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1. Introduction

Let A and T be positive numbers. Throughout the paper ‖x‖ = max{|x(t)| : 0 6

t 6 T } denotes the norm in C0[0, T ], L1[0, T ] is the set of Lebesgue integrable

functions on [0, T ] and AC[0, T ] is the set of absolutely continuous functions on [0, T ].

Assume that G ⊂ R2 . Now Car([0, T ]×G) stands for the set of functions f : [0, T ]×

G → R satisfying the local Carathéodory conditions on [0, T ]× G, that is:

(i) for each (x, y) ∈ G, the function f(·, x, y) : [0, T ] → R is measurable,
(ii) for a.e. t ∈ [0, T ], the function f(t, ·, ·) : G → R is continuous,
(iii) for each compact set K ⊂ G there exists hK ∈ L1[0, T ] such that |f(t, x, y)| 6

hK(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ K.

*This work was supported by grant no. A100190703 of the Grant Agency of the
Academy of Sciences of the Czech Republic and by the Council of Czech Government
MSM 6198959214.
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We consider the singular Dirichlet boundary value problem

(φ(u′(t)))′ = λf(t, u(t), u′(t)), λ > 0,(1.1)

u(0) = A, u(T ) = A(1.2)

depending on the positive parameter λ. Here φ ∈ C0(R) is increasing, f ∈

Car([0, T ] × D), D = (0, A) × (R \ {0}), is singular at the values 0 of its first

phase variable and f admits singularities at the value A of its first phase variable

and at the value 0 of its second phase variable.

We say that f ∈ Car([0, T ] × D) is singular at the values 0 and A of its first and

at the value 0 of its second phase variable if

lim
x→0+

f(t, x, y) = ∞, lim
x→A−

f(t, x, y) = ∞

for a.e. t ∈ [0, T ] and all y ∈ R \ {0}, and

lim
y→0

f(t, x, y) = ∞

for a.e. t ∈ [0, T ] and all x ∈ (0, A).

A function u ∈ C1[0, T ] is called a positive solution of the problem (1.1), (1.2) if

φ(u′) ∈ AC[0, T ], u > 0 on [0, T ], u satisfies (1.2) and (1.1) holds for a.e. t ∈ [0, T ].

We say that u ∈ C1[0, T ] is a dead core solution of the problem (1.1), (1.2) if there

exist 0 < α < β < T such that u(t) = 0 for t ∈ [α, β], u > 0 on [0, T ] \ [α, β],

φ(u′) ∈ AC[0, T ], u satisfies (1.2) and (1.1) holds for a.e. t ∈ (0, T ) \ [α, β]. The

interval [α, β] is called the dead core of u or the dead core of the problem (1.1), (1.2).

If α = β then we say that u is a pseudodead core solution of the problem (1.1), (1.2).

We may say, roughly speaking, that dead core solutions are such solutions which

‘stay’ on singularities of considered differential equations for a time interval (equal

to the dead core) in contrast to ‘ordinary solutions’ which only ‘go over’ singularities

of the differential equation but do not stay there for some time interval.

Problem (1.1), (1.2) is a mathematical model for steady-state diffusion and reac-

tions of several chemical species (see, e.g., [1], [4], [6], [7]).

The aim of this paper is to discuss the existence of positive solutions, pseu-

dodead core solutions and dead core solutions of the problem (1.1), (1.2). Even

though the problem (1.1), (1.2) is singular all types of solutions are considered in

the space C1[0, T ].

In the paper we will use the following conditions on the function φ and f in the

differential equation (1.1).

(H1) φ : R → R is an increasing and odd homeomorphism such that φ(R) = R,
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f ∈ Car([0, T ]× D) where D = (0, A) × (R \ {0}), f is singular at the

value 0 of its first phase variable and f admits singularities at the

value A of its first and at the value 0 of its second phase variable,

(H3)



















































for a.e. t ∈ [0, T ] and all (x, y) ∈ D,

ϕ(t) 6 f(t, x, y) 6 p(x)ω(|y|),

where ϕ ∈ L1[0, T ], p ∈ C0(0, A) ∩ L1[0, A], ω ∈ C0(0,∞) are positive

and there exists δ ∈ (0, 1
2A) such that p is nonincreasing on (0, δ]

and nondecreasing on [A − δ, A), ω is nonincreasing on (0, δ] and
∫ ∞

0

φ−1(s)

ω(φ−1(s))
ds = ∞.

R em a r k 1.1. We observe that the condition in (H3) on the monotonicity of the

functions p and ω on some intervals can be omitted. It is used only to obtain ‘nicer’

growth conditions for approximating functions (see the inequality (1.5)). On the

other hand, since f is singular at the value 0 of its first phase variable and f admits

singularities at the value A of its first and at the value 0 of its second phase variable,

the condition in (H3) on the monotonicity of p and ω gives no restrictions on f .

Put N′ = {n ∈ N : 1/n 6 δ} where δ is taken from (H3) and D∗ = (0, A)×R. For
each n ∈ N′ define f∗

n ∈ Car([0, T ]× D∗) and fn ∈ Car([0, T ]× R2 ) by the formulas

f∗
n(t, x, y) =























f(t, x, y)

for t ∈ [0, T ], (x, y) ∈ (0, A) × (R \ [−1/n, 1/n]),

1
2n[f(t, x, 1/n)(y + 1/n) − f(t, x,−1/n)(y − 1/n)]

for t ∈ [0, T ], (x, y) ∈ (0, A) × [−1/n, 1/n],

fn(t, x, y) =























f∗
n(t, A − 1/n, y) for t ∈ [0, T ], (x, y) ∈ (A − 1/n,∞) × R,

f∗
n(t, x, y) for t ∈ [0, T ], (x, y) ∈ [1/n, A − 1/n] × R,

[φ(1/n)]−1φ(x)f∗
n(t, 1/n, y) for t ∈ [0, T ], (x, y) ∈ [0, 1/n] × R,

x for t ∈ [0, T ], (x, y) ∈ (−∞, 0) × R.

We have due to (H3),

ϕ(t) 6 fn(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ [1/n,∞) × R,(1.3)

0 < fn(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ (0,∞) × R(1.4)

and

(1.5)

{

fn(t, x, y) 6 p(x)ω(|y|)

for a.e. t ∈ [0, T ] and all (x, y) ∈ (0, A) × (R \ {0}).
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Since fn(t, 0, y) = 0 for a.e. t ∈ [0, T ] and each y ∈ R, and lim
n→∞

fn(t, x, y) = f(t, x, y)

for a.e. t ∈ [0, T ] and all (x, y) ∈ (0, A)×(R\{0}), we discuss the existence of positive
solutions, pseudodead core solutions and dead core solutions of the problem (1.1),

(1.2) by considering solutions of the sequence of auxiliary regular Dirichlet problems

(φ(u′(t)))′ = λfn(t, u(t), u′(t)), λ > 0,(1.6)

u(0) = A −
1

n
, u(T ) = A −

1

n
(1.7)

with n → ∞. We note that this technique is related to that presented in [3] and [4].

In [4] the authors discuss positive and dead core solutions to the problem

(1.8)

{

u′′ + q(t, u′) = λh(t, u), λ > 0,

u′(a) = 0, βu′(b) + αu(b) = A, β > 0, α, A > 0,

where q ∈ C0((a, b] × [0,∞)) is nonnegative, q(t, 0) = 0 for t ∈ (a, b] and h ∈

C0([a, b] × (0, A/α]) is positive. We note that the motivation for treating the prob-

lem (1.8) was the paper by Bobisud [5] dealing with the Robin problem

(1.9)

{

u′′ = λg2(u), λ > 0,

−u′(−1) + αu(−1) = A, u′(1) + αu(1) = A, α, A > 0,

where g2 ∈ C1(0, A/α] is positive. Bobisud proved that if g2 ∈ L1[0, A/α] then

for λ sufficiently large the problem (1.9) has a dead core solution. Here u is called

a dead core solution of (1.9) if there exists τ ∈ [0, 1) such that u ∈ C1[−1, 1] ∩

C2([−1, 1] \ [−τ, τ ]), u = 0 on [−τ, τ ], u satisfies the boundary condition in (1.9) and

u′′(t) = λg2(u(t)) for t ∈ [−1, 1] \ [−τ, τ ].

In [3] we considered the existence of positive solutions, pseudodead core solutions

and dead core solutions of the singular differential equation

(φ(u′))′ = λ(f1(t, u, u′) + f2(t, u, u′)), λ > 0,

satisfying the Dirichlet conditions (1.2) where f1 ∈ C0([0, T ]×((0, A]×R)) is positive

and f2 ∈ C0([0, T ] × ([0, A] × (R \ {0}))) is nonnegative. Here the existence results

are proved by a regularization and sequential technique and the solvability of regular

problems is proved by an existence principle presented in [2].

In this paper differential equations with Carathéodory nonlinearities are consid-

ered. Our existence results are proved by a combination of a regularization and

sequential technique and the method of lower and upper functions (see e.g. [8], [9]).

The theory presented in this paper improves and extends the corresponding results

in [2].
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Applying a combination of the method of lower and upper functions and the

regularization and sequential techniques, we obtain among others a generalization of

the results presented in [3].

By a solution of the problem (1.6), (1.7) we mean a function u ∈ C1[0, T ] such

that φ(u′) ∈ AC[0, T ], u satisfies (1.7) and (1.6) holds for a.e. t ∈ [0, T ].

It is useful to introduce also the notion of a solution of the problem (1.1), (1.2). We

say that u is a solution of the problem (1.1), (1.2) if there exists a subsequence {kn}

of {n}n∈N′ such that lim
n→∞

ukn
= u in C1[0, T ] where ukn

is a solution of the prob-

lem (1.6), (1.7) with kn instead of n. In Section 3 (see Theorem 3.1) we will prove

that any solution of the problem (1.1), (1.2), is either a positive solution or a pseu-

dodead solution or a dead core solution of this problem.

The rest of the paper is organized as follows. Section 2 is devoted to the regular

problem (1.6), (1.7). Using Lemmas 2.1 and 2.2 and Proposition 2.3, the solvability

of the problem (1.6), (1.7) is proved (Lemma 2.4). Lemmas 2.5–2.8 present properties

of solutions to the problem (1.6), (1.7) which are used in the next section. The main

results are given in Section 3. Under the assumptions (H1)–(H3), for each λ > 0

the problem (1.1), (1.2) has a solution and this solution is either a positive solution

or a pseudodead core solution or a dead core solution of the problem (1.1), (1.2)

(Theorem 3.1). For sufficiently small positive values of λ the problem (1.1), (1.2)

has only positive solutions (Corollary 3.2) and if values of λ are sufficiently large

then the problem (1.1), (1.2) has only dead core solutions (Corollary 3.3). Finally,

Corollary 3.4 states a relation between solutions of the problem (1.1), (1.2) with

distinct values of the parameter λ in (1.1). An example demonstrates the application

of our existence results.

2. Auxiliary regular problems

Lemma 2.1. Let (H1)–(H3) hold and let un be a solution of the problem (1.6),

(1.7). Then

(2.1) 0 < un(t) 6 A −
1

n
for t ∈ [0, T ],

u′
n is increasing on [0, T ] and there exists a unique αn ∈ (0, T ) such that

(2.2) u′
n < 0 on [0, αn), u′

n(αn) = 0, u′
n > 0 on (αn, T ].

P r o o f. Suppose that min{un(t) : 0 6 t 6 T } = un(ξ) < 0. Then ξ ∈ (0, T )

and there exist 0 < a < b < T such that un(a) = un(b) = 0 and un < 0 on
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(a, b). Hence u′
n(a) 6 0, u′

n(b) > 0 and (φ(u′
n(t)))′ = λun(t) < 0 for a.e. t ∈ [a, b].

Integrating the last inequality over [a, b] gives φ(u′
n(b))−φ(u′

n(a)) < 0. Consequently

u′
n(b) < u′

n(a), contrary to u′
n(a) 6 0 and u′

n(b) > 0. Thus un > 0 on [0, T ].

From (1.4) and fn(t, 0, y) = 0 for a.e. t ∈ [0, T ] and all y ∈ R it follows that
(φ(u′

n))′ > 0 a.e. on [0, T ]. Therefore φ(u′
n) is nondecreasing on [0, T ] and so is u′

n

since φ is increasing by (H1). Moreover (1.7) implies u
′
n(αn) = 0 for some αn ∈ (0, T ).

We now show that min{un(t) : 0 6 t 6 T } > 0. To obtain a contradiction assume

that min{un(t) : 0 6 t 6 T } = un(ξ) = 0. Then ξ ∈ (0, T ) and u′
n(ξ) = 0. Put

ηn = min{t ∈ [0, T ] : u′
n(t) = 0}, τn = max{t ∈ [0, T ] : u′

n(t) = 0}.

Then ηn 6 ξ 6 τn and since u′
n is nondecreasing on [0, T ] we have u′

n < 0 on [0, ηn),

u′
n = 0 on [ηn, τn] and u′

n > 0 on (τn, T ]. Consequently un 6 A − 1/n on [0, T ],

un > 0 on [0, T ] \ [ηn, τn] and un = 0 on [ηn, τn]. As a result (φ(u′
n))′ > 0 a.e. on

[τn, T ] and therefore u′
n is increasing on [τn, T ] and positive on (τn, T ]. Thus there

exists t1 ∈ (τn, τn + 1] such that 0 < un 6 1/n on (τn, t1] and un, u′
n are positive

and increasing on this interval. Moreover from the definition of the function fn it

follows that

(2.3) (φ(u′
n(t)))′ = Bφ(un(t))q(t) for a.e. t ∈ [τn, t1]

where B = λ[φ(1/n)]−1, q(t) = f∗
n(t, 1/n, u′

n(t)) ∈ L1[τn, t1] and q > 0 a.e. on [τn, t1].

Integrating (2.3) over [τn, t] ⊂ [τn, t1] yields φ(u′
n(t)) = B

∫ t

τn

φ(un(s))q(s) ds and

using the properties of un and φ we obtain

φ(u′
n(t)) 6 Bφ(un(t))

∫ t

τn

q(s) ds 6 Bφ(u′
n(t)(t − τn))

∫ t

τn

q(s) ds

6 Bφ(u′
n(t))

∫ t

τn

q(s) ds

for t ∈ [τn, t1]. Since φ(u′
n) > 0 on (τn, t1], the last inequality gives 1 6 B

∫ t

τn

q(s) ds

for t ∈ (τn, t1], which is impossible. We have proved that un > 0 on [0, T ]. Hence

(φ(u′
n))′ > 0 a.e. on [0, T ] and consequently u′

n is increasing on [0, T ], αn is the

unique zero of u′
n and (2.1) and (2.2) hold. �

We now state a priori bounds for the derivative of solutions to problem (1.6),

(1.7).
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Lemma 2.2. Let (H1)–(H3) hold. Then there exists a positive constant S inde-

pendent of n ∈ N′ (and depending on λ) such that

(2.4) ‖u′
n‖ < S

for any solution un of the problem (1.6), (1.7).

P r o o f. Let un be a solution of the problem (1.6), (1.7). Lemma 2.1 shows that

(2.1) and (2.2) are true (where 0 < αn < T ) and u′
n is increasing on [0, T ]. Hence

(2.5) ‖u′
n‖ = max{|u′

n(0)|, u′
n(T )}.

In view of (1.5),

(φ(u′
n(t)))′ 6 λp(un(t))ω(−u′

n(t)) for a.e. t ∈ [0, αn],

(φ(u′
n(t)))′ 6 λp(un(t))ω(u′

n(t)) for a.e. t ∈ [αn, T ].

Now integrating

(2.6)
(φ(u′

n(t)))′u′
n(t)

ω(−u′
n(t))

> λp(un(t))u′
n(t)

over [0, αn] and

(2.7)
(φ(u′

n(t)))′u′
n(t)

ω(u′
n(t))

6 λp(un(t))u′
n(t)

over [αn, T ], we have

(2.8)

∫ φ(|u′

n
(0)|)

0

φ−1(s)

ω(φ−1(s))
ds 6 λ

∫ A−1/n

un(αn)

p(s) ds < λ

∫ A

0

p(s) ds

and

(2.9)

∫ φ(u′

n
(T ))

0

φ−1(s)

ω(φ−1(s))
ds 6 λ

∫ A−1/n

un(αn)

p(s) ds < λ

∫ A

0

p(s) ds,

respectively. By (H3), there exists a positive constant K (depending on λ) such that

∫ u

0

φ−1(s)

ω(φ−1(s))
ds > λ

∫ A

0

p(s) ds

whenever u > K and therefore (2.8) and (2.9) give max{φ(|u′
n(0)|), φ(u′

n(T ))} < K.

Consequently max{|u′
n(0)|, u′

n(T )} < φ−1(K) and (2.5) now shows that (2.4) is true

with S = φ−1(K). �
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In order to prove the existence of a solution of the problem (1.6), (1.7) we apply the

method of lower and upper functions. Let h ∈ Car([0, T ]×R2 ) and let φ satisfy (H1).

Consider the Dirichlet problem

(φ(u′(t)))′ = h(t, u(t), u′(t)),(2.10)

u(0) = a, u(T ) = b,(2.11)

where a, b ∈ R. We say that v ∈ C1[0, T ] is a lower function of the problem (2.10),

(2.11) if φ(v′) ∈ AC[0, T ], (φ(v′(t)))′ > h(t, v(t), v′(t)) for a.e. t ∈ [0, T ] and v(0) 6 a,

v(T ) 6 b. If the reverse inequalities hold, we say that v is an upper function of the

problem (2.10), (2.11).

For the solvability of the problem (2.10), (2.11) the following result holds (see

e.g. [8], [9]).

Proposition 2.3. If there exists a lower function v and an upper function z of

the problem (2.10), (2.11), v(t) 6 z(t) for t ∈ [0, T ] and there exists q ∈ L1[0, T ] such

that

|h(t, x, y)| 6 q(t) for a.e. t ∈ [0, T ] and all v(t) 6 x 6 z(t), y ∈ R,

then the problem (2.10), (2.11) has a solution u and v(t) 6 u(t) 6 z(t) for t ∈ [0, T ].

Lemma 2.4. Let (H1)–(H3) hold. Then the problem (1.6), (1.7) has a solution un

satisfying (2.1) and (2.2) for some 0 < αn < T .

P r o o f. Let S be a positive constant in Lemma 2.2. Put

(2.12) h̃(t, x, y) =

{

fn(t, x, y) for t ∈ [0, T ], (x, y) ∈ [0,∞) × R,

0 for t ∈ [0, T ], (x, y) ∈ (−∞, 0) × R,

and

(2.13) h(t, x, y) = χ(y)h̃(t, x, y) for t ∈ [0, T ], (x, y) ∈ R2

where

χ(y) =















1 for |y| 6 S,

2 −
|y|

S
for S < |y| 6 2S,

0 for |y| > 2S.
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Then (see (1.5))

(2.14)







h(t, x, y) 6 p(x)ω(|y|)

for a.e. t ∈ [0, T ] and all (x, y) ∈
(

0, A −
1

n

]

× (R \ {0})

and there exists q ∈ L1[0, T ] such that

0 6 h(t, x, y) 6 q(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2 .

Since h(t, 0, 0) = 0 and h(t, A − 1/n, 0) > 0 for a.e. t ∈ [0, T ], we see that v = 0 and

z = A − 1/n is a lower and an upper function of the problem (2.10), (1.7). Hence

Proposition 2.3 guarantees that this problem has a solution u such that 0 6 un(t) 6

A − 1/n for t ∈ [0, T ]. From (2.14) and from the proof of Lemma 2.2 it follows that

‖u′
n‖ < S. Hence h(t, un(t), u′

n(t)) = fn(t, un(t), u′
n(t)) for t ∈ [0, T ] and so un is a

solution of the problem (1.6), (1.7). By Lemma 2.1, un satisfies (2.1) and (2.2) for

some 0 < αn < T . �

Lemma 2.5. Let (H1)–(H3) hold and let un be a solution of the problem (1.6),

(1.7). Then {u′
n}n∈N′ is equicontinuous on [0, T ].

P r o o f. By Lemmas 2.1 and 2.2, there exist a positive constant S and some

0 < αn < T such that (2.1), (2.2) and (2.4) hold. Set

H(v) =

∫ φ(v)

0

φ−1(s)

ω(φ−1(s))
ds for v ∈ [0,∞),

H∗(v) =

{

H(v) for v ∈ [0,∞),

−H(−v) for v ∈ (−∞, 0),

and

P (v) =

∫ v

0

p(s) ds for v ∈ [0, A].

Then H∗ ∈ C0(R) is an increasing and odd function, H∗(R) = R by (H3) and

P ∈ AC[0, T ] is increasing. Since {u′
n}n∈N′ is bounded in C0[0, T ], {un}n∈N′ is

equicontinuous on [0, T ] and consequently {P (un)}n∈N′ is equicontinuous on [0, T ]

as well. Choose ε > 0. Then there exists ν > 0 such that

|P (un(t1)) − P (un(t2))| < ε for n ∈ N′

whenever t1, t2 ∈ [0, T ] and |t1 − t2| < ν. In order to prove that {u′
n}n∈N′ is equicon-

tinuous on [0, T ], let 0 6 t1 < t2 6 T and t2 − t1 < ν. If t2 6 αn integrating (2.6)

from t1 to t2 yields

0 < H∗(u′
n(t2)) − H∗(u′

n(t1)) 6 λ[P (un(t1)) − P (un(t2))] < λε,
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and if t2 > αn integrating (2.7) over [t1, t2] gives

0 < H∗(u′
n(t2)) − H∗(u′

n(t1)) 6 λ[P (un(t2)) − P (un(t1))] < λε.

Finally, if t1 < αn < t2 one can check that

0 < H∗(u′
n(t2)) − H∗(u′

n(t1)) < 2λε.

Summarizing, we have

0 6 H∗(u′
n(t2)) − H∗(u′

n(t1)) < 2λε for n ∈ N′

whenever 0 6 t1 < t2 6 T and t2− t1 < ν. Hence {H∗(u′
n)}n∈N′ is equicontinuous on

[0, T ] and, since {u′
n}n∈N′ is bounded in C0[0, T ] and H∗ is continuous and increasing

on R, we see that {u′
n}n∈N′ is equicontinuous on [0, T ]. �

The next result will be used for the existence of positive solutions of the prob-

lem (1.1), (1.2).

Lemma 2.6. Let (H1)–(H3) hold. Then there exist λ0 > 0 and c > 0 such that

(2.15) un(t) > c for t ∈ [0, T ] and n ∈ N′ ,

where un is a solution of the problem (1.6), (1.7) with λ ∈ (0, λ0] in (1.6).

P r o o f. Let λ0 > 0 satisfy the inequality

λ0 <

(
∫ A

0

p(s) ds

)−1 ∫ φ(A/T )

0

φ−1(s)

ω(φ−1(s))
ds.

Then there is an ε ∈ (0, A/T ) such that

λ0 =

(
∫ A

0

p(s) ds

)−1 ∫ φ(A/T−ε)

0

φ−1(s)

ω(φ−1(s))
ds.

Choose λ ∈ (0, λ0] and let un be a solution of the problem (1.6), (1.7). From (2.5)

and (see (2.8) and (2.9))

∫ φ(‖u′

n
‖)

0

φ−1(s)

ω(φ−1(s))
ds < λ

∫ A

0

p(s) ds 6 λ0

∫ A

0

p(s) ds,

we have
∫ φ(‖u′

n
‖)

0

φ−1(s)

ω(φ−1(s))
ds <

∫ φ(A/T−ε)

0

φ−1(s)

ω(φ−1(s))
ds.
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Hence ‖u′
n‖ < A/T − ε. Let min{un(t) : 0 6 t 6 T } = un(ξ). Then

A −
1

n
− un(ξ) = un(0) − un(ξ) = −

∫ ξ

0

u′
n(t) dt <

(A

T
− ε

)

ξ,

A −
1

n
− un(ξ) = un(T ) − un(ξ) =

∫ T

ξ

u′
n(t) dt <

(A

T
− ε

)

(T − ξ),

and consequently un(ξ) > A − 1/n − 1
2T (A/T − ε) = 1

2A − 1/n + 1
2εT > 1

2εT .

Therefore un > 1
2εT on [0, T ] and (2.15) is true with c = 1

2εT . �

The following result will be needed for the existence of dead core solutions of the

problem (1.1), (1.2).

Lemma 2.7. Let (H1)–(H3) hold. Then for each c ∈ (0, T ), there exists λc > 0

such that

(2.16) lim
n→∞

un(c) = 0

where un is a solution of the problem (1.6), (1.7) with λ > λc in (1.6).

P r o o f. Fix c ∈ (0, T ). Let ϕ and δ be taken from (H3). Set ̺ = min{c, T − c},

Λ = min

{
∫ c

c/2

ϕ(t) dt,

∫ (T−c)/2

c

ϕ(t) dt

}

> 0, λc =
1

Λ
φ
(2A

̺

)

.

Let λ ∈ (λc,∞) and choose ε ∈ (0, δ). If we prove that

(2.17) un(c) < ε for all n >
1

ε
,

then (2.16) is true since un > 0 on [0, T ]. In order to prove (2.17), we argue by

contradiction and assume that there exists n0 > 1/ε such that un0
(c) > ε. The next

part of the proof is divided into two cases, namely u′
n0

(c) 6 0 and u′
n0

(c) > 0.

Case 1. Suppose u′
n0

(c) 6 0. By Lemma 2.1, u′
n0
is increasing on [0, T ] and

therefore if u′
n0

(1
2c) < −2A/c then u′

n0
< −2A/c on [0, 1

2c] which implies

un0
(0) = un0

(1

2
c
)

−

∫ c/2

0

u′
n0

(t) dt > un0

(1

2
c
)

+ A > A,

contrary to un0
(0) = A − 1/n0. Hence

(2.18) u′
n0

(1

2
c
)

> −2
A

c
and 0 > u′

n0
(t) > −2

A

c
for t ∈

[1

2
c, c

]

.
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Since n0un0
(t) > n0ε > 1 for t ∈ [0, c], we have (see (1.3))

(2.19) fn0
(t, un0

(t), u′
n0

(t)) > ϕ(t) for a.e. t ∈
[1

2
c, c

]

and therefore

(2.20) (φ(u′
n0

(t)))′ > λϕ(t) > λcϕ(t) for a.e. t ∈
[1

2
c, c

]

.

Thus φ(u′
n0

(c)) − φ(u′
n0

(1
2c)) > λc

∫ c

c/2 ϕ(t) dt > λcΛ and so

φ
(

−u′
n0

(1

2
c
))

> −φ(u′
n0

(c)) + λcΛ > λcΛ = φ
(2A

̺

)

> φ
(2A

c

)

.

Consequently −u′
n0

(1
2c) > 2A/c, contrary to (2.18).

Case 2. Suppose u′
n0

(c) > 0. Then u′
n0
is positive and increasing on [c, T ] by

Lemma 2.1. If u′
n0

(1
2 (T + c)) > 2A/(T − c) then u′

n0
> 2A/(T − c) on [12 (T + c), T ]

and

un0
(T ) = un0

(1

2
(T + c)

)

+

∫ T

(T+c)/2

u′
n0

(t) dt > un0

(1

2
(T + c)

)

+ A > A,

contrary to un0
(T ) = A − 1/n. Hence

(2.21) 0 < u′
n0

(t) <
2A

T − c
for t ∈

[

c,
1

2
(T + c)

]

.

Since n0un0
(t) > n0ε > 1 for t ∈ [c, T ], it follows that the inequality in (2.19) is

satisfied a.e. on [c, 1
2 (T +c)] and therefore on this interval also the inequality in (2.20)

is true. Integrating (φ(u′
n0

))′ > λcϕ(t) over [c, 1
2 (T + c)] yields φ(u′

n0
(1
2 (T + c))) >

φ(u′
n0

(c)) + λc

∫ (T+c)/2

c
ϕ(t) dt. Thus

φ
(

u′
n0

(1

2
(T + c)

))

> λc

∫ (T+c)/2

c

ϕ(t) dt > λcΛ = φ
(2A

̺

)

> φ
( 2A

T − c

)

,

and so u′
n0

((T + c)/c) > 2A/(T − c), contrary to (2.21). �

We now state a relation between solutions of the problem (1.6), (1.7) with distinct

values of the parameter λ in (1.1).
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Lemma 2.8. Let (H1)–(H3) hold and let 0 < λ1 < λ2. If un is a solution of

the problem (1.6), (1.7) with λ = λ1 in (1.6) then there exists a solution vn of the

problem (1.6), (1.7) with λ = λ2 in (1.6) such that

vn(t) 6 un(t) for t ∈ [0, T ].

P r o o f. Let j = 1, 2 and Sj be a positive constant in Lemma 2.2 for a priori

bounds for the derivative of solutions to the problem (1.6), (1.7) with λ = λj in (1.6).

Put S = max{S1, S2} and let the function h be defined as in (2.13). Consider the

differential equation

(2.22) (φ(u′(t)))′ = λh(t, u(t), u′(t)).

Let un be a solution of the problem (1.6), (1.7) with λ = λ1 in (1.6). Then un is

also a solution of the problem (2.22), (1.7) with j = 1 since ‖un‖ < S1 and un > 0

on [0, T ]. The function v = 0 is a lower function of the problem (2.22), (1.7) with

λ = λ2 and from

(φ(u′
n(t)))′ = λ1fn(t, un(t), u′

n(t)) 6 λ2fn(t, un(t), u′
n(t)) for a.e. t ∈ [0, T ]

and un(0) = un(T ) = A − 1/n, we see that un is an upper function of the prob-

lem (2.22), (1.7) with λ = λ2. Thus the last problem has a solution vn satisfying

0 6 vn(t) 6 un(t) for t ∈ [0, T ] by Proposition 2.3. Now arguing as in the proof of

Lemma 2.4 we show that ‖v′n‖ < S2. Hence h(t, vn(t), v′n(t)) = fn(t, vn(t), v′n(t)) for

t ∈ [0, T ] and consequently vn is a solution of the problem (1.6), (1.7) with λ = λ2

in (1.6) which completes the proof. �

3. Main results and an example

Theorem 3.1. Let (H1)–(H3) hold. Then for all λ > 0, the problem (1.1), (1.2)

has a solution. Moreover, any solution of the problem (1.1), (1.2) is either a positive

solution or a pseudodead core solution or a dead core solution.

P r o o f. Fix λ > 0. For all n ∈ N′ , there exists a solution un of the problem (1.6),

(1.7) by Lemma 2.4. Lemmas 2.1 and 2.2 show that the relations (2.1), (2.2) and

(2.4) hold where S is a positive constant, 0 < αn < T and u′
n is increasing on

[0, T ]. In addition {u′
n}n∈N′ is equicontinuous on [0, T ] by Lemma 2.5. Hence we

can assume without loss of generality that {un}n∈N′ is convergent in C1[0, T ] and let

lim
n→∞

un = u. We have proved that u is a solution of the problem (1.1), (1.2).
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In order to prove the second part of the assertion of our theorem, let u be a

solution of the problem (1.1), (1.2). Then there exists a subsequence of {n}n∈N′,

denoting for simplicity again by {n}n∈N′, such that u = lim
n→∞

un in C1[0, T ] where

un is a solution of the problem (1.6), (1.7). Then u ∈ C1[0, T ] and u(0) = u(T ) = A.

From the properties of un it follows that u′ is nondecreasing on [0, T ], ‖u′‖ 6 S and

0 6 u(t) 6 A for t ∈ [0, T ]. The next part of the proof is broken into two cases if

min{u(t) : 0 6 t 6 T } is positive or equals zero.

Case 1. Suppose min{u(t) : 0 6 t 6 T } > 0. Then there exist ε > 0 and n0 ∈ N′

such that

(3.1) un(t) > ε for t ∈ [0, T ], n > n0.

Without loss of generality we can assume that n0 > 1/ε. Then un > 1/n0 > 1/n on

[0, T ] for n > n0 and (see (1.3))

(3.2) (φ(u′
n(t)))′ = λfn(t, un(t), u′

n(t)) > λϕ(t)

for a.e. t ∈ [0, T ] and all n > n0. Hence

(3.3) −φ(u′
n(t)) = φ(u′

n(αn)) − φ(u′
n(t)) > λ

∫ αn

t

ϕ(s) ds,

and therefore

(3.4) u′
n(t) 6 −φ−1

(

λ

∫ αn

t

ϕ(s) ds

)

for t ∈ [0, αn], n > n0.

Analogous reasoning shows that

(3.5) u′
n(t) > φ−1

(

λ

∫ t

αn

ϕ(s) ds

)

for t ∈ [αn, T ], n > n0.

Passing if necessary to a subsequence we can assume that {αn} is convergent,

lim
n→∞

αn = α. Letting n → ∞ in (3.4) and (3.5) gives

u′(t) 6 − φ−1

(

λ

∫ α

t

ϕ(s) ds

)

for t ∈ [0, α],(3.6)

u′(t) > φ−1

(

λ

∫ t

α

ϕ(s) ds

)

for t ∈ [α, T ].(3.7)

Thus α is the unique zero of u′ and (1.2) shows that α ∈ (0, T ). Therefore

lim
n→∞

fn(t, un(t), u′
n(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]
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and since λ
∫ T

0
fn(t, un(t), u′

n(t)) dt = φ(u′
n(T )) − φ(u′

n(0)) < 2φ(S) for n ∈N′ , we have from Fatou’s theorem that
∫ T

0 f(t, u(t), u′(t)) dt < 2φ(S)/λ and

f(t, u(t), u′(t)) ∈ L1[0, T ]. Next, from (3.6) we obtain

A − u(t) = −

∫ t

0

u′(s) ds >

∫ t

0

φ−1

(

λ

∫ α

s

ϕ(v) dv

)

ds

and therefore

(3.8) u(t) 6 A −

∫ t

0

φ−1

(

λ

∫ α

s

ϕ(v) dv

)

ds for t ∈ [0, α].

Similarly, using (3.7),

(3.9) u(t) 6 A −

∫ t

α

φ−1

(

λ

∫ s

α

ϕ(v) dv

)

ds for t ∈ [α, T ].

Choose 0 < t1 6 1
2α < t2 < α. Then, noting (2.4), (3.1), (3.6) and (3.8), there exist

τ > 0, ν > 0 and n1 > n0 such that

ε 6 un(t) < A − τ, −S < u′
n(t) 6 −ν for t ∈ [t1, t2] and n > n1.

Since

(3.10) lim
n→∞

fn(t, un(t), u′
n(t)) = f(t, u(t), u′(t))

for a.e. t ∈ [t1, t2] and (see (1.5))

fn(t, un(t), u′
n(t)) 6 max{p(s) : ε 6 s 6 A − τ}max{ω(s) : ν 6 s 6 S},

letting n → ∞ in

(3.11) φ(u′
n(t)) = φ

(

u′
n

(1

2
α
))

+ λ

∫ t

α/2

fn(s, un(s), u′
n(s)) ds

yields

(3.12) φ(u′(t)) = φ
(

u′
(1

2
α
))

+ λ

∫ t

α/2

f(s, u(s), u′(s)) ds

for t ∈ [t1, t2] by the Lebesque Dominated Convergence Theorem. Since 0 < t1 <
1
2α < t2 < α are arbitrary, (3.12) holds for t ∈ (0, α). Essentially the same reasoning

applied now on α < t1 < 1
2 (T − α) < t2 < T shows that

(3.13) φ(u′(t)) = φ
(

u′
(1

2
(T − α)

))

+ λ

∫ t

(T−α)/2

f(s, u(s), u′(s)) ds
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for t ∈ (α, T ). Since u′ ∈ C1[0, T ] and f(t, u(t), u′(t)) ∈ L1[0, T ], we deduce

from (3.12) and (3.13) that φ(u′) ∈ AC[0, T ] and (1.1) is satisfied for a.e. t ∈ [0, T ].

Hence u is a positive solution of the problem (1.1), (1.2).

Case 2. Suppose that min{u(t) : 0 6 t 6 T } = 0, u(α) = u(β) = 0 for some

0 < α 6 β < T and u > 0 on [0, T ] \ [α, β]. As u′ is nondecreasing on [0, T ], we have

u′ < 0 on [0, α), u′ = 0 on [α, β] and u′ > 0 on (β, T ]. Hence u = 0 on [α, β],

lim
n→∞

fn(t, un(t), u′
n(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ] \ (α, β)

and since

λ

∫ α

0

fn(t, un(t), u′
n(t)) ds = φ(u′

n(α)) − φ(u′
n(0)) < 2φ(S),

λ

∫ T

β

fn(t, un(t), u′
n(t)) ds = φ(u′

n(T )) − φ(u′
n(β)) < 2φ(S),

then Fatou’s theorem gives that the function f(t, u(t), u′(t)) is integrable on the

intervals [0, α] and [β, T ]. Let t2 ∈ (1
2α, α). Then there exists n2 ∈ N′ , n2 > 2/u(t2)

such that un(t) > un(t2) > 1
2u(t2) (> 1/n), −S < u′

n(t) 6 u′
n(t2) 6 1

2u′(t2) for t ∈

[0, t2] and n > n2. Thus (3.2) is satisfied for a.e. t ∈ [0, t2] and integrating (3.2) over

[t, t2] gives −u′
n(t) > φ−1(λ

∫ t2
t

ϕ(s) ds) for t ∈ [0, t2] and n > n2 since φ(u′
n(t2)) < 0.

Hence

A −
1

n
− un(t) = un(0) − un(t) = −

∫ t

0

u′
n(s) ds >

∫ t

0

φ−1

(

λ

∫ t2

s

ϕ(v) dv

)

ds

and

un(t) < A −

∫ t

0

φ−1

(

λ

∫ t2

s

ϕ(v) dv

)

ds

for t ∈ [0, t2] and n > n2. Choose t1 ∈ (0, 1
2α). Then A − c > un(t) > 1

2u(t2) for

t ∈ [t1, t2] and n > n2 where c =
∫ t1
0

φ−1(λ
∫ t2

s
ϕ(v) dv) ds and consequently

fn(t, un(t), u′
n(t))

6 max
{

p(s) :
1

2
u(t2) 6 s 6 A − c

}

max
{

ω(s) :
1

2
|u′(t2)| 6 s 6 S

}

for t ∈ [t1, t2] and n > n2. Letting n → ∞ in (3.11) gives (3.12) for t ∈ [t1, t2] by the

Lebesgue Dominated Convergence Theorem. Since 0 < t1 < t2 < α are arbitrary,

(3.12) is true for t ∈ (0, α) and from u′ ∈ C1[0, T ] and f(t, u(t), u′(t)) ∈ L1[0, α] it

follows that φ(u′) ∈ AC[0, α] and u satisfies (1.1) a.e. on [0, α]. A similar procedure

can be applied to the interval (β, T ]. Summarizing we have shown that u = 0 on

[α, β], φ(u′) ∈ AC[0, T ] and (1.1) holds for a.e. t ∈ [0, T ] \ [α, β]. Consequently, if

α < β then u is a dead core solution of the problem (1.1), (1.2) and if α = β then

u is a pseudodead core solution of this problem. �
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Corollary 3.2. Let (H1)–(H3) hold. Then there exists λ0 > 0 such that the

problem (1.1), (1.2), has only positive solutions for each λ ∈ (0, λ0] in (1.1).

P r o o f. Let λ0 > 0 be taken from Lemma 2.6. Choose λ ∈ (0, λ0] and let u be

a solution of the problem (1.1), (1.2) whose existence is guaranteed by Theorem 3.1.

Then u = lim
n→∞

ukn
in C1[0, T ] where {kn} is a subsequence of {n}n∈N′ and ukn

is

a solution of (1.6), (1.7) with kn instead of n. Due to Lemma 2.6, inf{ukn
(t) : t ∈

[0, T ], n ∈ N} > 0 and consequently u > 0 on [0, T ]. Hence all solutions of the

problem (1.1), (1.2) are positive for each λ ∈ (0, λ0] in (1.1). �

Corollary 3.3. Let (H1)–(H3) hold. Then there exists λ∗ > 0 such that the

problem (1.1), (1.2) has only dead core solutions for each λ ∈ (λ∗,∞) in (1.1).

Moreover, for every 0 < c1 < c2 < T the problem (1.1), (1.2) has for sufficiently

large values of λ only dead core solutions u and u(t) = 0 for t ∈ [c1, c2].

P r o o f. Let 0 < c1 < c2 < T be arbitrary but fixed numbers. Lemma 2.7

guarantees the existence of some λ∗ > 0 such that if λ > λ∗ then

(3.14) lim
n→∞

un(cj) = 0 for j = 1, 2

where un is a solution of the problem (1.6), (1.7). Let u be a solution of the prob-

lem (1.1), (1.2) with λ > λ∗ in (1.1). Then u = lim
n→∞

ukn
in C1[0, T ] where {kn} is a

subsequence of {n}n∈N′. From (3.14) it follows that u(cj) = 0 for j = 1, 2 and since

we know that u′ is nondecreasing on [0, T ], u(t) = 0 for t ∈ [c1, c2]. Hence for λ > λ∗

the problem (1.1), (1.2) has only dead core solutions and moreover these solutions

vanish on [c1, c2]. �

Corollary 3.4. Let (H1)–(H3) hold and let 0 < λ1 < λ2. If u is a solution of

the problem (1.1), (1.2) with λ = λ1 in (1.1) then there exists a solution v of the

problem (1.1), (1.2) with λ = λ2 in (1.1) such that

(3.15) v(t) 6 u(t) for t ∈ [0, T ].

P r o o f. Let u be a solution of the problem (1.1), (1.2) with λ = λ1 in (1.1).

Then there exists a subsequence {kn} of {n}n∈N′ such that u = lim
n→∞

ukn
in C1[0, T ]

where ukn
is a solution of the problem (1.6), (1.7) with λ = λ1 and kn instead

of n. Due to Lemma 2.8, there exists a solution vkn
of the problem (1.6), (1.7) with

λ = λ2 and kn instead of n such that vkn
(t) 6 ukn

(t) for t ∈ [0, T ]. Lemmas 2.1,

2.2 and 2.5 show that {vkn
} is bounded in C1[0, T ] and {v′kn

} is equicontinuous on

[0, T ]. Going if necessary to a subsequence, we can assume that {vkn
} is convergent
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in C1[0, T ] and let v = lim
n→∞

vkn
. Then v is a solution of the problem (1.1), (1.2)

with λ = λ2 in (1.1) and from the inequality vkn
6 ukn

on [0, T ] for n ∈ N, we obtain
the inequality (3.15). �

E x am p l e 3.5. Consider the differential equation

(3.16) (|u′|p−2u′)′ = λ
( et

uα(A − u)β
+

1

|u′|γ
+ uµ + |u′|ν

)

where A > 0, p > 1, α, β ∈ (0, 1), γ, µ ∈ (0,∞) and ν ∈ (0, p). Equation (3.16)

is the special case of (1.1) with φ(u) = |u|p−2u satisfying (H1) and f(t, x, y) =

et/(xα(A − x)β)+1/|y|γ +xµ + |y|ν for t ∈ [0, T ] and (x, y) ∈ (0, A)× (R\ {0}). The

function f satisfies (H2) and from the estimate

f(t, x, y) 6

(

eT

xα(A − x)β
+ xµ + 1

)

( 1

|y|γ
+ |y|ν + 1

)

we see that in (H3) we can put p(x) = eT /(xα(A − x)β) + xµ + 1 for x ∈ (0, A) and

ω(y) = 1/yγ + yν + 1 for y ∈ (0,∞). Then p ∈ C0(0, A)∩L1[0, A] and ω ∈ C0(0,∞)

are positive and the inequality (for v > 1)

∫ v

0

φ−1(s)

ω(φ−1(s))
ds >

∫ v

1

s1/(p−1)

s−γ/(p−1) + sν/(p−1) + 1
ds

=

∫ v

1

s(1+γ)/(p−1)

1 + s(ν+γ)/(p−1) + sγ/(p−1)
ds

>
1

3

∫ v

1

s(1−ν)/(p−1) ds =
1

3

p − 1

p − ν

(

v(p−ν)/(p−1) − 1
)

implies that
∫ ∞

0
φ−1(s)/ω(φ−1(s)) ds = ∞. Thus the functions p and ω satisfy the

conditions in (H3) where δ is sufficiently small. Since f(t, x, y) > 1/(xα(A − x)β) >

((α + β)/A)α+βα−αβ−β for t ∈ [0, T ] and (x, y) ∈ (0, A) × (R \ {0}), we can set

ϕ(t) = ((α + β)/A)α+βα−αβ−β in (H3). Applying Theorem 3.1, problem (3.16),

(1.2) has a solution for each λ > 0 and any solution of this problem is either a positive

solution or a pseudodead core solution or a dead core solution. In addition, if λ is

sufficiently small then all solutions of problem (3.16), (1.2) are positive solutions by

Corollary 3.2 and if λ is sufficiently large then all solutions are dead core solutions

by Corollary 3.3.
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