Arimura et al. 2000; Dolch and

Tscharntke 2000; Karban et al. 2000; Choh et al. 2004a, 2006; Heil and Kost 2006; Kost

and Heil 2006; Frost et al. 2007), the same responses would be costly if herbivores were

absent (Baldwin 1998). Furthermore, herbivores do not use all plant species as food

sources. Hence, plants should prime their defences only when they are likely to be

attacked. In this study, we tested whether plants have the ability to recognize herbivore

species based on plant volatile profiles.

Lima bean plants and their herbivores are a well-studied system of plant communication

(Dicke et al. 1990; Bruin et al. 1992; Arimura et al. 2000; Choh et al. 2004a, 2006; Choh

and Takabayashi 2006; Heil and Kost 2006; Kost and Heil 2006; Heil and Silva Bueno

2007). When exposed to volatiles from conspecifics infested by herbivores, lima bean

plants increased secretion of extrafloral nectar (EFN), which can function as an indirect

defence against herbivores by encouraging the natural enemies of herbivores to remain on

the plants by offering an alternative food source (Choh et al. 2006; Kost and Heil 2006).

We examined EFN secretion in lima bean plants exposed to volatiles from cabbage plants

infested by the herbivorous mite Tetranychus urticae, the common cutworm Spodoptera
litura, and diamondback moth Plutella xylostella larvae. The system we studied here was

not natural, but could occur in agricultural fields. Lima beans are host plants for S. litura
larvae and T. urticae, but not for P. xylostella larvae, suggesting that lima bean plants need

not defend against P. xylostella larvae. Although the host range of an herbivore could

indicate herbivory risk, we actually tested the likelihood of herbivore migration between
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cabbage and lima bean plants as an indicator of herbivory risk for lima bean plants. If lima

bean plants recognize herbivore species using volatiles from herbivore-infested cabbage

plants, EFN secretion levels in the exposed plants would be expected to differ depending

on the herbivore species attacking the cabbage plants. Furthermore, we investigated vol-

atile emissions from herbivore-infested cabbage plants to identify key compounds that

were involved in changes in EFN secretion in lima bean plants.

Materials and methods

Plants and herbivores

Lima bean plants (Phaseolus lunatus cv. Pole Sieva) were grown in soil in a greenhouse at

25 ± 2 �C and 60–70 % relative humidity (r.h.), under a 16:8 h light:dark (L:D) photo-

period. We used plants grown for 4–6 days after germination. Cabbage plants (Brassica
oleracea cv. Shikidori) were grown in soil under the same conditions as lima bean plants.

We used plants with three expanded leaves that had been grown from seeds for 3 weeks.

Diamondback moth (P. xylostella) larvae are specialist herbivores of crucifer plants.

They were collected from crucifer crops in a field in Kyoto City (35�N, 136�E), Japan in

2006 and kept on crucifer plants (Brassica campestris cv. Rakuten) as food. Common

cutworm (S. litura) was obtained from a culture maintained at the National Institute of

Agrobiological Sciences in Tsukuba, Ibaraki, Japan in 2006. These insects were reared on

an artificial diet (Insecta LF; Nihon Nousan Kogyo Ltd, Yokohama, Japan). Herbivorous

mites (T. urticae) were obtained from the Laboratory of Ecological Information, Graduate

School of Agriculture, Kyoto University, in 2002 and reared on lima bean plants. Although

S. litura larvae and T. urticae feed on both cabbage and lima bean plants, P. xylostella
larvae feed only on cabbage plants. None of these herbivore species uses extrafloral nectar

as an alternative food source. We maintained cultures of all three herbivore species in

climate-controlled rooms (25 ± 2 �C, 50–70 % r.h, 16:8 h L:D). All experiments were

conducted in a climate-controlled room (25 ± 2 �C, 60–70 % r.h, 16:8; L:D).

Exposure of lima bean plants to volatiles

To expose lima bean plants to volatiles from herbivore-infested cabbage plants, we used

four acrylic 60 9 60 9 60 cm cages, each with two 30 9 30 cm windows on opposite

sides of the cage. The windows were covered with 225 lm mesh nylon gauze, and airflow

within the cage was below detectable levels. The cage had a 30 9 30 cm sliding door at

the front. We placed either three second-instar larvae of P. xylostella, three second-instar

larvae of S. litura, or 60 adult female T. urticae on a cabbage plant. Because P. xylostella
larvae stop feeding and pupate 6–7 days after introduction to host plants (Choh et al.

2008), we replaced the larvae with another three second instar larvae 5 days after the first

introduction to subject cabbage plants to continuous damage by the larvae. The overlap of

P. xylostella generations on an individual plant meant that young larvae continued feeding

when older ones pupated. As odour sources, we used eight cabbage plants per treatment,

with a treatment being infestation with one species of herbivore as described above. Eight

uninfested cabbage plants were used as the control.

One uninfested lima bean plant was placed in a cage with the odour source plants (see

Choh et al. 2006 for setup details) and exposed to volatiles from the cabbage plants for

10 days. All plants were placed in plastic containers (12 cm diameter, 9 cm height) filled

Exp Appl Acarol (2013) 59:263–273 265

123



with water to prevent the migration of herbivores from the cabbage plants to the lima bean

plant. The lima bean plant was positioned 25 cm from the cabbage plants. We used newly-

cleaned cages for each of 36 replicates per treatment. We visually inspected lima bean

plants for signs of infestation and found that no herbivores had invaded them.

Measurement of EFN

After 10 days of exposure to volatiles, the volume of EFN secreted by lima bean plants was

measured with 5 ll capillaries (Ringcaps�, Hirschmann Laborgeräte GmbH & Co. KG,

Eberstadt, Germany). The length of nectar in the capillary was a direct and precise quanti-

fication of the nectar volume. The EFN collection was always carried out between 10 am and

midday in case nectar secretion showed a diel pattern (Raine et al. 2002). Although several

studies, particularly field experiments, measured EFN concentrations with a refractometer as

an indicator of EFN secretion (Heil and Kost 2006; Kost and Heil 2006; Heil and Silva Bueno

2007), we previously confirmed that the EFN concentration in lima bean plants did not

change, irrespective of herbivore damage or exposure to volatiles under climate-controlled

conditions (Choh 2006). Therefore, we measured only the volume (not the concentration) of

EFN secreted by a plant, as in previous studies (Wäckers and Wunderlin 1999; Wäckers et al.

2001; Choh and Takabayashi 2006; Choh et al. 2006). The EFN volume per plant was

analysed using Tukey–Kramer test when ANOVA supported a significant difference.

Migration of herbivores from cabbage to lima bean

To test the risks posed by herbivores to neighbouring plants, we examined the migration of

herbivores from cabbage to lima bean plants under laboratory conditions. We placed a cut

stem of a cabbage plant and a primary leaf of a lima bean plant 8 cm apart in a plastic

container (12 9 16 cm; 4 cm deep). Water-saturated cotton wool was attached to the stem

and petiole, respectively. Three individuals of either of adult female T. urticae, second-

instar larvae of P. xylostella, or first-instar larvae of S. litura were placed on the cabbage

plant. Under these conditions, the herbivores could walk between plants. The location of

the herbivore species was checked either 3 or 10 days after they had been placed on the

cabbage. We used new set-ups for each time point (3 or 10 days) so as not to disturb the

migration behaviour of the herbivores. We repeated the experiment 16 times per treatment,

and compared the number of migrated individuals among herbivore species with a Mann–

Whitney U test.

Performance of herbivores on plants

We examined the performance of herbivores on the two plant species as a potential factor

affecting the likelihood of migration between lima bean and cabbage plants. To measure

the performance of S. litura larvae on cabbage and lima bean, we placed a second-instar

larva of S. litura on a leaf patch (4 9 4 cm) that was cut from a cabbage leaf or from a

primary leaf of a lima bean plant. The leaf patches were placed on wet cotton wool in Petri

dishes. We offered fresh leaf daily to avoid larval starvation and measured the duration of

the larval stage for 30 days after introduction. We repeated the experiment 15 times. Data

were compared using a log-rank test.

To measure the performance of T. urticae on cabbage and lima bean plants, we placed

an individual adult female of T. urticae that had been randomly selected from the culture
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on a leaf patch (1 9 1 cm) cut from a cabbage leaf or a primary leaf of a lima bean plant.

The leaf patches were kept on water-saturated cotton in Petri dishes. We repeated the

above experiment 12 times per treatment. The numbers of eggs laid by the mites over

3 days were compared using a Mann–Whitney U test.

Because P. xylostella larvae feed only on crucifer plants, we did not test the perfor-

mance of P. xylostella larvae on either plant.

Chemical analysis

To chemically analyse the volatiles, we prepared four groups of cabbage plants (i.e.,

uninfested plants, P. xylostella-infested plants, S. litura-infested plants, and T. urticae-

infested plants) as described above. Headspace volatiles were collected 4–8 h after the

lights were turned on and 1, 3, 5, 8, and 10 days after the introduction of herbivores. One

plant of each treatment was placed in a 2-l glass bottle that had two nozzles. Cabbage

cotyledons are easily broken, and the bottle was narrow, so there was a risk that they would

be accidentally damaged when the plants were put into the bottle. Therefore, we removed

the cotyledons before introducing the herbivores to ensure that all plants avoided accident.

Although removing the cotyledons may have affected volatile emissions, all plants were

treated identically, thereby controlling for the effect.

One nozzle was connected to an air cylinder and the other to a glass tube packed with

Tenax TA adsorbent (100 mg, mesh 20/35; GL Science, Tokyo, Japan). Pure air from the

cylinder was drawn into the glass bottle, and volatile compounds from the headspace of the

bottle were collected with Tenax TA for 2 h at a flow rate of 100 ml/min. The collected

volatiles were analysed by GC–MS (GC: Agilent 6890 with HP-5MS capillary column:

30 m long, 0.25 mm I.D. and 0.25 lm film thickness; MS: Agilent 5973 mass selective

detector, 70 eV; Agilent, Santa Clara, CA, USA) equipped with a thermal desorption cold

trap injector (TCT; CP4010, Chrompack, The Netherlands). Headspace volatiles collected

on Tenax-TA were released in the TCT thermo-desorption unit at 220 �C for 8 min with

helium as the carrier gas. The desorbed compounds were collected in the TCT cold trap

unit (SIL5CB-coated fused silica capillary) at -130 �C. Flash heating of the cold trap unit

provided sharp injection of the compounds into the capillary column of the gas chro-

matograph to which the cold trap unit was connected. The oven temperature of the GC was

programmed to rise from 40 �C (5-min. hold) to 280 �C at 15 �C/min. The headspace

volatiles were identified using the database (Wiley 7 N, Agilent) and by comparing their

retention times with those of authentic compounds. Peak areas of authentic compounds

were used for quantification. Because authentic a-thujene was not commercially available,

this compound was quantified against a standard curve of sabinene, which has a similar

structure. Therefore, its quantification should be considered tentative. The collections were

replicated eight times. Volatile emissions were statistically compared among treatments at

each time point using the Tukey–Kramer test when ANOVA supported significant

differences.

Results

EFN secretion

The amount of EFN secreted by lima bean plants differed significantly among the four

cabbage plant treatments (F3,140 = 5.12, P = 0.0022, ANOVA). Although lima bean plants
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exposed to volatiles from cabbage plants infested by P. xylostella or S. litura larvae did not

secrete more EFN compared with those exposed to control cabbage plants (Fig. 1, P [ 0.05,

Tukey–Kramer test), the plants secreted significantly more EFN when exposed to volatiles

from cabbage plants infested by T. urticae (Fig. 1, P \ 0.05, Tukey–Kramer test).

Migration of herbivores from cabbage to lima bean plants

All P. xylostella larvae remained on the cabbage plant at three and 10 days after release

(Fig. 2). Therefore, these data were excluded from the statistical analysis. There was a

significant difference in the migration rate between adult female T. urticae and S. litura
larvae at 3 days (Fig. 2, U = 8.5, P \ 0.0001, Mann–Whitney U test) and 10 days (Fig. 2,

U = 17.0, P \ 0.0001, Mann–Whitney U test) after release. The migration rate of T.
urticae was much higher than that of S. litura larvae (Fig. 2).

Performance of herbivores on plants

There was no difference in the duration of the S. litura larval stage when fed cabbage or

lima bean leaves (cabbage: 21.1 ± 1.2, lima bean: 20.7 ± 0.7, v2 = 1.18, P = 0.28,

logrank test). The number of eggs laid by T. urticae on cabbage leaves was significantly

Fig. 1 Quantities of extrafloral
nectar (EFN) (mean ? SE of 36
replicates per treatment) secreted
by lima bean plants exposed to
volatiles from uninfested cabbage
plants (control) and cabbage
plants infested with Plutella
xylostella larvae, Spodoptera
litura larvae, or female
Tetranychus urticae adults.
Different letters above the bars
indicate significant differences
among treatments by Tukey–
Kramer’s test (P \ 0.05)

Fig. 2 Proportions (mean ? SE of 16 replicates) of three individuals of Plutella xylostella larvae,
Spodoptera litura larvae, and adult female Tetranychus urticae that migrated from cabbage to lima bean
plants. No P. xylostella larvae migrated to lima bean plants during the experiments. Asterisks indicate
significant differences in the migration rates between T. urticae and S. litura by Mann–Whitney U test
(P \ 0.0001)
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lower than that on lima bean leaves (cabbage: 14.9 ± 1.9, lima bean: 28 ± 1.5, U = 6.5,

P \ 0.001, Mann–Whitney U test).

Volatiles from herbivore-infested cabbage plants

Although there were no significant differences among treatments in most compounds

emitted by cabbage plants at day 1, T. urticae-infested cabbage plants emitted more (Z)-3-

Fig. 3 Gas chromatography-mass spectrometry analyses of headspace volatiles from uninfested cabbage plants
and cabbage plants infested by Plutella xylostella larvae, Spodoptera litura larvae, and Tetranychus urticae for 1
(a), 3 (b), 5 (c), 8 (d), and 10 (e) days. The amounts of volatile compounds (mean ? SE of eight replicates) are
shown for volatile emission from plants. The compounds identified were: 1 a-thujene, 2 a-pinene, 3 sabinene, 4 b-
myrcene, 5 (Z)-3-hexenyl acetate, 6 a-terpinene, 7 limonene, 8 1,8-cineole, 9 c-terpinene, and 10 (E,E)-a-
farnesene. Different letters above the bars indicate significant differences among treatments by Tukey–Kramer’s
test (P \ 0.05)
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hexenyl acetate than did other treatments (Fig. 3a). Herbivore-infested cabbage plants had

higher volatile emissions than uninfested cabbage plants from 3 to 10 days after the

infestation (Fig. 3b–e). At day 3, herbivore-infested cabbage plants did not increase

emission of (Z)-3-hexenyl acetate and (E,E)-a-farnesene relative to uninfested plants

(Fig. 3b). Spodoptera litura- and P. xylostella-infested cabbage plants emitted significantly

more of eight and three compounds, respectively, than uninfested cabbage plants (Fig. 3b).

At day 5, S. litura- and T. urticae-infested cabbage plants each emitted significantly more

of nine of the ten compounds than uninfested cabbage plants (Fig. 3c). Plutella xylostella-

infested plants emitted more of two compounds than uninfested cabbage plants (Fig. 3c).

At day 8, herbivore-infested cabbage plants emitted larger amounts of most of the ten

compounds than uninfested plants, irrespective of herbivore species (Fig. 3d). At day 10, S.
litura-infested cabbage plants emitted larger amounts of most compounds than uninfested

plants; only sabinene levels were not increased in this (or any) treatment (Fig. 3e). (Z)-3-

Hexenyl acetate, a green leaf volatile produced by plants in response to mechanical

damage, is reported to induce an increase in EFN secretion in uninfested lima bean plants

(Kost and Heil 2006; Heil et al. 2008). Compared with uninfested cabbage plants, T.
urticae- and S. litura-infested cabbage plants emitted larger amounts of (Z)-3-hexenyl

acetate on days 1, 5, and 8 and days 8 and 10 respectively (Fig. 3).

Discussion

Lima bean plants increased their secretion of EFN when exposed to volatiles from her-

bivore-infested conspecifics (Choh et al. 2006; Kost and Heil 2006). These findings sug-

gested that plants recognize the presence of herbivores on their neighbours. In this study,

there were no significant differences in EFN secretion by lima bean plants when exposed to

volatiles from cabbage plants being attacked by any of three different herbivore species,

suggesting that lima bean plants do not discriminate among herbivore species based on

volatiles from infested neighbours. Interestingly, lima bean plants secreted more EFN

when exposed to volatiles from cabbage plants infested by T. urticae compared with lima

bean plants exposed to volatiles from uninfested cabbage plants. These results suggest that

lima bean plants could distinguish between volatiles from uninfested and T. urticae-

infested cabbage plants, but not among volatiles from uninfested cabbage plants and

cabbage plants infested by two other herbivore species.

Volatiles from herbivore-infested plants are known to differ by herbivore species

(Geervliet et al. 1997; De Moraes et al. 1998; Turlings et al. 1998; Ozawa et al. 2000;

Shiojiri et al. 2001, 2010; de Boer et al. 2004; Fatouros et al. 2005; Bruinsma et al. 2009).

In fact, our cabbage plants emitted different blends of volatiles when infested by different

herbivore species. Whether damage by T. urticae is equivalent to damage by the other two

species is unclear, but differences in feeding mode and in elicitors in the oral secretions of

the three herbivore species may induce different blends of volatiles in cabbage plants,

independent of the amount of damage.

Herbivore-infested cabbage plants increased their emission of (Z)-3-hexenyl acetate,

which induced an increase in EFN production in lima bean plants exposed to the compound

(Kost and Heil 2006; Heil et al. 2008). Although lima bean plants exposed to volatiles from

T. urticae-infested cabbage plants secreted larger amounts of EFN than lima bean plants

exposed to volatiles from uninfested cabbage plants, T. urticae-infested cabbage plants did

not emit larger amounts of (Z)-3-hexenyl acetate than uninfested cabbage plants

throughout the period of exposure. Ethylene, which was not detectable by the analytical
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method used in this study, may be involved in odour-mediated plant communication

(Arimura et al. 2000, 2002; Tscharntke et al. 2001) and may have affected our results.

Further studies are needed to clarify which volatile compounds from herbivore-infested

cabbage plants were involved in the increased EFN secretions of lima bean plants.

Spodoptera litura larvae and T. urticae both have broad host ranges and could threaten

lima bean plants neighbouring their host plants. However, our migration experiments

showed that T. urticae were more likely to attack neighbouring lima bean plants than were

S. litura larvae. These results may be partly explained by the unsuitability of cabbage

plants as hosts for T. urticae. Because predatory mites that prey on T. urticae use EFN as

an alternative food source (van Rijn and Tanigoshi 1999; Choh et al. 2006), increased EFN

secretion in lima bean plants could function as an indirect defence by increasing the

residence time of predatory mites (Choh et al. 2006).

When exposed to volatiles from T. urticae-infested leaves, lima bean leaves increased

their production of endogenous jasmonic acid, a phytohormone involved in plant defence

responses against herbivores (Arimura et al. 2002). In fact, jasmonic acid is involved in

induced resistance against T. urticae (Li et al. 2002; Choh et al. 2004b), in the emission of

carnivore attractants (Dicke et al. 1999; Ozawa et al. 2000; Gols et al. 2003), and in the

secretion of EFN (Heil 2004) in lima bean plants. Jasmonic acid-induced defence

responses are reported to benefit plants under herbivore attack, but to be costly in the

absence of herbivory (Baldwin 1998). If plants responded to all volatiles from herbivore-

infested neighbours, their responses would be wasteful in cases when herbivores did not

attack. To best allocate their resources, plants may have evolved the ability to tune their

defences against the herbivores that are most likely to attack them. This study offered the

new perspective that a plant may evaluate the threat of herbivores on neighbouring plants

via airborne cues. To clarify the ecological importance of plants’ ability to discriminate

herbivores on nearby plants, studies in natural systems are essential.
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Turlings TCJ, Loughrin JH, McCall PJ, Röse USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-
damaged plants protect themselves by attracting parasitic wasps. Proc Nat Acad Sci USA
92:4169–4174

Turlings TCJ, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile
emissions in maize by three herbivore species with different feeding habitats: possible consequences
for their natural enemies. Biol Cont 11:122–129

Van Rijn PCJ, Tanigoshi LK (1999) The contribution of extrafloral nectar to survival and reproduction of
the predatory mite Iphiseius degenerans and Ricinus communis. Exp Appl Acarol 23:281–296
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