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Abstract Tetranychus evansi Baker and Pritchard and Tetranychus urticae Koch (Acari:
Tetranychidae) are important pests of Solanaceae in many countries. Several studies have
demonstrated that T. urticae is an acceptable prey to many predatory mites, although the
suitability of this prey depends on the host plant. T. evansi, has been shown to be an unfa-
vorable prey to most predatory mites that have been tested against it. The predator Phyto-
seiulus fragariae Denmark and Schicha (Acari: Phytoseiidae) has been found in association
with the two species in Brazil. The objective of this work was to compare biological param-
eters of P. fragariae on T. evansi and on T. urticae as prey. The study was conducted under
laboratory conditions at 10, 15, 20, 25 and 30°C. At all temperatures, survivorship was
lower on T. evansi than on T. urticae. No predator reached adulthood at 10°C on the former
species; even on the latter species, only about 36% of the predators reached adulthood at
10°C. For both prey, in general, duration of each life stage was shorter, total fecundity was
lower and intrinsic rate of population increase (rm) was higher with increasing tempera-
tures. The slower rate of development of P. fragariae on T. evansi resulted in a slightly
higher thermal requirement (103.9 degree-days) on that prey than on T. urticae
(97.1 degree-days). The values of net reproduction rate (R0), intrinsic rate of increase (rm)
and Wnite rate of increase (�) were signiWcantly higher on T. urticae, indicating faster popu-
lation increase of the predator on this prey species. The highest value of rm of the predator
was 0.154 and 0.337 female per female per day on T. evansi and on T. urticae, respectively.
The results suggested that P. fragariae cannot be considered a good predator of T. evansi.
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Introduction

Tetranychus evansi Baker and Pritchard and Tetranychus urticae Koch are important pests
of Solanaceae in many countries (Jeppson et al. 1975). T. evansi has been reported from
countries in the Americas, Africa, Europe and, more recently, Asia (Ferreira and Carmona
1995; Meyer 1996; Bolland et al. 1998; Bonato 1999; Ferragut and Escudero 1999; Kreiter
et al. 2002; Knapp et al. 2003; Ho et al. 2004; Duverney et al. 2005; Migeon 2005). It
shows a strong preference for solanaceous plants. T. urticae is a cosmopolitan species that
attacks a wide range of hosts of diVerent families (Bolland et al. 1998).

Several studies have demonstrated that T. urticae is an acceptable prey to a large num-
ber of predatory mites on many diVerent plants (Kostiainen and Hoy 1996), although the
suitability of this prey for predatory mites depends on the host plant. For example, a few
phytoseiid species can be used to control T. urticae on solanaceous plants. T. evansi, has
been shown to be an unfavorable prey to most predatory mites that have been tested against
it (Moraes and Lima 1983; Moraes and McMurtry 1985, 1986; Escudero and Ferragut
2005; Rosa et al. 2005). An exception is a Brazilian strain of Phytoseiulus longipes Evans,
which seems to be a good predator of that pest species (Furtado et al. 2006, 2007).

Another predator of the same genus, Phytoseiulus fragariae Denmark and Schicha, was
recently found in association with T. evansi on Solanum americanum Mill. in Uruguaiana,
State of Rio Grande do Sul, Brazil (Furtado et al. 2006). Until then, this predator was only
known from Brazil in association with T. urticae, on Fragaria sp. and Bidens pilosa L.
(Denmark and Schicha 1983; Takahashi and Chant 1993).

Phytoseiulus fragariae is the least studied of the mites in the genus Phytoseiulus. At
26°C, and using eggs of Tetranychus paciWcus McGregor as prey, Takahashi and Chant
(1992, 1994) reported it to have longer developmental time and lower reproductive capac-
ity than reported for other species of this genus. However, Fraga (1996) reported that at
27°C and with eggs of T. urticae as prey, P. fragariae has a developmental rate comparable
to that of Phytoseiulus macropilis (Banks) (Smith and Summers 1949; Prasad 1967) and
Phytoseiulus persimilis Athias-Henriot (Laing 1968; Amano and Chant 1977). The fact that
diVerent stages of P. fragariae have been found associated with populations of T. evansi on
solanaceous plants in Brazil could indicate that this biotype is a potential biocontrol agent
of that pest. Considering that until now a single phytoseiid species has shown potential as a
predator of T. evansi (Furtado et al. 2006, 2007), the determination of a second prospective
predator would be extremely desirable.

The objective of this paper is to evaluate biological parameters of P. fragariae on
T. evansi and T. urticae as prey, at Wve temperatures, with special reference to evaluate its
potential as biocontrol agent against T. evansi on Solanaceae.

Materials and methods

This work was conducted in the Acarology Laboratory of “Departamento de Entomologia,
Fitopatologia e Zoologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz
(ESALQ)—Universidade de São Paulo”, where voucher specimens of the species used in
this study were deposited.

Tetranychus evansi and T. urticae were obtained from colonies that had been maintained
in the laboratory for about 5 years before the beginning of the study, on plants of Lycopers-
icon esculentum var. Kadi GI Mill. and Canavalia ensiformis (L.) DC., respectively.
P. fragariae was obtained from a laboratory colony initiated with about 40 specimens
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(diVerent life stages) collected in Uruguaiana about 6 months before the beginning of the
study. The colony of the predator was maintained using an adaptation of the method of
McMurtry and Scriven (1965), at 25.5 § 0.5°C, 88 § 7% RH and 12:12 h light:dark, and
fed T. urticae on leaXets of C. ensiformis.

The study was initiated with newly laid eggs of P. fragariae. To obtain them, groups of
about 100 females of the predator were transferred from the stock colony to a leaXet of
C. ensiformis infested with T. urticae. Four hours later, single eggs laid by the predator
were transferred to the experimental units, repeating this process until 50 eggs per treat-
ment were available. Each experimental unit consisted of a plastic Petri dish (2.6 cm in
diameter £ 1.0 cm high), whose bottom was covered with a disk of Wlter paper, onto which
a leaf disk (2.0 cm in diameter) of S. americanum infested with all developmental stages of
T. evansi or T. urticae was placed. The Wlter paper was moistened daily with distilled
water. Predators were transferred to new units every third day. The upper opening of each
unit was sealed with a transparent plastic Wlm (Magipack®). For each prey species, devel-
opment, adult survival and fecundity were investigated in climatic chambers at 10 § 0.8,
15 § 0.8, 20 § 0.8, 25 § 0.8 and 30 § 0.8°C and 12:12 h light:dark. Relative humidity in
the experimental units was not controlled, but should be close to saturation, as the units
were kept closed and water was added daily to the Wlter paper disk in it to prevent dehydra-
tion of the leaf disk.

During immature development, the experimental units were observed every 8 h, to
determine the duration of each developmental stage and the corresponding survivorship.
With those data, thermal requirements of each developmental stage and of the whole imma-
ture development were calculated, using the coeYcient of variation method (Arnold 1959).
A male obtained in this study or taken from the stock colony was introduced to each arena
containing a recently emerged female. The couple was maintained together up to the end of
the study; dead males were replaced by new males. When mites were in the adult stage,
observations were carried out every 24 h, to determine the reproductive parameters (preovi-
position, oviposition and postoviposition periods as well as daily oviposition) and longev-
ity. The sex ratio of the studied generation was determined based on the eggs laid on the
third and fourth day of oviposition. To do that, eggs were transferred individually with a
Wne brush to a unit similar to that used for the stock colony, which also contained leaXets
infested with T. urticae; that unit was maintained under the same condition mentioned for
the stock colony. Mites were sexed soon after reaching adulthood. Fertility life tables
(Birch 1948; Southwood 1978) were constructed using the method proposed by Maia et al.
(2000), which consists on a statistical package developed using the SAS system for Win-
dows®, version 6.12, that uses jackknife to estimate parameters for fertility life tables. At
each temperature, averages of each parameter on both prey were compared using Student’s
T-test (P · 0.05). Regression equations were calculated to relate the variation of each eval-
uated parameter with the variation in temperature.

Results and discussion

Immature development

A rather erratic pattern was observed for the variation of survivorship rates of the whole
immature phase of the predator at the diVerent temperatures when prey was T. evansi; a
quadratic equation signiWcantly described the relation between those parameters
(R2 = 73.7%). When prey was T. urticae, survivorship progressively increased with
1 C
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increasing temperatures; a quadratic response curve Wtted the observed data (R2 = 77.7%).
At all temperatures, survivorship was lower on T. evansi than on T. urticae. When prey was
T. evansi, mortality of the whole immature phase was very high at 10°C; it was low in the
egg stage, but high in the larval stage and very high in the protonymphal stage; none of the
predators that succeeded in completing the latter stage was able to complete the deutonym-
phal stage on this prey. Even on T. urticae, only about a third of the predators reached the
adult stage at that temperature (Table 1).

Lower survivorship on T. evansi than on T. urticae was also observed by Escudero and
Ferragut (2005) for Neoseiulus californicus (McGregor) and P. persimilis. However,
Furtado et al. (2007) observed higher survivorship of P. longipes on T. evansi than on
T. urticae.

On both prey species, progressively shorter durations of each immature stage and of the
whole immature phase were observed with increasing temperatures (Table 1). In each case, a
quadratic response curve Wtted the observed data well (R2 ¸ 86.9%). Duration of the whole
immature phase of P. fragariae at 25°C was slightly longer than reported by Takahashi and
Chant (1992) and Fraga (1996) at 27°C (5.0 days) and 26°C (4.4 days), respectively.

SigniWcant diVerences were not observed concerning the duration of the larval stage on
the diVerent prey at each temperature. Because of poor survivorship of post-larval stages of
P. fragariae at 10°C, no comparisons were carried out concerning the duration of subse-
quent preimaginal developmental stages at this temperature. At other temperatures, diVer-
ences were always signiWcant for the post-larval stages, except for the protonymphal stage
at 25°C; in other cases, development was always faster when the prey was T. urticae. Con-
gruently, the duration of the total immature developmental time was signiWcantly shorter
on T. urticae reared individuals at all tested temperatures. Escudero and Ferragut (2005)
also observed shorter duration of the immature phase of P. persimilis on T. urticae than on
T. evansi. However, Furtado et al. (2007) did not Wnd a signiWcant eVect of these two prey
species on the duration of the immature phase of P. longipes.

Also because of the low survivorship of post-larval stages of P. longipes at 10°C, only
data at higher temperatures were used in the determination of thermal requirements of those
stages and of the whole immature phase when prey was T. evansi. For the whole immature
development of P. fragariae, calculated lower threshold temperature for development (t0)
was 8.4 and 8.0°C on T. evansi and T. urticae, respectively (Table 1). However, because of
high mortality at the protonymphal stage at 10°C, the higher values of the threshold for that
stage (t0 = 10.3 on T. evansi and 8.7°C on T. urticae) should be considered as the actual
limiting values. The calculated lower threshold temperature for the protonymphal stage on
T. evansi was close to the value determined by Badii and McMurtry (1984) for P. longipes
on T. paciWcus (10.8°C) but lower than the value determined by Silva et al. (2005) for
P. macropilis on T. urticae (12.7°C).

The slower rate of development of P. fragariae on T. evansi resulted in a slightly higher
thermal requirement (103.9 degree-days) on that prey than on T. urticae (97.1 degree-
days). On both prey, the requirement was considerably higher than that reported by Badii
and McMurtry (1984) for P. longipes (75.9 degree-days) and by Silva et al. (2005) for
P. macropilis (66.0 degree-days).

Reproduction

Similarly to what was reported for immature development, on both prey species, progres-
sively shorter durations of preoviposition, oviposition and postoviposition periods as well
as adult female longevity were observed with increasing temperatures (Table 2). With one
1 C
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exception, the relation between the duration of these phases and temperature was linear
(R2 ¸ 87.5%); on T. evansi, the relation of the oviposition period to temperature levels cor-
responded to a quadratic function (R2 = 91.3%). In relation to adult male longevity, signiW-
cant response curves were quadratic on T. evansi and linear on T. urticae (R2 = 91.1% and
88.9%, respectively).

On both prey, slightly lower fecundity were progressively observed with increasing tem-
peratures; in both cases, the relation between that parameter and temperature was linear (R2

nearly 98%). For unknown reason, the variation of sex ratio was quite diVerent on diVerent
prey along the range of temperatures considered in the study. On T. evansi, sex ratio
increased from 15 to 20°C and decreased from 25 to 30°C (R2 = 87.0% for a quadratic
response). The trend was exactly the opposite on T. urticae (R2 = 72.5% for a quadratic
response) (Table 2).

The preoviposition period was signiWcantly longer on T. evansi, except at 15°C. On the
same prey, the oviposition period and female longevity were shorter, and total fecundity
was lower than the respective values recorded for the T. urticae reared individuals at all
temperatures. This suggests that T. urticae is a more suitable prey for P. fragariae than
T. evansi. The total fecundity determined in the present study on T. urticae are slightly
lower than those observed by Takahashi and Chant (1994) but much lower than observed
by Fraga (1996), at comparable temperatures.

The postoviposition period was signiWcantly longer for predators fed T. evansi at 30°C.
An irregular pattern was observed when comparing adult male longevity, probably because
of the low numbers of males at each temperature on either prey.

Moraes and McMurtry (1986) and Escudero and Ferragut (2005) also reported less
favorable reproductive parameters for P. persimilis when prey was T. evansi than when it
was T. urticae. Furtado et al. (2007) observed the opposite for P. longipes. In that case,
although the oviposition period was similar on both prey, fecundity was higher when it was
fed T. evansi.

On both prey, sex ratio of the progeny of the mites reared at the diVerent temperatures
was higher than 75% [females/(females + males)] at 20, 25 and 30°C, but only 57.5% on
T. evansi at 15°C, suggesting a possible disturbance of the pseudo-arrhenotoky process of
predators reared at relatively low temperature and fed an apparently unfavorable prey,
resulting in the production of a proportionally higher number of sons (Sabelis and
Nagelkerke 1988). Takahashi and Chant (1994) and Fraga (1996) reported sex ratios of
about 80% for this predator. Escudero and Ferragut (2005) reported a sex ratio of nearly
50% for P. persimilis and N. californicus fed T. evansi and 73% when the same predators
were fed T. urticae. Conversely, Furtado et al. (2007) reported sex ratio of nearly 90% for
P. longipes fed either of those prey.

Fertility life table

Concurrently with what was reported for duration of each immature stage and each adult
phase (preoviposition, oviposition and postoviposition), calculated generation time (T) was
progressively shorter with increasing temperatures on both prey, the observed data Wtting
well quadratic response curves (R2 = 95.4% on T. evansi and 97.3% on T. urticae)
(Table 3). At 15 and 20°C, T values were signiWcantly lower on T. evansi, but no diVer-
ences were observed at 25 and 30°C. The values of net reproduction rate (R0), intrinsic rate
of increase (rm) and Wnite rate of increase (�) generally increased with increasing tempera-
tures, except for R0 on T. evansi, which increased up to 25°C but then decreased at 30°C
(R2 = 77.6–81.7% for R0 and higher than 97% for the other two parameters). The positive
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values of those parameters indicated that the population of P. fragariae can increase on
both prey. However, the values were signiWcantly higher on T. urticae, indicating faster
population increase of the predator. The low capacity for population growth of P. fragariae
on T. evansi was due to the small production of oVsprings, with low net reproduction val-
ues R0 at all tested temperatures. The net reproduction rate determined at 25°C in this study
was about half as high as reported by Fraga (1996), but comparable to that determined by
Takahashi and Chant (1994). At 25°C, when prey was T. evansi, net reproduction rate was
much lower for P. persimilis (Escudero and Ferragut 2005) but much higher for P. longipes
(Furtado et al. 2007) than reported for P. fragariae in this study.

Although the results of this study showed a better performance of P. fragariae as a pred-
ator of T. evansi than the species studied by Moraes and McMurtry (1985) and Escudero
and Ferragut (2005), it seems that it cannot be considered a good predator of that pest. The
results of Furtado et al. (2007) are much more encouraging, and showed a much better per-
formance of P. longipes on the same pest. Conversely, the results suggest that P. fragariae
is a promising control agent of T. urticae. However complementary studies should be con-
ducted to determine whether it could also be eVective on solanaceous plants, had that prey
developed for successive generations on such type of substrate.
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