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Abstract The eriophyoid mite Aceria guerreronis Keifer (Eriophyidae), commonly

called the coconut mite, is a key pest of coconut fruits. Surveys conducted on coconut

palms in Brazil revealed the predatory mites Neoseiulus paspalivorus DeLeon (Phyto-

seiidae) and Proctolaelaps bickleyi Bram (Ascidae) as the most commonly associated

natural enemies of A. guerreronis on coconut fruits. However, virtually nothing is known

about the life history of these two predators. We conducted laboratory experiments at

25 ± 0.1�C, 70–90% RH and 12:12 h L:D photoperiod to determine the life history

characteristics of the two predatory mites when feeding on A. guerreronis and other

potential food sources present on coconut fruits such as Steneotarsonemus furcatus De-

Leon (Tarsonemidae), coconut pollen and the fungus Rhizopus cf. stolonifer Lind

(Mucoraceae). In addition, the two-spotted spider mite Tetranychus urticae Koch (Tetr-

anychidae) was tested for its suitability as prey. Both predators, N. paspalivorus and

P. bickleyi, thrived on A. guerreronis as primary food source resulting in shorter devel-

opmental time (5.6 and 4.4 days, respectively), higher oviposition rate (1.7 and 7.0 eggs/

female/day, respectively) and higher intrinsic rate of increase (0.232 and 0.489 per female/

day, respectively) than on any other diet but were unable to develop or lay eggs when fed
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T. urticae. Coconut pollen and S. furcatus were adequate alternative food sources for

N. paspalivorus and Rhizopus for P. bickleyi. We discuss the relevance of our findings for

natural and biological control of the coconut mite A. guerreronis.

Keywords Coconut � Aceria guerreronis � Neoseiulus paspalivorus �
Proctolaelaps bickleyi � Natural control � Biological control

Introduction

Aceria guerreronis Keifer (Acari: Eriophyidae) is worldwide the most important pest

mite of coconut fruits (Mariau 1977; Fernando et al. 2002). The tiny mite resides

beneath the perianth of fruits and feeds on the meristematic tissue, which leads to surface

scars, growth distortions and premature fruit fall (Mariau 1977; Moore and Howard

1996). Yield losses due to A. guerreronis damage to coconut fruits have been recorded as

ranging between 30 and 60% of the production (Moore et al. 1989; Nair 2002). Cur-

rently, considerable efforts are being devoted to biological control of the pest considering

the secluded environment in which the mites live and the associated difficulties in the

use of pesticides (Moore 2000; Ramaraju et al. 2002). Among the predatory mites found

in association with A. guerreronis, species belonging to the families Phytoseiidae and

Ascidae seem the most promising natural enemies (de Moraes and Zacarias 2002; de

Moraes et al. 2004; Lawson-Balagbo et al. 2007a). The family Phytoseiidae includes a

relatively large number of well-known predatory mite species that are already in use or

have a considerable potential for use in biological control of herbivorous pest mites and

insects on many crops including coconut palm (e.g. McMurtry 1982; Helle and Sabelis

1985; McMurty and Croft 1997; Sabelis 1996; de Moraes and Zacarias 2002; Gerson

et al. 2003).

The present work is embedded in the framework of a multi-institutional project with the

broad objective of developing a biological control program against A. guerreronis in Africa

and elsewhere. Aceria guerreronis has been recently shown to be most probably of South

American origin (Navia et al. 2005). Augmentative or classical biological control may

hence offer a sustainable solution to the problem caused by this pest in South America,

Africa and Asia (Moore 2000; de Moraes and Zaccarias 2002). Brazil is the largest coconut

producer in South America (FAO 2005) and falls within the likely native home of A.
guerreronis. Recent surveys of natural enemies of A. guerreronis conducted on coconut

palms in Brazil revealed Neoseiulus paspalivorus DeLeon (Phytoseiidae) and Proctola-
elaps bickleyi Bram (Ascidae) as two of the most frequently found predatory mites

(Lawson-Balagbo et al. 2007a). However, neither of those predatory mites has been sub-

jected to life history studies when offered A. guerreronis as prey. Studying life history is

one of the basic requirements for evaluating the potential of natural enemies to be effective

bio-control agents. Life history tests provide insights about the ability of a predator to

persist and multiply with given food/prey types and with that allow predicting its popu-

lation dynamics, in particular its numerical response to and impact on pest populations

(e.g. McMurtry 1983, Bellows et al. 1992).

The objective of this work was to determine the life history parameters of N. paspa-
livorus and P. bickleyi with A. guerreronis as prey by comparing survival, development

and reproduction on the latter with other food items under controlled laboratory conditions.
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Additional food items tested were those found on coconut fruits apart from A. guerreronis,

i.e. Steneotarsonemus furcatus DeLeon (Acari: Tarsonemidae), coconut pollen, and the

fungus Rhizopus cf. stolonifer Lind (Mucorales: Mucoraceae), and the two-spotted spider

mite Tetranychus urticae Koch (Acari: Tetranychidae). Rhizopus cf. stolonifer was

included based on the observation by E. S. Silva (ESALQ-USP unpublished) that P.
bickleyi develops well on hyphae of this fungus commonly found on old coconuts. Tetr-
anychus urticae was included because this spider mite, if suitable prey, could be used for

mass rearing purposes, and because it is the most common prey species tested with other

phytoseiids.

Material and method

Rearing and experimental units

Stock colonies of N. paspalivorus and P. bickleyi were established with individuals col-

lected from coconut fruits in September 2005, in Acarau in the State Ceará and Itamaracá in

the State Pernambuco, respectively. The stock colonies were maintained on arenas each

consisting of a sheet of dark PVC (12 cm diameter for N. paspalivorus and 10 · 6 cm for P.
bickleyi) laid on a water saturated foam mat placed in a Petri dish (15 cm diameter and

2.5 cm height) for N. paspalivorus and in a plastic tray (15 · 10 cm and 4 cm height) for P.
bickleyi. The margins of the sheet were covered by moist cotton wool serving as drinking

water source and preventing the mites from escaping. A narrow strip of an adhesive

(TanglefootTM) was applied along the centre of the cotton wool to further prevent the mites

from escaping. Colonies of N. paspalivorus and P. bickleyi were reared on A. guerreronis
offered on small pieces of infested meristematic tissue of coconut fruits replaced every third

day. Those pieces also served as oviposition sites. Eggs and other life-stages were collected

from the old pieces before they were discarded. Mites were transferred to new arenas every

2 weeks. The rearing units were stored at ambient laboratory conditions.

All experiments were carried out on arenas each consisting of a piece of Jack bean leaf

(5 · 4 · 4 cm), Canavalia ensiformis (L.) DC, placed upside down on water saturated

foam mat covered with moist filter paper, inside a plastic tray (7 · 6 · 5 cm). The edges of

the bean leaf were covered with strips of moist tissue paper to keep the leaf alive and

provide access to free water. Each experimental arena was furthermore surrounded by a

strip of Tanglefoot as described in the previous section. Mites were transferred to new units

every third day. Experimental units were stored in a climatic chamber at 25 ± 0.1�C, 70–

90% RH and 12:12 h L:D photoperiod.

Food types tested

All life-stages of A. guerreronis, S. furcatus and T. urticae were offered ad libitum as prey

to the predators. Aceria guerreronis and S. furcatus were supplied by introducing a piece of

about 1 cm2 of infested meristematic coconut fruit tissue to each arena. In this way the

longevity of the eriophyids and tarsonemids was enhanced and the piece of coconut fruit

also served as oviposition site for the predators. Coconut pollen was obtained from

branches of inflorescences bearing female flower-buds and male flowers collected from

coconut palms in Itamaracá. Tetranychus urticae was obtained from stock colonies

maintained on C. ensiformis. Coconut pollen and T. urticae were introduced in the arenas
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using a fine hair brush. Rhizopus cf. stolonifer was inoculated according to a methodology

developed by E. S. Silva (unpublished). For such, small pieces of ‘‘dog food’’ (Pedigree1

Complete) were moistened and inoculated with the fungus collected from old coconut

fruits and cultured in agar-agar growing medium in the laboratory. Inoculated pieces were

incubated 2 days in the climatic chamber to permit the development of the fungus before

introduction into the experimental unit. All food types were replenished every third day.

Life history studies

Fifty gravid females from the stock colony were confined on a rearing arena as described

above and offered A. guerreronis as prey. Eggs laid within 12 h were singly transferred to

experimental units. Each individual was observed every 8 h to determine the duration of

each immature stage until reaching adulthood. For the tests on adult longevity and

reproduction, thirty newly moulted female deutonymphs were taken from the stock colony

and singly isolated in experimental units. Upon reaching adulthood, each female was

paired with a male randomly withdrawn from the stock colony. The male was removed as

soon as oviposition started. Survival of the experimental female and number of eggs laid

were recorded every 24 h until natural death of the female. Eggs were collected and reared

to adulthood on separate arenas for the determination of the offspring sex ratio.

Statistical analyses

Separate analyses were run for each predator species. SPSS 12.0 (SPSS Inc., 2003) was used

for all statistical analyses. Differences in the mean duration of the total developmental time

among food types were compared by univariate ANOVA with sex as covariate and sub-

sequent Bonferroni multiple comparison tests. Juvenile survival with the different food

types was compared using chi-square tests. Female longevity, fecundity and oviposition rate

were compared among food types using univariate ANOVA and subsequent Bonferroni

multiple comparison tests. Before analysis, longevity and fecundity data of N. paspalivorus
were log-transformed to correct for heterogeneity of the variances. Offspring sex ratios

(percent female offspring) were compared between food types using pairwise chi-square

analyses of the actual counts. Jackknife estimates of life table parameters (Birch 1948) and

their variances were calculated as described by Hulting et al. (1990). Student’s t-tests were

used to compare the intrinsic rate of natural increase (rm) and the net reproductive rate (R0)

between food items. All analyses were conducted at P \ 0.05 significance level.

Results

Juvenile survival and development

Neoseiulus paspalivorus developed successfully on A. guerreronis, S. furcatus and coconut

pollen but was unable to reach adulthood when reared on Rhizopus and T. urticae (Table 1).

The mite developed the fastest when reared on A. guerreronis and the slowest on coconut

pollen (Table 1). Total developmental time of N. paspalivorus differed significantly among

food items and was influenced by sex (Table 2). Developmental time of males was shorter

(5.5 ± 0.18; 6.5 ± 0.24; 7.2 ± 0.34, days ± SE) than that of females (5.7 ± 0.15;
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7.2 ± 0.29; 7.7 ± 0.21, days ± SE) on A. guerreronis, S. furcatus and coconut pollen,

respectively. The proportion of immature stages reaching adulthood was 100% when reared

on A. guerreronis and significantly higher than that on coconut pollen (80%) (v2 = 6.67,

P \ 0.01). No significant differences were found in survival of immature mites reared on A.
guerreronis and S. furcatus (93%) (v2 = 2.07, P = 0.15) as well as between immature stages

reared on S. furcatus and those reared on coconut pollen (v2 = 2.31, P = 0.13).

Proctolaelaps bickleyi developed the fastest on A. guerreronis but failed to complete

juvenile development when fed S. furcatus, T. urticae and coconut pollen (Table 1). The

total developmental time of P. bickleyi differed significantly between the food types A.
guerreronis and Rhizopus and was not influenced by sex (Table 2). Developmental time

was 4.01 ± 0.25 (days ± SE) for males and 4.56 ± 0.10 (days ± SE) for females reared on

A. guerreronis, whereas it was 4.86 ± 0.06 for males and 4.87 ± 0.07 (days ± SE) for

females on Rhizopus. All immature P. bickleyi reached adulthood on both A. guerreronis
and Rhizopus.

Adult female longevity, fecundity and oviposition rate

Mean female longevity of N. paspalivorus did not significantly differ among food types

(F2,57 = 0.51, P = 0.60) (Table 3). In contrast, female fecundity differed significantly

Table 1 Mean duration (days ± SE) of the life-stages of Neoseiulus paspalivorus and Proctolaelaps
bickleyi on different food types at 25 ± 0.1�C, 70–90% RH and 12 h photophase

Food N Egg Larva Protonymph Deutonymph Egg to adult1

N. paspalivorus

A. guerreronis 30 1.6 ± 0.97 1.3 ± 0.09 1.4 ± 0.05 1.2 ± 0.06 5.6 ± 0.16a

S. furcatus 28 1.9 ± 0.15 1.3 ± 0.07 1.5 ± 0.08 1.9 ± 0.12 6.8 ± 0.16b

Coconut pollen 24 1.7 ± 0.14 1.7 ± 0.11 2.1 ± 0.13 2.0 ± 0.07 7.5 ± 0.18c

P. bickleyi

A. guerreronis 30 1.3 ± 0.09 1.0 ± 0.03 1.1 ± 0.02 1.1 ± 0.05 4.4 ± 0.11a

Rhizopus 30 1.4 ± 0.08 1.1 ± 0.05 1.1 ± 0.04 1.2 ± 0.07 4.9 ± 0.04b

1 Different letter denotes significant difference within species (ANOVA followed by Bonferroni tests,
P \ 0.05).

Table 2 Univariate ANOVAs of the influence of food and sex (covariate) on total developmental time of
Neoseiulus paspalivorus and Proctolaelaps bickleyi at 25 ± 0.1�C, 70–90% RH and 12 h photophase

Source of variation df Mean of squares F P level

N. paspalivorus

Sex (covariate) 1 0.016 5.14 0.026

Food 2 0.117 36.84 0.001

Error 78 0.003

P. bickleyi

Sex (covariate) 1 0.705 3.56 0.064

Food 1 3.531 17.81 0.001

Error 57 0.198
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among the three food types (F2,57 = 5.23, P = 0.008). Fecundity was the highest with A.
guerreronis (24.7 ± 2.35 SE eggs/female/life) and less than half and similar with S.
furcatus and coconut pollen as food (Table 3). The percentage of female offspring (sex

ratio) on A. guerreronis (n = 486) was significantly different from the percentages on S.
furcatus (n = 103) (v2 = 10.39, P = 0.001) and coconut pollen (n = 129) (v2 = 6.56,

P = 0.01) (Table 3). No difference was found in the sex ratio of mites reared on S. furcatus
and coconut pollen (v2 = 0.46, P = 0.50) (Table 3). Longevity of adult P. bickleyi females

did not differ between A. guerreronis and Rhizopus (F1,58 = 0.47, P = 0.49), whereas

fecundity was strongly influenced by food (F1,58 = 11.22, P = 0.001) (Table 3). The sex

ratios on A. guerreronis (n = 1573) and Rhizopus (n = 987) differed significantly

(v2 = 13.26, P \ 0.001) (Table 3).

Adult female survival of N. paspalivorus exceeded 80% during the first week on all

three food types. After 2 weeks the survival percentage declined sharply in adult females

reared on S. furcatus and reached zero after *20 days. About 20% of adult females reared

on A. guerreronis and coconut pollen survived longer than 25 days (Fig. 1a). Mean daily

oviposition rate of N. paspalivorus differed significantly among food types (F2,57 = 21.66,

P \ 0.001). The oviposition rate of N. paspalivorus remained at a level of *2 eggs per day

on A. guerreronis during the first week and declined steadily after 2 weeks (Table 3,

Fig. 1b). The daily mean oviposition rate was *1 egg per day on S. furcatus and coconut

pollen, which was significantly lower than that reached on A. guerreronis (Table 3,

Fig. 1b).

Adult female survival of P. bickleyi declined sharply in the second week of life and

reached zero after *20 days on both food types (Fig. 2a). The oviposition rate of P.
bickleyi was significantly higher on A. guerreronis than on Rhizopus (F1,58 = 59.86,

P \ 0.001). The peak oviposition rate was reached during the first week of oviposition

with up to 7 eggs per female per day on A. guerreronis (Fig. 2b).

Life table parameters

The pre- and post-oviposition periods of N. paspalivorus did not significantly differ among

food types (F2,57 = 2.45, P = 0.095 and F2,57 = 0.93, P = 0.399, respectively). In contrast,

Table 3 Female longevity (days), fecundity (eggs/female), oviposition rate (eggs/female/day) (mean ± SE)
and sex ratio (%female offspring) of Neoseiulus paspalivorus and Proctolaelaps bickleyi on different food
types at 25 ± 0.1�C, 70–90% RH and 12 h photophase

Food N Longevity1 Fecundity1 Oviposition rate1 Sex ratio2

N. paspalivorus

A. guerreronis 28 16.5 ± 1.30a 24.7 ± 2.35a 1.7 ± 0.09a 75a

S. furcatus 13 13.1 ± 0.84a 11.1 ± 1.08ab 1.1 ± 0.07b 59b

Coconut pollen 19 14.5 ± 1.56a 11.9 ± 1.74b 1.0 ± 0.09b 64b

P. bickleyi

A. guerreronis 30 11.0 ± 0.77a 52.4 ± 4.23a 7.0 ± 0.34a 77a

Rhizopus 30 11.8 ± 0.87a 32.9 ± 4.01b 3.6 ± 0.31b 83b

Separate statistical analysis for each species.

Different letters within columns denote significant differences (P \ 0.05) (1results of ANOVA followed by
Bonferroni tests, with longevity and fecundity of N. paspalivorus log-transformed prior to analysis; 2results
of chi-square analysis).
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the oviposition period differed significantly among food types (F2,57 = 3.54, P = 0.035)

(Table 4). The oviposition period was longer on A. guerreronis and shorter on coconut

pollen (Table 4). Neoseiulus paspalivorus reared on A. guerreronis reached a significantly

higher intrinsic rate of increase (rm) than those fed S. furcatus (T39 = 45.12, P \ 0.001)

and coconut pollen. (T45 = 61.7, P \ 0.001) (Table 4). The rm values of mites reared on S.
furcatus and coconut pollen differed significantly (T30 = 10.94, P \ 0.001). The R0 of N.
paspalivorus reared on A. guerreronis was significantly higher than that of mites reared on

S. furcatus (T39 = 28.26, P \ 0.001) and coconut pollen (T45 = 32.14, P \ 0.001). There

was no difference between the latter two food types (T39 = 1.47, P = 0.15) (Table 4). The

mean generation time of N. paspalivorus was shorter on A. guerreronis and S. furcatus
(11–12 days) than on coconut pollen (*16 days). The finite rate of increase varied

between 1.1 (on S. furcatus and coconut pollen) and 1.3 (on A. guerreronis) per female/day

(Table 4).

The pre-oviposition, post-oviposition and oviposition periods of P. bickleyi did not

differ between the two food types (F1,58 = 2.52, P = 0.118; F1,58 = 0.08, P = 0.774;

F1,58 = 0.62, P = 0.434, respectively) (Table 4). The first eggs were laid shortly after

mating and the oviposition period lasted *8 days with both food types (Table 4).
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Proctolaelaps bickleyi reached a quite high intrinsic rate of increase on both A. guerreronis
and Rhizopus, with the rm on the former prey being significantly higher than the rm reached

on the latter (T58 = 49.57, P \ 0.001) (Table 4). Similarly, the R0 was significantly higher

on A. guerreronis than on Rhizopus (T58 = 15.4, P \ 0.001). The mean generation time

ranged between 8 days and 9 days on both food types. The finite rate was 1.4 (on Rhi-
zopus) and 1.6 (on A. guerreronis) (Table 4).

Discussion

Our study shows that A. guerreronis is a suitable prey and of high nutritional value for N.
paspalivorus and P. bickleyi resulting in a short developmental time, high oviposition rate

and with that high intrinsic rate of increase (rm). All other food types tested were inferior to

A. guerreronis. However, S. furcatus and coconut pollen may be considered alternative

food sources (sensu Overmeer 1985) for N. paspalivorus and the fungus Rhizopus for

P. bickleyi.
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Both predatory mites showed characteristics of type III/IV generalist predatory mites as

described by McMurtry and Croft (1997). Many type III/IV generalist mites (McMurtry

and Croft 1997) are commonly found on/in different plants/habitats in association with

eriophyoid mites and are considered the primary agents in natural and biological control of

these mites (e.g. Sabelis 1996). With only a few exceptions all eriophyoid mites tested

proved to be suitable prey for generalist phytoseiid predators (McMurtry et al. 1970;

Sabelis 1996). However, the nutritional value of eriophyoid mites for phytoseiid mites is

not self-evident. The citrus rust mite Phyllocoptruta oleivora (Ashmead) (Eriophyidae) is

an inadequate prey for Amblyseius largoensis Muma (Kamburov 1971) but suitable for

Amblyseius swirskii Athias-Henriot (Swirskii et al. 1967). Likewise, the tomato russet mite

Aculops lycopersici Massee (Eriophyidae) is an inadequate prey for Euseius (=Amblyseius)
victoriensis (Womersley) (James 1989) but suitable for Euseius concordis (Chant) (de

Moraes and Lima 1983). Abou-Awad et al. (2001) showed that Aceria dioscoridis (Soli-

man and Abou-Awad) contains important polypeptides, which enhanced the fertility of

Lasioseius athiasae Nawar and Nasr (Ascidae) when reared on that prey in comparison to

T. urticae or the nematode Meloidogyne incognita Chitwood. Similarly, deficiency in

certain nutrients may explain the unsuitability of T. urticae as prey observed in our study.

The intrinsic rate of increase (rm) of P. bickleyi on A. guerreronis is probably the highest

recorded for ascid mites (Nawar 1992; Abou-Awad et al. 2001; Gerson et al. 2003) and

that of N. paspalivorus among the highest for phytoseiids on a diet of eriophyoid mites

(e.g. Dicke et al. 1990; Schausberger 1992; Engel and Ohnesorge 1994). Both predatory

mites thrived on A. guerreronis making them promising biocontrol agents of that pest.

The availability of alternative foods on coconut palms such as coconut pollen, tar-

sonemid mites and Rhizopus may help to sustain the populations of both predatory mites

when A. guerreronis is scarce (Onzo et al. 2005; Sabelis and van Rijn 2005). The rather

high intrinsic rate of increase of P. bickleyi reached with Rhizopus could be highly

favourable for mass-rearing and augmentative release purposes. Our method of cultivation

of Rhizopus is simple and cheap. The composition in proteins, carbohydrates, minerals,

vitamins and fibres of commercially available dry dog food make it a perfect media for

cultivating the fungus (E. S. Silva unpublished). Ascid mites and especially species in the

genus Proctolaelaps are generally known to be able to reach very high population densities

within a short period of time (Nawar 1992; Abou-Awad et al. 2001). Some ascid mites

such as Blattisocius keegani (Fox) and B. tarsalis (Berlese) are known as efficacious

biocontrol agents of moth, beetle eggs and acarid mites in stored products (Gerson et al.

2003). Nawar (1992) observed that Proctolaelaps deleoni Nawar developed well on the

fungi Fusarium oxysporum Snyder and Hansen and Aspergillus flavius Teigh but failed to

lay eggs.

Interestingly, both N. paspalivorus and P. bickleyi failed to reach adulthood when fed T.
urticae. This contrasts sharply with observations by K. Negloh (unpublished), who suc-

cessfully reared populations of N. paspalivorus from Benin and Brazil on washed eggs of

T. urticae. This discrepancy may be due to profound differences in the experimental

procedures such as the use of a different host plant for rearing T. urticae and washing the T.
urticae eggs. Washing eggs of T. urticae may have removed cues and webbing and

consequently allowed feeding by the predatory mite. Spider mite webbing has been

reported to disturb some generalist predators in searching behaviour (de Moraes and Lima

1983) and/or to entrap the mites (e.g. Schausberger 1992). Our experimental protocol of

brushing mixed stages of T. urticae on the experimental units allowed the formation of

webbing and may have interfered with prey search and capture by N. paspalivorus and P.
bickleyi. Juvenile mortality is usually the highest in the first feeding stage, which is,
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depending on the species, the larva or the protonymph (Zhang and Croft 1994; Schaus-

berger and Croft 1999). Our results indicate that both N. paspalivorus and P. bickleyi may

have an obligatory feeding larval stage since the mites were unable to moult to the

protonymphal stage without food (Lawson-Balagbo personal observation). Apart from the

genus Euseius obligatory feeding larvae are relatively rare in phytoseiid mites (Zhang and

Croft 1994; McMurtry and Croft 1997; Schausberger and Croft 1999). Neoseiulus pa-
spalivorus is the first recorded species in the genus Neoseiulus with an obligatory feeding

larval type. Similarly to phytoseiid mites, ascid larvae may or may not have to feed to

reach the protonymphal stage. In contrast to P. bickleyi, larvae of L. athiasae are facul-

tative feeders (Abou-Awad et al. 2001).

Our study is the first documentation of the life history of N. paspalivorus and P. bickleyi
on the various food types occurring on coconut fruits. This is an important step in

developing biological or integrated control strategies against the coconut mite A. guerre-
ronis. In related studies Lawson-Balagbo et al. (2007a, b) observed that both predators

may co-occur on coconut fruits but occupy separate micro-niches under the perianth. The

larger P. bickleyi adults seem to have more difficulties in accessing the tightest areas under

the perianth than N. paspalivorus adults. Together, these works suggest that both predatory

mites are promising candidates for biological control of A. guerreronis and both will be

subjected to further investigations. Before investigating the potential impact of both

predatory mites singly and/or in combination on A. guerreronis under field conditions,

small scale studies on population dynamics and intraguild interactions (spatial avoidance

and predation) will be studied under controlled laboratory conditions.
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