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Abstract. A class of nonautonomous discrete logistic single-species systems with time-
varying pure-delays and feedback control is studied. By introducing a new research method,
almost sufficient and necessary conditions for the permanence and extinction of species are
obtained. Particularly, when the system degenerates into a periodic system, sufficient and
necessary conditions on the permanence and extinction of species are obtained. Moreover,
a very important fact is found in our results, that is, the feedback control and delays are
harmless for the permanence and extinction of species for discrete single-species systems.
This shows that in a discrete single-species system introducing the feedback control to
factitiously control the permanence and extinction of species is useless.
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1. Introduction

In recent years, the dynamical behavior, such as the local and global stability, per-

sistence, permanence, extinction and existence of positive periodic solutions, etc., for

the discrete-time population models have been extensively studied. Many important

results have been established in many articles (see [2]–[6], [8], [10]–[19], [24], [25]–

[34], [36]–[39] and references cited therein). Especially, we see that the discrete-time

population models with feedback controls are investigated in [7], [9], [20]–[22], [23].

* Supported by The National Natural Science Foundation of P.R. China (10961022,
10901130),The Scientific Research Programmes of Colleges in Xinjiang (XJEDU2007G01,
XJEDU2006I05, XJEDU2008S10).
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For the population models with feedback controls, as we well know, an important

subject is to study the effects of the feedback controls on the dynamical behavior

of the models. In [7], we see that the following nonautonomous discrete-time single

species model with delay and feedback control is proposed:

N(n+ 1) = N(n) exp
[

r(n)
(

1 −
N(n−m)

k(n)
− c(n)µ(n)

)]

,(1)

µ(n+ 1) = (1 − a(n))µ(n) + b(n)N(n−m).

The author established a sufficient condition for the permanence of system (1) (see

Theorem 2.1 in [7]). From this result we see directly that the feedback controls have

negative influence on the permanence of the system. In [20], the authors discussed

system (1) with periodic coefficients and established a sufficient condition for the

existence of positive periodic solutions by applying the continuation theorem of co-

incidence degree theory. However, from the main result (see Theorem 2.1 in [20])

we can easily see that the feedback controls cannot influence the existence of a posi-

tive periodic solution. Thus, an important and interesting open problem is proposed

here, that is, whether or not in system (1) the feedback controls influence the perma-

nence and extinction of species. One of the main purposes of this paper is to study

the effects of the feedback control and delays on the permanence and extinction of

system (1). We will give an explicit answer to this problem.

In this paper, we investigate the following nonautonomous discrete single-species

system with time-varying pure-delays and feedback control which is more general

than system (1)

x(n+ 1) = x(n) exp

{

r(n) −

m
∑

j=1

aj(n)x(n − τj(n)) − c(n)u(n− δ(n))

}

,(2)

u(n+ 1) = u(n)γ(n) + a(n)x(n− σ(n)),

where x(n) is the density of the species at time n and u(n) is the control variable at

time n. For system (2) we will establish almost sufficient and necessary conditions

for the permanence and extinction of the species by introducing a new research

method. Particularly, when the system degenerates into a periodic one, sufficient

and necessary conditions for the permanence and extinction of species are obtained.

In addition, we will discuss the effects of the feedback control and delays on the

permanence and extinction. We will see that under some quite weak assumptions

the feedback control and delays in system (2) do not influence the permanence and

extinction of species x.
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2. Preliminaries

Let N denote the set of all nonnegative integers. For any bounded sequence ζ(n)

we denote ζu = sup
n∈N

{ζ(n)} and ζl = inf
n∈N

{ζ(n)}. In this paper, we first introduce the

following assumptions for system (2).

(H1) r(n) is a bounded sequence defined on N, ai (i = 1, 2, . . . ,m), c(n), a(n),

and γ(n) are nonnegative bounded sequences defined on N, and τi(i) (i =

1, 2, . . . ,m), δ(n), and σ(n) are nonnegative bounded integer sequences defined

on N.

(H2) There exists an integer ω > 0 such that

lim inf
n→∞

n+ω
∑

k=n

r(k) > 0.

(H3) There exists an integer ω > 0 such that

lim sup
n→∞

n+ω
∑

k=n

r(k) 6 0.

(H4) There exists an integer λ > 0 such that

lim inf
n→∞

n+λ
∑

k=n

m
∑

j=1

aj(k) > 0.

(H5) There exists an integer σ > 0 such that

lim sup
n→∞

n+σ
∏

k=n

γ(k) < 1.

Let τ = max{τi(n), δ(n), σ(n) : n ∈ N, i = 1, 2, . . . ,m}. Based on the biological

background of system (2), in this paper we only consider the solution of system (2)

with the initial conditions

x(θ) = ϕ(θ) > 0, u(θ) = ψ(θ) > 0

for all θ = −τ,−τ + 1, . . . ,−1, ϕ(0) > 0, ψ(0) > 0.

We first consider the nonautonomous difference inequality system

(3) y(n+ 1) 6 y(n) exp{α(n) − β(n)y(n)}, n ∈ N,
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where α(n) and β(n) are bounded sequences defined on N and β(n) > 0 for all n ∈ N.

We have the following result.

Lemma 1. Assume that there exists an integer λ > 0 such that

(4) lim inf
n→∞

n+λ
∑

k=n

β(k) > 0.

Then there exists a constant M > 0 such that for any nonnegative solution y(n) of

system (3) with an initial value y(n0) = y0 > 0, where n0 ∈ N is an integer,

lim sup
n→∞

y(n) < M.

P r o o f. By (4), there exist a constant δ > 0 and an integer n1 > n0 such that

(5)

n+λ
∑

k=n

β(k) > δ for all n > n1.

Now we present two cases to prove the conclusion of Lemma 1.

Case 1. Assume that there exists an integer n2 > n1 such that y(n2) < y(n2 +

λ+ 1). Then from the first equation of system (2) we have

y(n2 + λ+ 1) 6 y(n2) exp

{n2+λ
∑

k=n2

α(k) −

n2+λ
∑

k=n2

β(k)y(k)

}

.

This implies

(6)

n2+λ
∑

k=n2

α(k) >

n2+λ
∑

k=n2

β(k)y(k).

In view of (5), there exists i0 (0 6 i0 6 λ) such that β(n2 + i0) > δ/(1 + λ). Hence,

combining it with (6), we have

(1 + λ)αu > β(n2 + i0)y(n2 + i0) >
δ

1 + λ
y(n2 + i0),

which implies

y(n2 + i0) <
(1 + λ)2αu

δ
.
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Consequently, for every i = 1, 2, . . . , λ+ 1 we further obtain

y(n2 + i0 + i) = y(n2 + i0) exp

{n2+i0+i−1
∑

k=n2+i0

α(k) −

n2+i0+i−1
∑

k=n2+i0

β(k)y(k)

}

6 y(n2 + i0) exp

{n2+i0+i−1
∑

k=n2+i0

α(k)

}

6 y(n2 + i0) exp{αui} <
(1 + λ)2αu

δ
exp{(λ+ 1)αu}.

Let

M1 =
(1 + λ)2αu

δ
exp{(λ+ 1)αu}.

We claim that

(7) y(n) < M1 for all n > n2 + i0 + λ+ 1.

In fact, if (7) is not true, then there exists an integer n3 > n2 + i0 + λ+ 1 such that

y(n3) > M1 and y(n) < M1 for all n2+i0 6 n < n3, which implies y(n3−λ−1) < M1.

Hence, y(n3 − λ− 1) < y(n3). In view of the discussion above, we immediately have

y(n3) < M1, which is a contradiction. Therefore, (7) is true.

Case 2. Assume that y(n) > y(n + λ + 1) holds for all n > n1. Then for each

i = 0, 1, 2, . . . , λ we have

y(n1 + i+ k(λ+ 1)) > y(n1 + i+ (k + 1)(λ+ 1)) for all k ∈ N.

Hence, the sequence y(n0 + i + k(λ + 1)) is decreasing in k ∈ N. For any integer

n > n1 we have that there exist integers in and kn such that n = n1 + in +kn(λ+1),

where 0 6 in 6 λ and kn ∈ N. Hence, we have y(n) = y(n1 + in + kn(λ + 1)) and

y(n) 6 y(n1+in). Choosing the constantM2 = max{y(n1), y(n1+1), . . . , y(n1+λ)},

we obtain y(n) 6 M2 for all n > n1.

Combining Cases 1 and 2, further choosing a constant M > max{M1,M2}, we

finally obtain that the conclusion of Lemma 1 is true. �

Next, we consider the nonautonomous linear difference equation

(8) v(n+ 1) = γ(n)v(n) + ω(n),

where γ(n) and ω(n) are nonnegative bounded sequences defined on N. We have the

following results.
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Lemma 2. Assume that there exists an integer λ > 0 such that

(9) lim sup
n→∞

n+λ
∏

k=n

γ(k) < 1.

Then there exists a constant M > 0 such that for any nonnegative solution v(n) of

system (8) with an initial value v(n0) = v0 > 0, where n0 ∈ N is an integer,

lim sup
n→∞

v(n) < M.

P r o o f. By (9), there exist a constant ε0 ∈ (0, 1) and an integer N0 > n0 such

that
n+λ
∏

k=n

γ(k) < 1 − ε0 for all n > N0.

We first prove that there exist positive constantsM0 > 1 and δ0 ∈ (0, 1) such that

for any integers n1, n2 with n2 > n1 > 0

(10)

n2−1
∏

k=n1

γ(k) 6 M0δ
n2−n1

0 .

Choose a constant Γ > 0 such that γ(n) 6 Γ for all n ∈ N. For any integers n1, n2

with n2 > n1 > 0, if n2 6 N0, then we have

n2−1
∏

k=n1

γ(k) 6 Γn2−n1 =
( Γ

1 − ε0

)n2−n1

(1 − ε0)
n2−n1(11)

6

( Γ

1 − ε0

)N0

(1 − ε0)
n2−n1

6

( Γ

1 − ε0

)N0+λ+1

((1 − ε0)
1/(1+λ))n2−n1 .

If n2 > N0 and n1 6 N0, let n2 = N0 + s(λ+ 1)+ ̺+ 1, where 0 6 ̺ 6 λ and s ∈ N.

Then we obtain

n2−1
∏

k=n1

γ(k) =

N0−1
∏

k=n1

γ(k)

N0+s(λ+1)−1
∏

k=N0

γ(k)

N0+s(λ+1)+̺
∏

k=N0+s(λ+1)

γ(k)(12)

6 ΓN0(1 − ε0)
sΓλ+1

6 ΓN0+λ+1(1 − ε0)
(n2−̺−N0)/(λ+1)

= ΓN0+λ+1[(1 − ε0)
1/(1+λ)]n2−n1 [(1 − ε0)

1/(1+λ)]n1−N0−̺

6 ΓN0+λ+1[(1 − ε0)
1/(1+λ)]n2−n1 [(1 − ε0)

1/(1+λ)]−N0−λ−1

6

( Γ

1 − ε0

)N0+λ+1

((1 − ε0)
1/(1+λ))n2−n1 .
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If n3 > N0, let n4 = N3 + s(λ+ 1) + ̺+ 1, where 0 6 ̺ 6 λ and s ∈ N. Then we get

n2−1
∏

k=n1

γ(k) =

N0+s(λ+1)−1
∏

k=n1

γ(k)

N0+s(λ+1)+̺
∏

k=N0+s(λ+1)

γ(k)(13)

6 (1 − ε0)
sΓλ+1

6 Γλ+1(1 − ε0)
(n2−̺−N0)/(λ+1)

= Γλ+1[(1 − ε0)
1/(1+λ)]n2−n1 [(1 − ε0)

1/(1+λ)]n1−N0−̺

6 ΓN0+λ+1[(1 − ε0)
1/(1+λ)]n2−n1 [(1 − ε0)

1/(1+λ)]−N0−λ−1

6

( Γ

1 − ε0

)N0+λ+1

((1 − ε0)
1/(1+λ))n2−n1 .

Choosing constants

M0 =
( Γ

1 − ε0

)N0+λ+1

and δ0 = (1 − ε0)
1/(1+λ),

then from (11)–(13) we obtain that (10) holds.

In the following, for the sake of convenience we set
n−1
∏

k=n

γ(k) = 1 for any n ∈ N. By

the variation-of-constants formula for the difference equation (see [1]), we find that

any solution v(n) of equation (8) with an initial value v(n0) = v0, where n0 ∈ N, can

be expressed by the formula

(14) v(n) = v0

n−1
∏

k=n0

γ(k) +

n−1
∑

i=n0

[ n−1
∏

k=i+1

γ(k)

]

ω(i) for all n > n0.

From (10) and (14) we obtain

v(n) 6 v0

n−1
∏

k=n0

γ(k) + ωu
n−1
∑

i=n0

[ n−1
∏

k=i+1

γ(k)

]

(15)

6 v0M0δ
n−n0

0 + ωu
n−1
∑

i=n0

[M0δ
n−i−1
0 ]

6 v0M0δ
n−n0

0 + ωuM0
1 − δn−n0

0

1 − δ0
.

From δ0 < 1 we have δk
0 → 0 as k → ∞. Hence, from (15) we finally have

lim sup
n→∞

v(n) 6
M0ω

u

1 − δ0
.

If we choose a constant M > M0ω
u/(1− δ0), then the conclusion of Lemma 2 holds.

This completes the proof of Lemma 2. �
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Lemma 3. Assume that the conditions of Lemma 2 hold. Then for any constants

ε > 0 andM1 > 0 there exist positive constants δ̂ = δ̂(ε) and n̂ = n̂(ε,M1) such that

for any n̂0 ∈ N and 0 6 v0 6 M1, when ω(n) < δ̂ for all n > n̂0, we have

v(n, n̂0, v0) < ε for all n > n̂0 + n̂,

where v(n, n̂0, v0) is the solution of equation (8) with the initial condition v(n̂0,

n̂0, v0) = v0.

P r o o f. By using the variation-of-constants formula for the difference equation,

we have

(16) v(n, n̂0, v0) = v0

n−1
∏

k=n̂0

γ(k) +

n−1
∑

i=n̂0

[ n−1
∏

k=i+1

γ(k)

]

ω(i).

For any constants ε > 0 and M1 > 0, if 0 6 v0 6 M1 and ω(n) 6 δ̂ for all n > n̂0,

then from (10) and (16) we have

v(n, n̂0, v0) 6 M1

n−1
∏

k=n̂0

γ(k) + δ̂
n−1
∑

i=n̂0

[ n−1
∏

k=i+1

γ(k)

]

(17)

6 M1M0δ
n−n̂0

0 + δ̂M0

n−1
∑

i=n̂0

δn−i−1
0

6 M1M0δ
n−n̂0

0 +
δ̂M0

1 − δ0
.

Choosing

n̂ =
ln ε− ln(2M0M1)

ln δ0
+ n̂0 + 1 and δ̂ =

ε(1 − δ0)

2M0
,

then from (17) we finally obtain v(n, n̂0, v0) < ε for all n > n̂0 + n̂. This completes

the proof of Lemma 3. �

3. Main results

Theorem 1. Assume that (H1), (H2), (H4) and (H5) hold. Then species x in

system (2) is permanent.

P r o o f. Let (x(n), u(n)) be any positive solution of system (2). Then from

system (2) we directly obtain

x(n+ 1) 6 x(n) exp{r(n)} for all n ∈ N.
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Hence,

x(n− τ) 6 x(n) exp{−ruτ} for all n > τ.

Further, from system (2) it immediately follows that

x(n+ 1) 6 x(n) exp

{

r(n) − exp{−ruτ}

m
∑

i=1

ai(n)x(n)

}

for all n > τ.

From Lemma 1 it follows that there exists a constant x̄ > 0 such that

(18) lim sup
n→∞

x(n) < x̄.

Hence, there exists a large enough N1 > τ such that x(n) < x̄ for all n > N1. From

the second equation of system (2) it follows that

u(n+ 1) 6 u(n)γ(n) + a(n)x̄ for all n > N1 + τ.

By using Lemma 2 and the comparison theorem for the difference equation, we obtain

that there exists a constant ū > 0 such that

(19) lim sup
n→∞

u(n) < ū.

By (H2) we can choose a constant ε1 > 0 and an integer N2 > N1 such that

(20)

n+ω
∑

s=n

(r(s) − ε1c(s)) > ε1 for all n > N2.

Consider the auxiliary equation

(21) v(n+ 1) = v(n)γ(n) + a(n)α0,

where α0 is a parameter. By Lemma 3, for ε1 > 0 and ū > 0 given above there exist

constants δ̂0 = δ̂0(ε1) and n̂0 = n̂0(ε1, ū) such that for any n0 ∈ N and 0 6 v0 6 ū,

when α0a(n) < δ̂0 for all n > n0, we have

(22) v(n, n0, v0) < ε1 for all n > n0 + n̂0,

where v(n, n0, v0) is the solution of equation (21) with the initial condition v(n0, n0,

v0) = v0.
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It follows from (20) that there exists a positive constant α0 6 min{ε1, δ̂0/(a
u + 1)}

such that

(23)

n+ω
∑

s=n

(

r(n) −

m
∑

i=1

ai(n)α0 − ε1c(n)

)

> α0 for all n > N2.

We first prove

(24) lim sup
n→∞

x(n) > α0.

Otherwise, there exist a positive solution (x(n), u(n)) of system (2) and an integer

n̂1 > 0 such that x(n) < α0 for all n > n̂1. Further, by (18) and (19) there exists an

integer n̂2 > n̂1 such that

(25) x(n) 6 x̄, u(n) 6 ū for all n > n̂2.

Hence, from the second equation of system (2) we have

(26) u(n+ 1) 6 γ(n)u(n) + a(n)α0 for all n > n̂1 + τ.

Let v(n) be the solution of equation (21) with the initial value v(n̂2 +τ) = u(n̂2 +τ).

Then by the comparison theorem for the difference equation and inequality (26) we

obtain

u(n) 6 v(n) for all n > n̂2 + τ.

In (22) we set n0 = n̂2 + τ and v0 = u(n̂2 + τ). Since α0a(n) < δ̂0 for all n > n̂2 + τ ,

we get

v(n) = v(n, n̂0, v0)) < ε1 for all n > n̂+ n̂2 + τ.

Hence, we further have

u(n) < ε1 for all n > n̂+ n̂2 + τ.

Thus, for any n > n̂+ n̂2 +N2 + 2τ , from system (2) and (23) we find that

x(n+ ω + 1) > x(n) exp

{n+ω
∑

s=n

[

r(n) −

m
∑

i=1

ai(n)α0 − c(n)ε1

]}

> x(n) exp{α0}.

Consequently, we further obtain

x(n̄+ k(ω + 1)) > x(n̄) exp{kα0} for all k ∈ N,
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where n̄ = n̂ + n̂2 + N2 + 2τ . Therefore, we finally have x(n̄ + k(ω + 1)) → ∞ as

k → ∞, which contradicts (25). Hence, (24) holds.

Next, we prove there exists a constant x > 0 such that

lim inf
n→∞

x(n) > x

for any positive solution (x(n), u(n)) of system (2). If this is not true, then there is

a sequence of initial values z(k) = (ϕ(k), ψ(k)) of system (2) such that

(27) lim inf
n→∞

x(n, z(k)) <
α0

k2
for all k = 1, 2, . . . ,

where (x(n, z(k)), u(n, z(k))) is the solution of system (2) with the initial condition

x(n) = ϕ(k)(n), u(n) = ψ(k)(n), n ∈ [−τ, 0].

By (24) and (27), for each k ∈ N there exist two sequences of positive integers {s
(n)
q }

and {t
(n)
q } such that

0 < s
(k)
1 < t

(k)
1 < s

(k)
2 < t

(k)
2 < . . . < s(k)

q < t(k)
q < . . .

and

(28) s(k)
q → ∞ as q → ∞,

such that

(29) x(s(k)
q , z(k)) >

α0

k
, x(t(k)

q , z(k)) <
α0

k2

and

(30)
α0

k2
6 x(n, z(k)) 6

α0

k
for all n ∈ [s(k)

q + 1, t(k)
q − 1].

Obviously, from (28) we first have t
(k)
q − s

(k)
q > 1 for all k > 1. Next, (18) and (19)

imply that for each k ∈ N there exists an integer n̂
(k)
2 > 0 such that

x(n, z(k)) 6 x̄, u(n, z(k)) 6 ū for all n > n̂
(k)
2 .

It follows from (28) that there exists an integer N
(k)
1 > 0 such that s

(k)
q > n̂

(k)
2 + τ

for all q > N
(k)
1 . For any n ∈ [s

(k)
q , t

(k)
q ] and q > N

(k)
1 , we have

x(n+ 1, z(k))

= x(n, z(k)) exp

{

r(n) −

m
∑

j=1

aj(n)x(n− τj(n), z(k)) − c(n)u(n− δ(n), z(k))

}

> x(n, z(k)) exp{−θ},
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where θ = ru +
m
∑

i=1

auM2 + cuM2. Hence,

x(t(k)
q , z(k)) > x(s(k)

q , z(k)) exp{−θ(t(k)
q − s(k)

q )},

which implies

t(k)
q − s(k)

q >
ln k

θ
for all q > N

(k)
1 , k ∈ N.

Choose an integer K0 > 0 such that

t(k)
q − s(k)

q > n̂0 + ω + 2τ + 1 for all k > K0, q > N
(k)
1 .

For any k > K0, q > N
(k)
1 and n ∈ [s

(k)
q + τ + 1, t

(k)
q ], from the second equation of

system (2) we have

(31) u(n+ 1, z(k)) 6 γ(n)u(n, z(k)) + α0a(n).

Let v(n) be the solution of equation (21) with the initial value v(s
(k)
q + τ + 1) =

u(s
(k)
q + τ + 1). Then using the comparison theorem and inequality (31), we obtain

(32) u(n) 6 v(n) for all n ∈ [s(k)
q + τ + 1, t(k)

q ].

In (22) we set n0 = s
(k)
q + τ + 1 and v0 = u(s

(k)
q + τ + 1). Since α0a(n) < δ̂0 for all

n ∈ [s
(k)
q + τ + 1, t

(k)
q ], we get

v(n) = v(n, s(k)
q + τ + 1, u(s(k)

q + τ + 1)) < ε1

for all n ∈ [s
(k)
q + n̂0 + τ + 1, t

(k)
q ]. Thus, from (32) we further have

u(n, z(k)) < ε1 for all n ∈ [s(k)
q + n̂0 + τ + 1, t(k)

q ], k > K0, q > N
(k)
1 .

For any n ∈ [s
(k)
q + n̂0 + τ + 1, t

(k)
q ], k > K0 and q > N

(k)
1 , system (2) yields

x(n+ 1, z(k)) > x(n, z(k)) exp

{

r(n) −

m
∑

i=1

ai(n)α0 − c(n)ε1

}

.

Hence, we further obtain

x(n+ ω + 1, z(k)) > x(n, z(k)) exp

{n+ω
∑

s=n

[

r(n) −

m
∑

i=1

ai(n)α0 − c(n)ε1

]}

.
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It follows from (23), (29), and (30) that

α0

k2
> x(t(k)

q , z(k))

> x(t(k)
q − ω − 1, z(k)) exp

{n+ω
∑

s=n

[

r(n) −

m
∑

i=1

ai(n)α0 − c(n)ε1

]}

>
α0

k2
exp{α0},

which leads to a contradiction. This completes the proof of Theorem 1. �

Theorem 2. Assume that (H1), (H3), and (H4) hold. Then species x in system (2)

is extinct.

P r o o f. We first prove that there exists an integer p0 > 0 such that

(33) lim inf
n→∞

n+p0(ω+1)−1
∑

s=n

m
∑

j=1

aj(s) > 0.

In fact, by (H4) there exist a constant β > 0 and an integer S0 > 0 such that

(34)

n+λ
∑

s=n

m
∑

j=1

aj(s) > β for all n > S0.

For any integers n > S0 and p > 0 we can choose an integer qp > 0 such that

n+ p(ω + 1) − 1 ∈ [n+ qp(λ+ 1), n+ (qp + 1)(λ+ 1)),

hence from (34) we obtain

n+p(ω+1)−1
∑

s=n

m
∑

j=1

aj(s) =

n+qp(λ+1)−1
∑

s=n

m
∑

j=1

aj(s) +

n+p(ω+1)−1
∑

s=n+qp(λ+1)

m
∑

j=1

aj(s)(35)

> qpβ − (λ+ 1)

m
∑

j=1

au
j .

Since qp → ∞ as p→ ∞, there exists an integer p0 > 0 such that

qp0
β − (λ + 1)

m
∑

j=1

au
j > β.
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Hence, from (35) we find that

n+p0(ω+1)−1
∑

s=n

m
∑

j=1

aj(s) > β for all n > S0.

This shows that (33) is true.

On the other hand, by (H3) we get

(36) lim sup
n→∞

n+p0(ω+1)−1
∑

s=n

r(s) 6 0.

From (33) and (36) we obtain that for any constant ε ∈ (0, 1) there exist a constant

η > 0 and an integer S1 > S0 such that

(37)

n+p0(ω+1)−1
∑

s=n

[

r(s) −

m
∑

j=1

aj(s) exp{−ruτ}ε

]

6 −η for all n > S1.

Let (x(n), u(n)) be any positive solution of system (2). If x(n) > ε for all n > S1 +τ ,

let n0 = S1 + τ . Then from (37) we have

x(n0 + p0(ω + 1)) 6 x(n0) exp

{n0+p0(ω+1)−1
∑

s=n0

[

r(s) −

m
∑

j=1

aj(s)x(s − τj(s))

]}

6 x(n0) exp

{n0+p0(ω+1)−1
∑

s=n0

[

r(s) −

m
∑

j=1

aj(s) exp{−ruτ}x(s)

]}

6 x(n0) exp

{n0+p0(ω+1)−1
∑

s=n0

[

r(s) −
m

∑

j=1

aj(s) exp{−ruτ}ε

]}

6 x(n0) exp{−η}.

Hence, we further obtain

x(n0 + kp0(ω + 1)) 6 x(n0) exp{−kη} for all k ∈ N,

which implies x(n0 + kp0(ω + 1)) → 0 as k → ∞. This leads to a contradiction.

Therefore, there exists an integer n1 > n0 such that x(n1) < ε.

Now, we claim that

(38) x(n) 6 ε exp{p0(ω + 1)ru} for all n > n1.
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In fact, if it is not true, then there exists n2 > n1 such that x(n) 6 ε exp{p0(ω+1)ru}

for all n1 6 n 6 n2 and

(39) x(n2 + 1) > ε exp{p0(ω + 1)ru}.

In the case of n2 − n1 < p0(ω + 1), we have

x(n2 + 1) 6 x(n1) exp

{ n2
∑

s=n1

[

r(s) −

m
∑

j=1

aj(s)x(s− τj(s))

]}

6 x(n1) exp

{ n2
∑

s=n1

r(s)

}

6 x(n1) exp{(n2 − n1 + 1)ru} 6 ε exp{p0(ω + 1)ru},

which leads to a contradiction with (39).

In the case of n2 − n1 > p0(ω+ 1), let n2 = n1 + kp0(ω+ 1) + ̺, where k ∈ N and

0 6 ̺ < p0(ω + 1). Then it follows from (36) that

x(n2 + 1) 6 x(n1) exp

{ n2
∑

s=n1

[

r(s) −

m
∑

j=1

aj(s)x(s − τj(s))

]}

6 x(n1) exp

{n1+kp0(ω+1)−1
∑

s=n1

r(s) +

n2
∑

s=n1+kp0(ω+1)

r(s)

}

6 x(n1) exp

{ n2
∑

s=n1+kp0(ω+1)

r(s)

}

6 ε exp{p0(ω + 1)ru}.

This also leads to a contradiction. According to the arguments of the two cases

above, we have shown that (38) is true.

Since ε ∈ (0, 1) is arbitrary, let ε→ 0. Then from (39) we finally obtain x(n) → 0

as n → ∞. Therefore, species x in system (2) is extinct. This completes the proof

of Theorem 2. �

R em a r k 1. From Theorems 1 and 2 we see that for system (2) under some quite

weak assumptions the feedback control and delays do not affect the permanence

and extinction of species x. This is a very important and interesting fact for a

discrete-time single-species logistic system. It shows that in a discrete-time single-

species logistic system introducing the feedback control to factitiously control the

permanence and extinction of a species is useless.
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Now, we consider system (1) which is a special case of system (2). To establish

criteria for the permanence of species of system (1), we need to introduce the following

assumptions:

(A1) r(n), c(n), a(n), and b(n) are nonnegative bounded sequences defined on N,

m is a nonnegative integer.

(A2) There exists an integer ω > 0 such that

lim inf
n→∞

n+ω
∑

s=n

r(s) > 0.

(A3) Sequence k(n) is defined on N and is bounded from above and below by positive

constants.

(A4) There exists an integer σ > 0 such that

lim sup
n→∞

n+σ
∏

s=n

(1 − a(s)) < 1.

Applying Theorem 1, we have the following result.

Corollary 1. Assume that (A1), (A2), (A3), and (A4) hold. Then species N in

system (1) is permanent.

R em a r k 2. Obviously, Corollary 1 is a very good improvement of the corre-

sponding result obtained by Chen in [7] (see Theorem 2.1 in [7]). In fact, in The-

orem 2.1 we easily see that the feedback control has a negative influence on the

permanence of system (1). However, in Corollary 1 the feedback control does not

affect the permanence of species N .

Next, we establish criteria for the permanence and extinction of species in sys-

tem (2) with periodic coefficients. When system (2) degenerates into the ω-periodic

case, then corresponding to assumptions (H1)–(H5) we have the following assump-

tions:

(H′

1) r(n) is an ω-periodic sequence defined on N, ai(n) (i = 1, 2, . . . ,m), c(n),

a(n), and γ(n) are nonnegative ω-periodic sequences defined on N, and τi(n)

(i = 1, 2, . . . ,m), δ(n), and σ(n) are nonnegative ω-periodic integer sequences

defined on N,

(H′

2)
ω−1
∑

k=0

r(k) > 0, (H′

4)
ω−1
∑

k=0

m
∑

j=1

aj(k) > 0,

(H′

3)
ω−1
∑

k=0

r(k) 6 0, (H′

5)
ω−1
∏

k=0

γ(k) < 1.
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As consequences of Theorems 1 and 2, for system (2) with periodic coefficients we

have the following results.

Corollary 2. Assume that (H′

1), (H′

2), (H′

4), and (H′

5) hold. Then species x in

system (2) is permanent.

Corollary 3. Assume that (H′

1), (H′

3), and (H′

4) hold. Then species x in sys-

tem (2) is extinct.

R em a r k 3. Actually, for system (2) with periodic coefficients, the above Corol-

laries 2 and 3 provide sufficient and necessary conditions for the permanence and

extinction of species.

In system (2), if the coefficient c(n) ≡ 0 for all n ∈ N then system (2) becomes

the discrete single-species system without feedback controls

(40) x(n+ 1) = x(n) exp

{

r(n) −

m
∑

j=1

aj(n)x(n− τj(n))

}

.

Using arguments similar to the proofs of Theorems 1 and 2, we can prove the following

results.

Theorem 3. Assume that (H1), (H2), and (H4) hold. Then species x in sys-

tem (40) is permanent.

Theorem 4. Assume that (H1), (H3), and (H4) hold. Then species x in sys-

tem (40) is extinct.

Particularly, as consequences of Theorems 3 and 4, for system (40) with periodic

coefficients we have the following corollaries.

Corollary 4. Assume that system (40) is periodic and (H′

1) and (H′

4) hold. Then

(1) Species x is permanent if and only if (H′

2) holds.

(2) Species x is extinct if and only if (H′

3) holds.

R em a r k 4. Comparing Theorems 3 and 4 and Corollary 4 with the correspond-

ing results which are obtained for the continuous time single-species logistic systems

(see Theorems 2–4 in [35]), we easily see that Theorems 3 and 4, and Corollary 4 are

extensions of the corresponding results for the continuous time single-species systems

to discrete time single-species systems.
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