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1. Introduction and background

The idea of statistical convergence was known to A. Zygmund as early as 1935

and in particular after 1951 when Steinhaus [22] and Fast [4] reintroduced statistical

convergence for sequences of real numbers, several generalizations and applications

of this notion have been investigated (see [1], [5], [6], [8], [10], [12], [19], [21] where

many more references can be found). Recall that a subset A of the set N of natural

numbers is said to have ‘asymptotic density’ d(A) if

d(A) = lim
n→∞

1

n
|{k 6 n : k ∈ A}|,

where the vertical bars denote the cardinality of the enclosed set. The sequence

{xn}n∈N is said to be statistically convergent to a real number x if for each ε > 0,

lim
n→∞

1

n
|{k 6 n : |xk − x| > ε}| = 0;

and we write xn
st→ x or st- lim

n→∞
xn = x.
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Now statistical convergence has turned out to be one of the most active areas

of research in summability theory and has several applications in different fields of

mathematics: number theory [3], trigonometric series [23], probability theory [7],

measure theory [15], optimization [16], approximation theory [9], Hopfield neural

network [14] (in this paper a geometrical vision of the dynamic states is explained).

Statistical convergence has also been discussed in more general abstract spaces such

as the fuzzy number space [20], locally convex space [13] and Banach space [11].

On the other hand, if for each positive integer n a random variable Xn is defined

on a given event space S (the same for all n) with respect to a given class of events ∆

and a probability function P : ∆ → R (where R denotes the set of all real numbers)

then we say that X1, X2, X3, . . . , Xn, . . . is a sequence of random variables and as in

analysis we denoted the sequence by {Xn}n∈N.

From the practical point of view the discussion of a random variable X will

be highly significant if it is known that there exists a real constant c for which

P (|X − c| < ε) ≃ 1, where ε > 0 is sufficiently small, that is, it is nearly certain that

values of X lie in a very small neighbourhood of c.

For a sequence of random variables {Xn}n∈N, each Xn may not have the above

property but it may happen that the aforesaid property (with respect to a real

constant c) becomes more and more distinguished as n gradually increases and the

question of existence of such a real constant c will be answered by a concept of

convergence in probability of the sequence {Xn}n∈N.

Again the sequence {Xn}n∈N may be such that as n gradually increases the distri-

bution function Fn(x) of Xn may more and more resemble the distribution function

of a particular random variable and the question of existence of such a distribution

function is related to the concept of ‘convergence in distribution’ of the sequence

{Xn}n∈N.

Besides the above mentioned two modes of convergence, there are other modes of

convergence of the sequence {Xn}n∈N. In this paper, we will limit our discussion to

three types of statistical convergence of a sequence of random variables, namely,

(a) statistical convergence in probability,

(b) statistical convergence in mean of order r,

(c) statistical convergence in distribution.

We will conclude the paper discussing some fundamental limit theorems related

to the modes of convergence (a), (b), (c) which effectively extend and improve all

the existing results in this direction [18].

Now probability convergence has several applications in different fields of math-

ematics: graph theory (minimal spanning tree) [17], measure theory [15], Lorentz

gas [2].
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2. Statistical convergence in probability

Let {Xn}n∈N be a sequence of random variables, where each Xn is defined on the

same event space S with respect to a given class of subsets (of S) as the class ∆ of

events and a given probability function P : ∆ → R. The sequence {Xn}n∈N is said to

be statistically convergent in probability to a random variable X (where X : S → R)

if for any ε, δ > 0

lim
n→∞

1

n
|{k 6 n : P (|Xk − X | > ε) > δ}| = 0,

or equivalently, lim
n→∞

1

n
|{k 6 n : 1 − P (|Xk − X | < ε) > δ}| = 0

and we write st- lim
n→∞

P (|Xn − X | > ε) = 0 or st- lim
n→∞

P (|Xn − X | < ε) = 1 or

Xn
stp→ X .

Theorem 2.1. If a sequence of constants xn
st→ x then regarding a constant as

a random variable having a one-point distribution at that point, we may also write

xn
stp→ x.

P r o o f. Let ε be any positive real number. Then d(M) = 1, where M = {n ∈
N : |xn−x| < ε}. Thus for any δ > 0, B = {n ∈ N : 1−P (|xn−x| < ε) > δ} ⊆ N\M

implies d(B) = 0. This implies xn
stp→ x. �

The following example shows that in general the converse of Theorem 2.1 is not

true.

E x am p l e 2.1.1. Let the probability density function Xn be

fn(x) =







1, where 0 < x < 1; 0 otherwise, if n = 2m where ∀m ∈ N;

nxn−1

2n
, where 0 < x < 2; 0 otherwise, if n 6= 2m where ∀m ∈ N.

Let 0 < ε, δ < 1. Then

P (|Xn − 2| > ε) =











1 if n = 2m where ∀m ∈ N,

1 − P (|Xn − 2| < ε) = 1 −
{

1 −
(2 − ε

2

)n}

=
(

1 − ε

2

)n

if n 6= 2m where ∀m ∈ N

⇒ lim
n→∞

1

n
|{k 6 n : P (|Xk − 2| > ε) > δ}| 6 lim

n→∞

1

n
|{20, 21, 22, . . .} ∪ A| = 0,

(where A is a finite subset of N)

⇒ lim
n→∞

1

n
|{k 6 n : P (|Xk − 2| > ε) > δ}| = 0.
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However, it is not ordinary statistical convergence of a sequence of numbers.

Although the concept of statistical convergence in probability is basically different

from that of ordinary statistical convergence of sequence of numbers, the following

simple results hold for statistical convergence in probability as well.

Theorem 2.2 (Elementary Properties).

(i) Xn
stp→ X and Xn

stp→ Y ⇒ P{X = Y } = 1,

(ii) Xn
stp→ X ⇔ Xn − X

stp→ 0,

(iii) Xn
stp→ X ⇒ cXn

stp→ cX where c ∈ R,

(iv) Xn
stp→ X and Yn

stp→ Y ⇒ Xn + Yn
stp→ X + Y ,

(v) Xn
stp→ X and Yn

stp→ Y ⇒ Xn − Yn
stp→ X − Y ,

(vi) Xn
stp→ x ⇒ Xn

2 stp→ x2,

(vii) Xn
stp→ x and Yn

stp→ y ⇒ Xn · Yn
stp→ x · y,

(viii) Xn
stp→ x and Yn

stp→ y ⇒ Xn/Yn
stp→ x/y provided y 6= 0,

(ix) Xn
stp→ X and Yn

stp→ Y ⇒ Xn · Yn
stp→ X · Y ,

(x) if 0 6 Xn 6 Yn and Yn
stp→ 0 ⇒ Xn

stp→ 0,

(xi) if Xn
stp→ X , then for each ε, δ > 0 there exists k ∈ N such that

d({n ∈ N : P (|Xn − Xk| > ε) > δ}) = 0

(this is called the statistical Cauchy condition in probability).

P r o o f. Let ε, δ be any positive real numbers.

(i) Let k ∈ {n ∈ N : P (|Xn −X | > 1
2ε) < 1

2δ}∩ {n ∈ N : P (|Xn −Y | > 1
2ε) < 1

2δ}
(the existence of k is granted, since the asymptotic density of both the sets is 1).

Then P (|X − Y | > ε) 6 P (|Xk − X | > 1
2ε) + P (|Xk − Y | > 1

2ε) < δ. This implies

P{X = Y } = 1.

For (ii), (iii), (iv), (v) the proofs are straightforward and hence omitted.

(vi) If Zn
stp→ 0 then Zn

2 stp→ 0 for {n ∈ N : P (|Zn
2 − 0| > ε) > δ} = {n ∈

N : P (|Zn − 0| >
√

ε) > δ}. Now Xn
2 = (Xn − x)2 + 2x(Xn − x) + x2 stp→ x2.

(vii) We have XnYn = 1
4{(Xn +Yn)2−(Xn−Yn)2} stp→ 1

4{(x+y)2−(x−y)2} = xy.

(viii) Let A, B represent the events ‘|Yn−y| < |y|’, ‘|1/Yn−1/y| > ε’, respectively.

Now
∣

∣

∣

1

Yn
− 1

y

∣

∣

∣
=

|Yn − y|
|yYn|

=
|Yn − y|

|y| · |y + (Yn − y)| 6
|Yn − y|

|y| · |(|y| − |Yn − y|)| .

If A, B occur simultaneously, then

|Yn − y| >
ε|y|2

1 + ε|y| (by the above inequality).
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Let ε0 = ε|y|2/(1 + ε|y|) and let C be the event ‘|Yn − y| > ε0’. This implies

AB ⊆ C ⇒ P (B) 6 P (C) + P (A), where bar denotes the set complement. This

implies {n ∈ N : P (|1/Yn − 1/y| > ε) > δ} ⊆ {n ∈ N : P (|Yn − y| > ε0) > 1
2δ} ∪

{n ∈ N : P (|Yn − y| > |y|) > 1
2δ}. Hence, 1/Yn

stp→ 1/y provided y 6= 0. Finally,

Xn/Yn
stp→ x/y provided y 6= 0 (by Theorem 2.2 (vii)).

(ix) First prove that if Xn
stp→ X and Z is a random variable then XnZ

stp→ XZ.

Since Z is a random variable, so given δ > 0, there exists an α > 0 such that

P (|Z| > α) 6 1
2δ. Then for any ε > 0, P (|XnZ − XZ| > ε) = P (|Xn − X ||Z| > ε,

|Z| > α) + P (|Xn − X ||Z| > ε, |Z| 6 α) 6 1
2δ + P (|Xn − X | > ε/α). This implies

{n ∈ N : P (|XnZ − XZ| > ε) > δ} ⊆
{

n ∈ N : P
(

|Xn − x| > ε/α
)

> 1
2δ

}

. Next

(Xn − X)(Yn − Y )
stp→ 0. This implies XnYn

stp→ XY .

(x) Proof is straightforward and hence omitted.

(xi) Choose k ∈ N such that P
(

|Xk − X | > 1
2ε

)

< 1
2δ (k exists since d

({

n ∈
N : P

(

|Xn − X | > 1
2ε

)

< 1
2δ

})

= 1). Then {n ∈ N : P (|Xn − Xk| > ε) > δ} ⊆
{

n ∈
N : P

(

|Xn − X | > 1
2ε

)

> 1
2δ

}

. �

Theorem 2.3. Let {Xn}n∈N be a sequence of random variables such that there

exists a sequence of constants {xn}n∈N with the property that

Xn − xn
stp→ 0.

If m(Xn) is a median of Xn then

Xn − m(Xn)
stp→ 0 and xn − m(Xn)

st→ 0.

P r o o f. Proof is straightforward and hence omitted. �

Theorem 2.4. Let Xn
stp→ X and let g : R → R be a continuous on R. Then

g(Xn)
stp→ g(X).

P r o o f. Since X is a random variable, hence for each δ > 0 there exists α such

that P (|X | > α) 6 1
2δ. Since g is uniformly continuous on [−α, α], hence for each

ε > 0 there exists δ0 such that

|g(xn) − g(x)| < ε whenever |x| 6 α and |xn − x| < δ0.

It follows that

P (|g(Xn)− g(X)| > ε) 6 P (|Xn −X | > δ0)+P (|X | > α) 6 P (|Xn −X | > δ0)+
1

2
δ.

This implies {n ∈ N : P (|g(Xn) − g(X)| > ε) > δ} ⊆ {n ∈ N : P (|Xn − X | > δ0) >
1
2δ}. Hence the result. �
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Corollary 2.4.1. If Xn
stp→ x and g : R → R is a continuous function, then

g(Xn)
stp→ g(x).

Proposition 2.1. Let {an}n∈N, {bn}n∈N, {cn}n∈N be three sequences of real

numbers such that d({n ∈ N : an 6 bn 6 cn}) = 1 and st- lim
n→∞

an = st- lim
n→∞

cn = x.

Then st- lim
n→∞

bn = x.

The next theorem is the generalization of Tchebycheff’s theorem.

Theorem 2.5. If {Xn}n∈N is a sequence of random variables such that for any

n, Xn has a finite mean mn, then

Xn − mn
stp→ 0 provided st- lim

n→∞
σn = 0.

P r o o f. The proof is straightforward and hence omitted. �

Corollary 2.5.1. If moreover st- lim
n→∞

mn = m, then by Theorem 2.2, (v) together

with the preceding remark Xn
stp→ m.

E x am p l e 2.5.1. (i) The following example shows that if {Xn}n∈N is a sequence

of random variables such that for any n, Xn has a finite meanmn and finite standard

deviation σn then

Xn − mn
stp→ 0, but lim

n→∞
σn 6= 0.

Let Xn =

{

±n if n = m2 ∀m ∈ N with probability 1
2 ,

0 if n 6= m2 ∀m ∈ N with probability 1.

Then mn = E(Xn) = 0 ∀n ∈ N and

σn =

{

n if n = m2 ∀m ∈ N,

0 if n 6= m2 ∀m ∈ N

⇒ lim
n→∞

σn 6= 0 (in fact it is an unbounded sequence) but st- lim
n→∞

σn = 0. Then by

Tchebycheff’s inequality we get

P (|Xn − 0| > ε) 6
σn

2

ε2
∀n ∈ N and ε > 0.

Since st- lim
n→∞

σn = 0, by Proposition 2.1 we get st- lim
n→∞

P (|Xn − 0| > ε) = 0, i.e.,

Xn − 0
stp→ 0.
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(ii) Again let

Xn =

{

±1 if n = 2m ∀m ∈ N with probability 1
2 ,

0 if n 6= 2m ∀m ∈ N with probability 1.

Then mn = E(Xn) = 0 ∀n ∈ N and

σn =

{

1 if n = 2m ∀m ∈ N,

0 if n 6= 2m ∀m ∈ N

⇒ lim
n→∞

σn 6= 0 but σn
stp→ 0. Then by Tchebycheff’s inequality we get

P (|Xn − 0| > ε) 6
σn

2

ε2
∀n ∈ N and ε > 0.

Since σn
stp→ 0, by Proposition 2.1 we get st- lim

n→∞
P (|Xn−0| > ε) = 0, i.e., Xn−0

stp→ 0.

Theorem 2.6. Let g : R → R be a non-decreasing function such that g(x) > 0

for all x ∈ R. If {Xn}n∈N is a sequence of random variables such that for any n, Xn

has a finite mean mn, then

Xn − mn
stp→ 0, provided st- lim

n→∞
E{g(|Xn − mn|)} = 0.

P r o o f. Proof is easily done by the inequality P (|X−m| > ε) 6 E{g(|X − m|)}/
g(ε). �

Theorem 2.7. Let {Xn}n∈N be a sequence of random variables such that Sn =

X1 + X2 + . . . + Xn has a finite mean Mn and a finite variance Σn for all n. Then

(Sn − Mn)/n
stp→ 0 provided st- lim

n→∞
Σn/n2 = 0.

P r o o f. The proof is straightforward and hence omitted. �

Theorem 2.8. Let {Xn}n∈N be a sequence of identically and independently dis-

tributed random variables and Yn = (Sn − E(Sn))/n, where Sn = X1+X2+. . .+Xn.

Then Yn
stp→ 0 if and only if st- lim

n→∞
E

{

Y 2
n /(1 + Y 2

n )
}

= 0.

P r o o f. Let st- lim
n→∞

E
{

Y 2
n /(1 + Y 2

n )
}

= 0 and ε > 0, then |Yn| > ε ⇒ |Yn|2 >

ε2 ⇒ Y 2
n + Y 2

n ε2 > ε2 + Y 2
n ε2 ⇒ (Y 2

n /(1 + Y 2
n ))/(ε2/(1 + ε2)) > 1. This implies

P (|Yn| > ε) 6 P
{Y 2

n /(1 + Y 2
n )

ε2/(1 + ε2)

}

6 E
{Y 2

n /(1 + Y 2
n )

ε2/(1 + ε2)

}

(by Markov’s Inequality)

⇒ Yn
stp→ 0.
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Conversely, let us assume that X ′
is are continuous and let Yn have pdf fn(y). Then

E
{ Y 2

n

1 + Y 2
n

}

=

∫ ∞

−∞

y2
n

1 + y2
n

fn(y) dy

⇒ E
{ Y 2

n

1 + Y 2
n

}

=

∫

|Yn|>ε

y2
n

1 + y2
n

fn(y) dy +

∫

|Yn|<ε

y2
n

1 + y2
n

fn(y) dy

6

∫

|Yn|>ε

fn(y) dy +

∫

|Yn|<ε

y2
nfn(y) dy

(since
y2

n

1 + y2
n

< 1 and
y2

n

1 + y2
n

< y2)

6 P (|Yn| > ε) + ε2

∫

|Yn|<ε

fn(y) dy = P (|Yn| > ε) + ε2P (|Yn| < ε)

6 P (|Yn| > ε) + ε2 (since P (|Yn| < ε) 6 1).

Since Yn
stp→ 0 and ε2 is an arbitrarily small positive real number, we get st- lim

n→∞
E

{

Y 2
n /

1 + Y 2
n

}

= 0. �

N o t e 2.8.1. The result of Theorem 2.8 holds even if E(Xi) does not exist. In

this case we simply define Yn = Sn/n rather than (Sn − E(Sn))/n.

A slightly stronger concept of statistical convergence in probability is defined by

statistical convergence in mean of order r, which is shown by Theorem 3.1.

3. Statistical convergence in mean of order r

A sequence of random variables {Xn}n∈N is said to be statistically convergent in

the rth-mean (where r > 0) to a random variable X (where X : S → R) if for any

δ > 0

d({n ∈ N : E(|Xn − X |r) > δ}) = 0

provided E(|Xn|r) exists for every n ∈ N and E(|X |r) exists and we write
st- lim

n→∞
E(|Xn − X |r) = 0 or Xn

strm→ X .

Statistical convergences in mean of orders one and two are called statistical con-

vergence in mean and quadratic mean (or mean square), respectively.

In this section we observe the above form of statistical convergence and a notion

of distance, which is widely used in statistics and time series analysis. It is based on

the Lp(p > 1) metric ̺ which is defined by ̺(X, Y ) = E{|X − Y |p}1/p.
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Theorem 3.1. Let Xn
strm→ X (any r > 0). Then Xn

stp→ X , i.e., statistical

convergence in rth-mean implies statistical convergence in probability.

P r o o f. Proof is easily done by Bienayme-Tchebycheff’s inequality, i.e.,

P (|X − m|r > ε) 6 E{|X − m|r}/εr. �

The following example shows that in general the converse of Theorem 3.1 is not

true.

E x am p l e 3.1.1. We consider the sequence of random variables {Xn}n∈N defined

by

Xn ∈ {0, n} with P (Xn = 0) = 1 − 1

nr

and

P (Xn = n) =
1

nr
, where r > 0, n ∈ N.

For any ε > 0, P (|Xn − 0| > ε) = P (Xn = n) if 0 < ε 6 n and P (|Xn − 0| > ε) = 0

if ε > n, hence for any δ > 0, {n ∈ N : P (|Xn − 0| > ε) > δ} = finite set ⇒
st- lim

n→∞
P (|Xn − 0| > ε) = 0. But E(|Xn|r) = 1 for all n ∈ N ⇒

{

n ∈ N :

E(|Xn − 0|r) > 1
2

}

= N. This implies {E(|Xn − 0|r)}n∈N is not statistically conver-

gent to 0. Hence the result.

Theorem 3.2. Let {Xn}n∈N be a sequence of random variables such that

P (|Xn| 6 M) = 1 for all n and some constantM > 0. Suppose that Xn
stp→ X . Then

Xn
strm→ X for any r > 0.

P r o o f. Proof is obvious and hence omitted. �

Theorem 3.3. Let Xn
strm→ X and Yn

strm→ Y (any r > 0) be such that Xn − X ,

Yn − Y > 0. Then Xn + Yn
strm→ X + Y .

P r o o f. Proof is easily done by the inequality E(X +Y )r 6 2r[E(X)r +E(Y )r],

where X and Y are non-negative random variables and r > 0. �

Theorem 3.4. (i) Xn
st1m→ X ⇔ sup

A∈∆

∣

∣

∫

A Xn dP −
∫

A X dP
∣

∣

st→ 0.

(ii) If Xn
st1m→ X then E(Xn)

st→ E(X).

P r o o f. Proof is easily done by ‘Scheff’s lemma’. �
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Proposition 3.1. Let {an}n∈N be a sequence of non negative real numbers such

that st- lim
n→∞

an = a and a > 0. Then st- lim
n→∞

(an)q = aq, where q ∈ Q+.

P r o o f. Let q = m/r ∈ Q+. If a = 0 then the result is obvious. So choose

a > 0. It is sufficient to prove that st- lim
n→∞

an = a implies st- lim
n→∞

(an)1/r = a1/r,

where r ∈ N \ {1}. Then
{

n ∈ N : |an − a| < 1
2a

}

⊆
{

n ∈ N : an > 1
2a

}

=

M (say, then d(M) = 1). If n ∈ M then

|an − a| = |(an)1/r − a1/r| |{(an)(r−1)/r + (an)(r−2)/ra1/r

+ . . . + (an)1/ra(r−2)/r + a(r−1)/r}|

> L|(an)1/r − a1/r|, where L =
a(r−1)/r

2
(

1 − 1/ r
√

2
) ,

i.e., M ⊆ {n ∈ N : 0 6 |(an)1/r − a1/r| 6 L−1|an − a|}. Then by Proposition 2.1,
st- lim

n→∞
r
√

an = r
√

a. �

Theorem 3.5. Let {Xn}n∈N be a sequence of random variables such that Xn
st2m→

X . Then st- lim
n→∞

E(Xn) = E(X) and st- lim
n→∞

E(X2
n) = E(X2).

P r o o f. The proof is parallel to that of Theorem 8 in [18] (and using the result

of the Proposition 3.1) and so it is omitted. �

Theorem 3.6. Let {Xn}n∈N be a sequence of random variables and r ∈ Q+ such

that Xn
strm→ X . Then st- lim

n→∞
E(|Xn|s) = E(|X |s) for s 6 r and s ∈ Q+.

P r o o f. The proof is parallel to that of Theorem 9, 10 in [18] (and using the

result of the Proposition 3.1) and so it is omitted. �

4. Statistical convergence in distribution

Let {Xn}n∈N be a sequence of random variables, where Fn(x) is the distribution

function of Xn for n ∈ N. If there exists a random variable X whose distribution

function is F (x) such that st- lim
n→∞

Fn(x) = F (x) at every point of continuity x of

F (x), then {Xn}n∈N is said to be statistically convergent in distribution to X and

we write Xn
std→ X .
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Theorem 4.1. Let {Xn}n∈N be a sequence of random variables. Also, let

fn(xi) = P (Xn = xi), for all i ∈ N, be the probability mass function of Xn, for

all n ∈ N, and f(xi) = P (X = xi), for all i ∈ N be the probability mass function

of X . Then

fn(x)
st→ f(x) for all x ⇔ Xn

std→ X.

P r o o f. Proof is straightforward and hence omitted. �

Proposition 4.1. Let {an}n∈N, {bn}n∈N be two sequences of real numbers such

that an 6 bn for all n ∈ N. Then

st-lim an 6 st-lim bn and st-lim an 6 st-lim bn.

P r o o f. The proof is straightforward and hence omitted. �

Theorem 4.2. Let Xn
stp→ X . Then Xn

std→ X , i.e., statistical convergence in

probability implies statistical convergence in distribution.

P r o o f. Let Fn(x) and F (x) be the distribution functions of Xn and X , respec-

tively. Now for any two real numbers x and y with x < y, we have

(X 6 x) = (Xn 6 y, X 6 x) + (Xn > y, X 6 x).

Since (Xn 6 y, X 6 x) ⊆ (Xn 6 y), we have

(X 6 x) ⊆ (Xn 6 y) + (Xn > y, X 6 x).

Therefore,

(1) P (X 6 x) 6 P{(Xn 6 y) + (Xn > y, X 6 x)}
6 P (Xn 6 y) + P (Xn > y, X 6 x)

⇒ Fn(y) > F (x) − P (Xn > y, X 6 x)

Now if Xn > y, X 6 x occur simultaneously, then Xn > y, −X > −x and so

Xn − X > y − x, i.e., (Xn > y, X 6 x) ⊆ (Xn − X > y − x) ⊆ (|Xn − X | > y − x)

which implies

P (Xn > y, X 6 x) 6 P (|Xn − X | > y − x).

Since x < y and Xn
stp→ X , we get

st- lim
n→∞

P (Xn > y, X 6 x) = 0.

Now from (1) we get st-limFn(y) > F (x) (by the above Proposition 4.1).
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Similarly, if y < z then

(Xn 6 y) = (X 6 z, Xn 6 y) + (X > z, Xn 6 y),

then Fn(y) 6 F (z) + P (X > z, Xn 6 y) and st- lim
n→∞

P (X > z, Xn 6 y) = 0.

Finally, we get st-limFn(y) 6 F (z).

Thus, for x < y < z we have

F (x) 6 st-limFn(y) 6 st-limFn(y) 6 F (z).

If F is continuous at y then

F (y) = lim
x→y−

F (x) 6 st-limFn(y) 6 st-limFn(y) 6 lim
z→y+

F (z) = F (y).

This implies st-limFn(y) = st-limFn(y) = F (y), i.e., Xn
std→ X . Hence the result. �

N o t e 4.2.1. The converse of Theorem 4.2 is not true in general, i.e., Xn
Id→ X does

not imply Xn
Ip→ X in general. For, let us consider random variables X, X1, X2, . . .

having identical distribution. Let the spectrum of the two dimensional random vari-

able (Xn, X) be (0, 0), (0, 1), (1, 0), (1, 1) and

P (Xn = 0, X = 0) = 0 = P (Xn = 1, X = 1),

P (Xn = 0, X = 1) =
1

2
= P (Xn = 1, X = 0).

Hence, the marginal distribution of Xn is given by Xn = i (i = 0, 1), with p.m.f

pxni = P (Xn = i), where pxn0 = 1
2 = pxn1 and that of X = j (j = 0, 1), with p.m.f

pxj = P (X = j), where px0 = 1
2 = px1.

If Fn(x) and F (x) are the distribution functions of Xn and X , respectively, then

F (x) = Fn(x) =











0, x < 0,

1
2 , 0 6 x < 1,

1, x > 1.

Therefore, st- lim
n→∞

Fn(x) = F (x) for all x ∈ R, i.e., Xn
std→ X as n → ∞. But

P
(

|Xn −X | > 1
2

)

= P (|Xn −X | = 1) = P (Xn = 0, X = 1)+P (Xn = 1, X = 0) = 1.

Therefore, st- lim
n→∞

P
(

|Xn − X | > 1
2

)

6= 0. Then st- lim
n→∞

P (|Xn − X | > ε) 6= 0. Hence,

the result follows.
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Theorem 4.3. Let {Xn}n∈N be a sequence of random variables such that Xn
std→

X . Let {ζn}n∈N be a sequence of positive constants such that ζn
st→ 0. Then

ζnXn
stp→ 0.

P r o o f. The proof is straightforward and hence omitted. �

The following result is easy to establish.

Theorem 4.4. Let {Xn}n∈N be a sequence of random variables such that Xn
std→

X , and c a constant. Then

(a) Xn + c
std→ X + c, and

(b) cXn
std→ cX , c 6= 0.

Theorem 4.5. Let c be a constant, then Xn
std→ c ⇒ Xn

stp→ c.

P r o o f. The proof is straightforward and hence omitted. �

Corollary 4.5.1. Let c be a constant, then Xn
std→ c ⇔ Xn

stp→ c.

Theorem 4.6. If {Xn}n∈N and {Yn}n∈N are sequences of random variables on

some probability space with Xn − Yn
stp→ 0, and Yn

std→ X , then Xn
std→ X .

P r o o f. Let x, x ± ε be a point of continuity of the distribution function F

corresponding to the random variable X , where ε > 0. Then P (Xn 6 x) = P (Yn 6

x+Yn−Xn) = P (Yn 6 x+Yn−Xn; Yn−Xn 6 ε)+P (Yn 6 x+Yn−Xn; Yn−Xn >

ε) 6 P (Yn 6 x + ε) + P (Yn − Xn > ε). This implies st-limFn(x) 6 F (x + ε) and

analogously F (x−ε) 6 st-lim Fn(x). Since ε is arbitrary, so F (x) = st-limFn(x). �

Theorem 4.7. If {Xn}n∈N and {Yn}n∈N are sequences of random variables on

some probability space and c is a constant, then

(a) Xn
std→ X , Yn

stp→ c ⇒ Xn + Yn
std→ X + c,

(b) Xn
std→ X , Yn

stp→ 0 ⇒ XnYn
stp→ 0,

(c) Xn
std→ X , Yn

stp→ c ⇒ XnYn
std→ cX if c 6= 0,

(d) Xn
std→ X , Yn

stp→ c ⇒ Xn/Yn
std→ X/c if c 6= 0.

P r o o f. (a) Proof is parallel to that of Theorem 15 (Slutsky’s theorem) in [18]

and so omitted.

(b) For any δ > 0, choose ±α ∈ set of points of continuity of the distribution
function F of X such that F (α) − F (−α) > 1 − δ. Any ε > 0, P (|XnYn| > ε) =

P
(

|XnYn| > ε, |Yn| < ε/α
)

+ P
(

|XnYn| > ε, |Yn| > ε/α
)

6 P (|Xn| > α) + P
(

|Yn| >

ε/α
)

. So st-limP (|XnYn| > ε) < δ. This implies XnYn
stp→ 0.

Parts (c) and (d) are obvious and hence omitted. �
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Ap p l i c a t i o n s. (i) Much of classical probability theory and its applications

to statistics concerns limit theorems; i.e., the asymptotic behaviour of a sequence of

random variables. The sequence could consist of sample averages, cumulative sums,

extremes, sample quantiles, sample correlations and so on. Whereas probability

theory discusses limit theorems, the theory of statistics is concerned with large sample

properties of statistics, where a statistic is just a function of the sample.

(ii) A classical significant statistical application of ‘statistical convergence in prob-

ability’ is to quantile estimation and geometric probability (by using the theorem

Weak laws of large numbers).

(iii) Classical application of ‘statistical convergence in mean of order r’ is to time

series analysis.

(iv) In statistical estimation the delta method allows us to take a basic ‘statistical

convergence in distribution’, for instance to a limiting normal distribution, apply

smooth functions and conclude that the functions are asymptotically normal as well.
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