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Abstract. In this paper, we are concerned with a delayed multispecies competition
predator-prey dynamic system with Beddington-DeAngelis functional response. Some suffi-
cient conditions which guarantee the existence of a positive periodic solution for the system
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result is related to the delays, which is different from the corresponding ones known from
literature (the results are delay-independent).
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1. Introduction

The dynamic relationship between predators and their preys has long been and

will continue to be one of the dominant themes in both ecology and mathemati-

cal ecology due to its universal existence and importance. Recently, many authors

have studied the predator-prey system with the Beddington-DeAngelis functional

response which was first proposed by Beddington [1] and DeAngelis Goldstein and

O’Neill [5], independently. Although they have made much progress in the study
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of predator-prey models with the Beddington-DeAngelis functional response, such

models are not well studied yet in the sense that all the existing results are based on

the assumption that the predator preys on one prey. This assumption is rarely the

case in real life. Naturally, a more realistic and interesting model should take into

account the predator preying on more than one prey. Zeng and Fan [14] proposed a

more reasonable model in real life which takes on the form

(1.1)






ẋi(t) = xi(t)
[
ai(t) −

n∑

j=1

bij(t)xj(t) −
ci(t)y(t)

αi(t) + βi(t)xi(t) + γi(t)y(t)

]
,

i = 1, 2, . . . , n,

ẏ(t) = y(t)
[
−d(t) +

n∑

j=1

fj(t)xj(t)

αj(t) + βj(t)xj(t) + γj(t)y(t)

]
.

By applying the comparison theorem they obtained a result on the existence of

almost periodic solutions. As was pointed out by Kuang [8], any model of species

dynamics without delays is an approximation at best. More detailed arguments on

the importance and usefulness of time-delays in realistic models may also be found in

the classical books of Macdonald [12] and Gopalsamy [7]. Some excellent results for

delayed biological systems have been obtained by many researchers such as Beretta

and Kuang [2], Lu [11], Cai, Huang and Chen [4].

Motivated by the above reasons and considering that the delay may occur in the

competition among preys, in this paper we consider the delayed differential system

with Beddington-DeAngelis functional response

(1.2)






ẋi(t) = xi(t)
[
ai(t) −

n∑

j=1

bij(t)xj(t− τj(t)) −
ci(t)y(t)

αi(t) + βi(t)xi(t) + γi(t)y(t)

]
,

i = 1, 2, . . . , n,

ẏ(t) = y(t)
[
−d(t) +

n∑

j=1

fj(t)xj(t)

αj(t) + βj(t)xj(t) + γj(t)y(t)

]
,

with initial conditions

(1.3) xi(θ) = ϕi(θ), θ ∈ [−τ, 0], ϕi(θ) ∈ C([−τ, 0],R+), i = 1, 2, . . . , n,

y(θ) = ψ(θ), θ ∈ [−τ, 0], ψ(θ) ∈ C([−τ, 0],R+),

where xi(t), y(t) denote the size of prey and predator populations at time t, re-

spectively, ai(t), bij(t), ci(t), d(t), fi(t), αi(t), βi(t), γi(t) : R → [0,+∞) (i, j =

1, 2, . . . , n) are continuous positive periodic functions with a period T ,

τ = max{τj(t), t ∈ [0, T ], j = 1, 2, . . . , n},
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τj(t) is a nonnegative and continuously differentiable periodic function with the pe-

riod T on R. Obviously, system (1.1) is a special case of systems (1.2)–(1.3) if one

chooses τj(t) ≡ 0 in systems (1.2)–(1.3).

We define

f =
1

T

∫ T

0

f(t) dt, fL = min
t∈[0,T ]

f(t), fM = max
t∈[0,T ]

f(t),

where f is a continuous T -periodic function.

The aim of this paper is to obtain sufficient conditions for the existence of positive

periodic solutions for system (1.2) by using the Mawhin coincidence theorem and

some analysis approaches. It is interesting that the result obtained in this paper

is related to the delay τj(t) (j = 1, 2, . . . , n) (or delay-dependent), which makes it

different from the previous works [4], [9], [10], [13] that are delay-independent.

2. Lemmas

In order to present sufficient conditions guaranteeing the existence of a positive

periodic solution for the system (1.2), we first introduce the coincidence degree the-

orem.

Let X and Y be two Banach spaces, L : DomL ⊂ X → Y a linear map, and

N : X → Y a continuous map. If dimKerL = codim ImL < +∞ and ImL ∈ Y is

closed, then the operator L is called a Fredholm operator with index zero [6]. And

if L is a Fredholm operator with index zero and there exist continuous projections

P : X → X and Q : Y → Y such that ImP = KerL, ImL = KerQ = Im(I − Q),

then L|Dom L∩KerP : (I − P )X → ImL has an inverse function; we denote it by Kp.

Assume Ω ∈ X is any open set. If QN(Ω) is bounded and Kp(I − Q)N(Ω) ∈ X is

relative compact, then we say N ∈ Ω is L-compact.

Now we recall the Mawhin coincidence theorem.

Lemma 2.1 ([6]). Let both X and Y be Banach spaces, L : DomL ⊂ X → Y a

Fredholm operator with index zero, Ω ∈ Y an open bounded set, and let N : Ω → X

be L-compact on Ω. If all the following conditions hold:

(C1) Lx 6= λNx for x ∈ ∂Ω ∩ DomL, λ ∈ (0, 1);

(C2) Nx 6∈ ImL for x ∈ ∂Ω ∩ KerL;

(C3) deg{JQN,Ω ∩ KerL, 0} 6= 0, where J : ImQ→ KerL is an isomorphism;

then the equation Lx = Nx has at least one solution on Ω ∩ DomL.
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Lemma 2.2 ([11]). If τ ∈ C1(R,R), with τ(t + T ) ≡ τ(t) and τ̇(t) < 1 for

t ∈ [0, T ], then the function ϕ(t) = t − τ(t) has a unique inverse ϕ−1(t) satisfying

ϕ ∈ C(R,R) with ϕ−1(s+ T ) ≡ ϕ−1(s) + T for s ∈ [0, T ].

Lemma 2.3 ([3]). Suppose g(t) is a differentiable continuous T -periodic function

on R for ∀t0 ∈ R, ∀t1, t2 ∈ [t0, t0 + T ], then

g(t) 6 g(t1) +

∫ t0+T

t0

|ġ(t)| dt, g(t) > g(t2) −

∫ t0+T

t0

|ġ(t)| dt.

3. Existence of periodic solutions

Theorem 3.1. Let the following conditions hold:

(A1) τ̇j(t) < 1 (j = 1, 2, . . . , n) for t ∈ R;

(A2) āi −
n∑

j=1,j 6=i

Bij exp(Hj) −
(
ci/αi

)
exp(H̃) > 0, i = 1, 2, . . . , n;

(A3) any of the following inequalities holds:

f j exp(Sj) − d̄(αM
j + βM

j exp(Sj)) > 0, j = 1, 2, . . . , n.

Then system (1.2) has at least one positive T -periodic solution, where Bij(t), Hj ,

H̃ , S1 are defined in the following proof.

P r o o f. Since

xi(t) = xi(0) exp

{∫ t

0

[
ai(s) −

n∑

j=1

bij(s)xj(s− τj(s))

−
ci(s)y(s)

αi(s) + βi(s)xi(s) + γi(s)y(s)

]
ds

}
,

y(t) = y(0) exp

{ ∫ t

0

[
− d(s) +

n∑

j=1

fj(s)xj(s)

αj(s) + βj(s)xj(s) + γj(s)y(s)

]
ds

}
,

the solution of system (1.2) remains positive for all t ∈ R. We let

(3.1) xi(t) = eui(t), y(t) = ev(t), i = 1, 2, . . . , n.

On substituting (3.1) into system (1.2), this system can be reformulated in the form

(3.2)





u̇i(t) = ai(t) −

n∑

j=1

bij(t) exp{uj(t− τj(t))}

−
ci(t) exp{v(t)}

αi(t) + βi(t) exp{ui(t)} + γi(t) exp{v(t)}
,

v̇(t) = −d(t) +

n∑

j=1

fj(t) exp{uj(t)}

αj(t) + βj(t) exp{uj(t)} + γj(t) exp{v(t)}
.
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In order to apply Lemma 2.1 to the study of existence of positive periodic solutions

to the above system, we set

X = Y = {z(t) = (u(t), v(t))⊤

= (u1(t), u2(t), . . . , un(t), v(t))⊤ ∈ C(R,Rn+1) : z(t+ T ) ≡ z(t)},

equipped with the norm

‖z‖ = ‖(u(t), v(t))⊤‖ =
n∑

i=1

max
t∈[0,T ]

|ui(t)| + max
t∈[0,T ]

|v(t)|.

Then both X and Y are Banach spaces, where ⊤ is the transpose.

Take z ∈ X , the periodicity yields that both

Fi(z, t) = ai(t) −

n∑

j=1

bij(t) exp{uj(t− τj(t))}

−
ci(t) exp{v(t)}

αi(t) + βi(t) exp{ui(t)} + γi(t) exp{v(t)}
∈ C(R,R),

G(z, t) = − d(t) +

n∑

j=1

fj(t) exp{uj(t)}

αj(t) + βj(t) exp{uj(t)} + γj(t) exp{v(t)}
∈ C(R,R),

are T -periodic. Define operators L, P , and Q as follows,

L : DomL ∩X → Y, Lz =
dz

dt
, P (z) = z(0), Q(z) =

1

T

∫ T

0

z(t) dt,

where DomL = {z; z ∈ X : z(t) ∈ C1(R,Rn+1)}, and define N : X → Y by

Nz = (F(z, t), G(z, t))⊤ = (F1(z, t),F2(z, t), . . . ,Fn(z, t),G(z, t))⊤.

Then

KerL = R
n+1, dimKerL = codim ImL,

and

ImL =

{
z ∈ Y :

∫ T

0

z(t) dt = 0

}

is closed in Y , and both P , Q are continuous projections satisfying

ImP = KerL, ImL = KerQ = Im(I −Q).
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So L is a Fredholm operator with index zero, which implies that L has a unique

inverse. We denote by Kp : ImL → KerP ∩ DomL the inverse of L. By simple

calculation, we obtain

Kp(z) =

∫ t

0

z(s) ds−
1

T

∫ T

0

∫ t

0

z(s) ds dt.

Therefore,

QNz =

(
1

T

∫ T

0

F1(z, s) ds,
1

T

∫ T

0

F2(z, s) ds, . . . ,

1

T

∫ T

0

Fn(z, s) ds,
1

T

∫ T

0

G(z, s) ds

)⊤

and

Kp(I −Q)Nz = (η1, η2, . . . , ηn, γ)
⊤,

where

ηi =

∫ T

0

Fi(z, s) ds−
1

T

∫ T

0

∫ t

0

Fi(z, s) ds dt−
( t

T
−

1

2

)∫ T

0

Fi(z, s) ds,

i = 1, 2, . . . , n,

γ =

∫ T

0

G(z, s) ds−
1

T

∫ T

0

∫ t

0

G(z, s) ds dt−
( t

T
−

1

2

)∫ T

0

G(z, s) ds.

Obviously, it is not difficult to check by the Lebesgue convergence theorem that

both QN and Kp(I −Q)N are continuous. By using the Arzela-Ascoli Theorem, we

know that the operator Kp(I −Q)N(Ω) is compact and QN(Ω) is bounded for any

open set Ω ∈ X . So N ∈ Ω is L-compact on Ω.

In order to apply Lemma 2.1, we need to search for an appropriate open, bounded

subset Ω. Corresponding to the operator equation Lz = λNz for λ ∈ (0, 1), we have

(3.3)





u̇i(t) = λ

[
ai(t) −

n∑

j=1

bij(t) exp{uj(t− τj(t))}

−
ci(t) exp{v(t)}

αi(t) + βi(t) exp{ui(t)} + γi(t) exp{v(t)}

]
,

v̇(t) = λ

[
−d(t) +

n∑

j=1

fj(t) exp{uj(t)}

αj(t) + βj(t) exp{uj(t)} + γj(t) exp{v(t)}

]
.
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Assume that (u(t), v(t))⊤ = (u1(t), . . . , un(t), v(t))⊤ ∈ X is a solution of (3.3) for a

certain λ ∈ (0, 1). Integrating (3.3) over the interval [0, T ], we obtain

∫ T

0

n∑

j=1

bij(t) exp{uj(t− τj(t))} dt(3.4)

+

∫ T

0

ci(t) exp{v(t)}

αi(t) + βi(t) exp{ui(t)} + γi(t) exp{v(t)}
dt =

∫ T

0

ai(t) dt,

∫ T

0

n∑

j=1

fj(t) exp{uj(t)}

αj(t) + βj(t) exp{uj(t)} + γj(t) exp{v(t)}
dt =

∫ T

0

d(t) dt.(3.5)

It follows from (3.3)–(3.5) that

∫ T

0

|u̇i(t)| dt <

∫ T

0

ai(t) dt+

∫ T

0

[ n∑

j=1

bij(t) exp{uj(t− τj(t))}(3.6)

+
ci(t) exp{v(t)}

αi(t) + βi(t) exp{ui(t)} + γi(t) exp{v(t)}

]
dt = 2āiT,

∫ T

0

|v̇(t)| dt <

∫ T

0

d(t) dt(3.7)

+

∫ T

0

[ n∑

j=1

fj(t) exp{uj(t)}

αj(t) + βj(t) exp{uj(t)} + γj(t) exp{v(t)}

]
dt = 2d̄T.

Since (u(t), v(t))⊤ ∈ X , there exist ξi∗ , ξ
∗
i , ζ∗, ζ

∗ ∈ [0, T ] such that

ui(ξi∗) = min
t∈[0,T ]

ui(t), ui(ξ
∗
i ) = max

t∈[0,T ]
ui(t),(3.8)

v(ζ∗) = min
t∈[0,T ]

v(t), v(ζ∗) = max
t∈[0,T ]

v(t).(3.9)

In view of Lemma 2.2 and condition (A1), we get

(3.10)

∫ T

0

bij(t) exp{uj(t− τj(t))} dt =

∫ T−τj(T )

−τj(0)

bij(ϕ
−1
j (t)) exp{uj(t)}

1 − τ̇j(ϕ
−1
j (t))

dt

=

∫ T

0

bij(ϕ
−1
j (t)) exp{uj(t)}

1 − τ̇j(ϕ
−1
j (t))

dt

=

∫ T

0

Bij(t) exp{uj(t)} dt,

in which ϕ−1
j is the inverse function of ϕj = t−τj(t), Bij(t) =

bij(ϕ
−1

j
(t))

1−τ̇j(ϕ
−1

j
(t))
. It follows

from (3.4), (3.8), and (3.10) that

∫ T

0

Bii(t) exp{ui(t)} dt < āiT,
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which yields

(3.11) ui(ξi∗) < ln
āi

Bii

.

From Lemma 2.3, (3.6), and (3.11), we get

(3.12) ui(t) 6 ui(ξi∗) +

∫ T

0

|u̇i(t)| dt < ln
āi

Bii

+ 2āiT ≡ Hi.

In view of (3.5) and (3.9), we obtain

∫ T

0

n∑

j=1

fj(t) exp(Hj)

γj(t) exp{v(ζ∗)}
dt > d̄T,

which implies

(3.13) v(ζ∗) < ln

n∑

j=1

(fj

γj

)exp(Hj)

d̄
.

From Lemma 2.3, (3.7), and (3.13), we obtain

(3.14) v(t) 6 v(ζ∗) +

∫ T

0

|v̇(t)| dt < ln

n∑

j=1

(fj

γj

)exp(Hj)

d̄
+ 2d̄T ≡ H̃.

On the other hand, from (3.4), (3.8), (3.10) and condition (A2), we get

BiiT exp{ui(ξ
∗
i )} +

n∑

j=1,j 6=i

BijT exp(Hj) +
( ci
αi

)
T exp(H̃) > āiT,

ui(ξ
∗
i ) > ln

1

Bii

[
āi −

n∑

j=1,j 6=i

Bij exp(Hj) −
( ci
αi

)
exp(H̃)

]
.(3.15)

We derive from Lemma 2.3, (3.7), and (3.15) that

(3.16) ui(t) > ui(ξ
∗
i ) −

∫ T

0

|u̇i(t)| dt

> ln
1

Bii

[
āi −

n∑

j=1,j 6=i

Bij exp(Hj) −
( ci
αi

)
exp(H̃)

]
− 2āiT ≡ Si,
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which, together with (3.12), yields

(3.17) max
t∈[0,T ]

|ui(t)| < max

{∣∣∣ln
āi

Bii

∣∣∣ + 2āiT,

∣∣∣∣ln
1

Bii

[
āi −

n∑

j=1,j 6=i

Bij exp(Hj) −
( ci
αi

)
exp(H̃)

]∣∣∣∣ + 2āiT

}
≡ Ri.

Similarly, from (3.5), (3.9), and (3.16), noticing that t/(m+ nt) (m,n > 0) is in-

creasing for t > 0, we have

f jT exp(Sj)

αM
j + βM

j exp(Sj) + γM
j exp(ζ∗)

< d̄T, j = 1, 2, . . . , n.

In view of condition (A3), assuming without loss of generality, that when j = j0

(j0 = 1, 2, . . . , n), the inequality

f j0 exp(Sj0) − d̄(αM
j0

+ βM
j0

exp(Sj0)) > 0

holds, one has

(3.18) v(ζ∗) > ln
f j0 exp(Sj0 ) − d̄(αM

j0
+ βM

j0
exp(Sj0))

d̄γM
j0

.

Thus,

(3.19) v(t) > v(ζ∗)−

∫ T

0

|v̇(t)| dt > ln
f j0 exp(Sj0) − d̄(αM

j0
+ βM

j0
exp(Sj0))

d̄γM
j0

− 2d̄T,

which together with (3.14) gives

max
t∈[0,T ]

|v(t)| < max

{∣∣∣∣ ln
n∑

j=1

(fj

γj

)exp(Hj)

d̄

∣∣∣∣ + 2d̄T,(3.20)

∣∣∣∣ln
f j0 exp(Sj0) − d̄(αM

j0
+ βM

j0
exp(Sj0))

d̄γM
j0

∣∣∣∣ + 2d̄T

}
≡ R̃.

Clearly Ri, R̃ in (3.17) and (3.20) are independent of λ. Set M =
n∑

i=1

Ri + R̃ +

R0, where R0 is taken sufficiently large such that each solution (if it exists) z
∗ =

(u∗, v∗)⊤ = (u∗1, . . . , u
∗
n, v

∗)⊤ ∈ R
n+1 of the algebraic equation

(3.21) QNz = (ũ1, . . . , ũn, ṽ)
⊤ = 0
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satisfies ‖z∗‖ = ‖(u∗, v∗)⊤‖ =
n∑

j=1

|u∗j | + |v∗| < M , in which

ũi = āi −

n∑

j=1

b̄ij exp(u) −
( ci
αi + βi exp(ui) + γi exp(v)

)
exp(v),

ṽ = − d̄+

n∑

j=1

( fj

αj + βj exp(uj) + γj exp(v)

)
exp(uj).

We now take Ω = {z = (u(t), v(t))⊤ = (u1(t), . . . , un(t), v(t))⊤|z ∈ X, ‖z‖ < M}.

It is clear that Ω verifies the condition (C1) in Lemma 2.1. When z = (u, v)⊤ ∈

∂Ω ∩ KerL = ∂Ω ∩ R
n+1, z = (u, v)⊤ is a constant vector in R

n+1 with ‖z‖ =

‖(u, v)⊤‖ =
n∑

j=1

|uj | + |v| = M , then we have QNz 6= 0. This proves that condition

(C2) in Lemma 2.1 is satisfied.

Finally, we will show that condition (C3) in Lemma 2.1 holds. Since

z = (u, v)⊤ = (u1, . . . , un, v)
⊤

is a constant vector in R
n+1, by virtue of the mean value theorem there exist θi, θ̃j

such that

QNz = QN(u, v)⊤ = (p1 + q1, . . . , pn + qn, p̃+ q̃)⊤,

where

pi = āi − b̄ii exp(ui),

qi = −
n∑

j=1,j 6=i

b̄ij exp(uj) −
c̄i exp(v)

αi(θi) + βi(θi) exp(ui) + γi(θi) exp(v)
,

p̃ =

n∑

j=1

f j exp(uj)

αj(θ̃j) + βj(θ̃j) exp(uj) + γj(θ̃j) exp(v)
, q̃ = 0.

Define the homotopy ϕ : DomL× [0, 1] → X by

ϕ((u, v)⊤, µ) = (p1, . . . , pn, p̃)
⊤ + µ(q1, . . . , qn, q̃)

⊤,

where µ ∈ [0, 1] is a parameter, (u, v)⊤ ∈ ∂Ω ∩ KerL = ∂Ω ∩ R
n+1, (u, v)⊤ is a

constant vector in R
n+1 with ‖(u, v)⊤‖ =

n∑
j=1

|uj | + |v| = M . We will show that

when (u, v)⊤ ∈ ∂Ω ∩ KerL, then ϕ((u, v)⊤, µ) 6= 0. Assume that the conclusion is

not true, i.e., the constant vector (u, v)⊤ with ‖(u, v)⊤‖ =
n∑

j=1

|uj|+ |v| = M satisfies
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ϕ((u, v)⊤, µ) = 0. Similarly to the arguments of (3.11)–(3.20) and from the definition

of M , we have ‖(u, v)⊤‖ =
n∑

j=1

|uj | + |v| < M . Obviously, the algebraic equation

QN(u, v)⊤ = ϕ((u, v)⊤, 0) = 0

has a unique solution (u∗, v∗)⊤ = (u∗1, . . . , u
∗
n, v

∗)⊤. We select J , the isomorphism

of ImQ onto KerL as an identity map. So, due to the homotopy invariance theorem

of topology degree we have

deg{JQN(u, v)⊤,Ω ∩ KerL, 0} = deg{ϕ((u, v)⊤, 1),Ω ∩ KerL, 0}

= deg{ϕ((u, v)⊤, 0),Ω ∩ KerL, 0} = sign{detA} = (−1)n+1 6= 0,

where

A =




−b̄11e
u∗

1 . . . 0 0
...

. . .
...

...

0 . . . −b̄nneu∗

n 0

∗ ∗ ∗ −
n∑

j=1

fjγj(θ̃j) exp(u∗

j +v∗)

[αj(θ̃j)+βj(θ̃j) exp(u∗

j
)+γj(θ̃j) exp(v∗)]2



.

By now we have verified all the requirements of the Mawhin coincidence theorem in

Ω and hence the system (1.2) has at least one positive T -periodic solution. Therefore,

the system (1.2) has at least one positive T -periodic solution. �

R em a r k 3.1. From the condition (A1) in Theorem 3.1, we can see that the

result of this paper is related to the delays τj(t), j = 1, 2, . . . , n, which makes it

different from the corresponding ones of [4], [9], [10], [13], i.e., the results obtained in

[4], [9], [10], [13] are not related to the delays (delay-independent). The time delays

τj(t), j = 1, 2, . . . , n, are very important for our results.

4. Examples and numeric simulations

When τ(t) is a nonnegative constant, we give two suitable examples together with

their numeric simulations to verify the result by using MatLab.

E x am p l e 4.1. As an application, we consider the following system:

(4.1)






ẋ = x(t)
[
3 + 0.5 sin t− (0.5 + 0.1 sin t)x(t− 0.5)

−
(0.8 − 0.2 cos t)y(t)

(0.3 − 0.1 sin t) + (0.6 + 0.1 cos t)x(t) + y(t)

]
,

ẏ = y(t)
[
−(0.3 − 0.2 sin t) +

(1.8 − 0.5 sin t)x(t)

(0.3 − 0.1 sin t) + (0.6 + 0.1 cos t)x(t) + y(t)

]
,

with initial conditions ϕ1(0) = 2.5, ϕ(0) = 0.5.
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It is not difficult to verify that the coefficients of system (4.1) satisfy the conditions

in Theorem 3.1, so we see that the system (4.1) has at least one positive 2π-periodic

solution. Its integral curves and orbits are shown in Figs. 1–4, respectively; we see

that the predator-y and prey-x are persistent.

Fig. 1. The integral curve of prey(x)-time(t).

Fig. 2. The integral curve of predator(y)-time(t).

Fig. 3. The orbit of predator(y)-prey(x).
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Fig. 4. The orbit of predator(y)-prey(x)-time(t).

E x am p l e 4.2. We consider a three-species competition system with time delays

(4.2)






ẋ1 = x1(t)
[
(2.5 + 0.1 cos t) − 0.3x1(t− 0.1)

−0.1x2(t− 0.1) −
0.1y(t)

0.2 + 0.1x1(t) + 0.3y(t)

]
,

ẋ2 = x2(t)
[
(2 − 0.2 sin t) − 0.2x1(t− 0.1)

−0.1x2(t− 0.1) −
0.1y(t)

0.3 + 0.2x2(t) + 0.3y(t)

]
,

ẏ = y(t)
[
−(0.5 + 0.1 cos t)

+
3x1(t)

0.2 + 0.1x1(t) + 0.3y(t)
+

x2(t)

0.3 + 0.2x2(t) + 0.3y(t)

]
,

with initial conditions ϕ1(0) = 2, ϕ2(0) = 2, ϕ(0) = 1.5.

It is obvious that (A1), (A2), and (A3) hold. So by Theorem 3.1 we claim that

the system (4.2) has at least one positive 2π-periodic solution. Its integral curves

and orbits are shown in Figs. 5–8, respectively. From Figs. 5–8, we see that the

predator-y and prey-x are persistent.

Fig. 5. The integral curve of prey(x1)-time(t).
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Fig. 6. The integral curve of prey(x2)-time(t).

Fig. 7. The orbit of predator(y)-time(t).

Fig. 8. The orbits of predator(y)-prey(x2)-prey(x1).
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