THE DENSITY OF INFINITELY DIFFERENTIABLE FUNCTIONS IN SOBOLEV SPACES WITH MIXED BOUNDARY CONDITIONS*

PAVEL DOKTOR, Praha, ALEXANDER ŽENÍŠEK, Brno

(Received February 14, 2005)

Abstract. We present a detailed proof of the density of the set $C^{\infty}(\overline{\Omega}) \cap V$ in the space of test functions $V \subset H^1(\Omega)$ that vanish on some part of the boundary $\partial \Omega$ of a bounded domain Ω .

Keywords: density theorems, finite element method

MSC 2000: 46E35

Let Ω be a nonempty bounded domain in \mathbb{R}^N (N=2 or 3). The symbol $C^{\infty}(\overline{\Omega})$ denotes the set containing all restrictions to $\overline{\Omega}$ of infinitely smooth functions defined on \mathbb{R}^N (see [5, 1.2.1, 1.2.3 and 5.2.1]). Further, the symbol V denotes the set of test functions belonging to $H^1(\Omega)$ (for detailed definition of V see Theorem 1), where $H^1(\Omega) \equiv H^{1,2}(\Omega)$ is the Sobolev space in the notation defined in [5, 5.4.1].

In this paper we present a detailed proof of the density of $C^{\infty}(\overline{\Omega}) \cap V$ in V (see Theorem 1) the use of which is necessary when proving the convergence of the finite element method without any regularity assumptions on the exact solution u of a given variational problem, i.e., when proving the relation (which we present in (*) for the case of a variational problem corresponding to a second order elliptic boundary value problem)

$$\lim_{h \to 0} \|\tilde{u} - u_h\|_{1,\Omega_h} = 0,$$

where \tilde{u} is the Calderon extension (see [7, p. 77]) of the exact solution and u_h is the approximate solution by the finite element method. Many authors consider the density of $C^{\infty}(\overline{\Omega}) \cap V$ in V to be evident and using it they do not give any reference

^{*}This work was supported by the grants GAČR 201/03/0570 and MSM 262100001.

(see, for example, [3, p. 135]). The assertion of Theorem 1 was given (in a little more general form) in [4]. However, the proof presented in [4] is so concise that almost no reader will have patience to read and understand it. For this reason we present in this paper a sufficiently detailed proof of this result which is of basic importance in the theory of convergence of the finite element method.

We also restrict ourselves to the class of domains $\tilde{\mathcal{C}}^{0,1} \subset \mathcal{C}^{0,1}$, where $\mathcal{C}^{0,1}$ denotes the set of domains with Lipschitz continuous boundary, in the following sense: If $\Omega \in \tilde{\mathcal{C}}^{0,1}$ then $\Omega \in \mathcal{C}^{0,1}$ and the boundary $\partial \Omega$ of Ω consists of a finite number of smooth parts which have a finite number of relative maxima and minima and inflexions and in the three-dimensional case also a finite number of saddle points. To consider such a class of domains is sufficient for applications.

Further, we will consider parts γ_i of $\partial\Omega$, on which homogeneous Dirichlet boundary condition will be prescribed, which satisfy the following condition. Let $\gamma_i \subset \partial\Omega$ be a relatively open set (i.e., open in the metric space $\partial\Omega$). We say that γ_i has a Lipschitz relative boundary $\partial\gamma_i$ (i.e., the boundary in the metric space $\partial\Omega$) and write $\gamma_i \in LRB$ if either dim $\Omega = 2$, or if in the case dim $\Omega = 3$ it has the following property:

Let X_0 be an arbitrary point of $\partial \gamma_i$ and let $N(X_0)$ be a neighbourhood of X_0 such that $N(X_0) \cap \partial \Omega$ is expressed as a graph $x_3 = a(x_1, x_2)$. Let further G_i be the image of $\gamma_i \cap N(X_0)$ in the projection to the plane x_1, x_2 with the boundary ∂G_i . Then G_i has the same property as Ω , i.e., ∂G_i is locally representable as a graph of a Lipschitz function in one variable (obviously this definition is independent of the description of $\partial \Omega$). (In this case we use the notation $\gamma_i \in LRB$ as mentioned above).

Theorem 1 (on the density of $C^{\infty}(\overline{\Omega}) \cap V$ in V). Let $\Omega \in \tilde{\mathcal{C}}^{0,1}$ and let

(1)
$$V = \{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_1, \text{ where } \Gamma_1 \subset \partial \Omega, \\ \max_{N=1} \Gamma_1 > 0 \text{ with } N = 2 \text{ or } N = 3 \},$$

where Γ_1 consists of a finite number of relatively open parts in $\partial\Omega$, say $\gamma_1, \ldots, \gamma_m$ such that $\gamma_i \in LRB$ $(i = 1, \ldots, m)$. Then the set $C^{\infty}(\overline{\Omega}) \cap V$ is dense in V.

The proof of Theorem 1 will be divided into four parts:

- 1) formulation of Lemma 2;
- 2) the idea of the proof of Lemma 2;
- 3) the proof of Theorem 1 by means of Lemma 2;
- 4) the detailed proof of Lemma 2.

(2)
$$\Theta = \{ X \in \mathbb{R}^N : X' \in \Delta, \ x_N \in (-\beta, 0) \},$$

where $\Delta = (-\alpha, \alpha)^{N-1}$ and α, β are positive numbers.

Let $G \subset \overline{G} \subset \Delta$ be a domain such that $G \in \tilde{\mathcal{C}}^{0,1}$ and let $\overline{G} \subset \mathcal{U}$, where $\mathcal{U} \subset \Delta$ is an open set.

Let us denote $\Theta_1 = (-\alpha, \alpha)^{N-1} \times (-\beta, \beta)$. Further, let us denote $\Gamma = G \times \{0\}$ and let $\mathcal{K} \subset \Theta_1$ be a compact set, $\Gamma \subset \mathcal{K}$. (See Fig. 1 in the case of N = 2.)

Then there exists a compact set $\mathcal{K}_1 \subset \Theta_1$, $\mathcal{K}_1 \supset \mathcal{K}$ (where \mathcal{K}_1 depends only on \mathcal{K}) with the following property (\mathcal{K}_1 will be defined at the end of the idea of the proof of Lemma 2 (see the text following relation (12))):

Let $u \in H^1(\Theta)$ be an arbitrary function which is equal to zero on Γ (in the sense of traces) and supp $u \subset \mathcal{K}$.

Then there exists a sequence $\{u_n\} \subset C^{\infty}(\overline{\Theta}_1)$ such that supp $u_n \subset \mathcal{K}_1 \setminus \overline{\Gamma}$, where $\Gamma = G \times \{0\}$, and $u_n \to u$ in the space $H^1(\Theta)$.

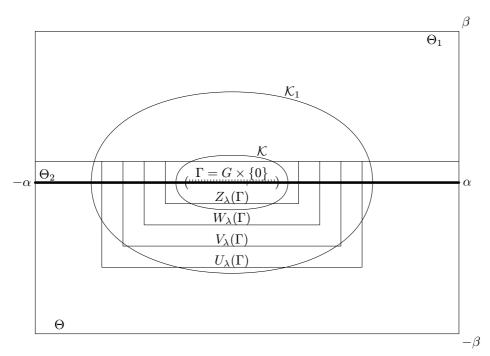


Figure 1. A two-dimensional example with G an interval.

The idea of the proof of Lemma 2. Due to the assumptions $\overline{G} \subset \Delta$, $\mathcal{K} \subset \Theta_1$ we have (see Fig. 1 for N=2)

(3)
$$\operatorname{dist}(\mathcal{K}, \mathbb{R}^N \setminus \Theta_1) = \nu > 0.$$

Let us denote successively

$$(4) U_{\lambda}(G) = \{X' \in \Delta \colon \operatorname{dist}(X', G) < \lambda\},$$

$$V_{\lambda}(G) = \left\{X' \in \Delta \colon \operatorname{dist}(X', G) < \frac{3}{4}\lambda\right\},$$

$$W_{\lambda}(G) = \left\{X' \in \Delta \colon \operatorname{dist}(X', G) < \frac{1}{2}\lambda\right\},$$

$$Z_{\lambda}(G) = \left\{X' \in \Delta \colon \operatorname{dist}(X', G) < \frac{1}{4}\lambda\right\}$$

and, correspondingly (see Fig. 1 for N=2),

(5)
$$U_{\lambda}(\Gamma) = U_{\lambda}(G) \times \left(-\lambda, \frac{1}{4}\lambda\right),$$

$$V_{\lambda}(\Gamma) = V_{\lambda}(G) \times \left(-\frac{3}{4}\lambda, \frac{1}{4}\lambda\right),$$

$$W_{\lambda}(\Gamma) = W_{\lambda}(G) \times \left(-\frac{1}{2}\lambda, \frac{1}{4}\lambda\right),$$

$$Z_{\lambda}(\Gamma) = Z_{\lambda}(G) \times \left(-\frac{1}{4}\lambda, \frac{1}{4}\lambda\right),$$

where λ is supposed sufficiently small, thus satisfying

$$(6) \lambda < \frac{1}{2}\nu.$$

Let us put $h = \frac{1}{4}\lambda$ and (see Fig. 2)

(7)
$$u_{\lambda}(X', x_N) := u(X', x_N - h), \quad [X', x_N] \in \Theta$$

with $u_{\lambda} \in H^1(\Theta_2)$, $\Theta_2 \equiv \Theta_2(h) = \Delta \times (-\beta, h)$,

(8)
$$v_{\lambda}(X) = \begin{cases} 0, & X \in W_{\lambda}(\Gamma), \\ u_{\lambda}(X), & X \in \Theta_{2} \setminus \overline{W_{\lambda}(\Gamma)}, \end{cases}$$

(9)
$$w_{\lambda}(X) = (\omega_h * v_{\lambda})(X).$$

In (9) we have used the brief notation for convolution

(10)
$$(\omega_h * u)(X) = \int_{\mathbb{R}^N} \omega_h(X - Y)u(Y) \, dY = \int_{\mathbb{R}^N} \omega_h(Y)u(X - Y) \, dY,$$

where the mollifier $\omega_h(Z)$ is defined by the relations

(11)
$$\omega_h(Z) = \begin{cases} \varkappa h^{-N} \exp\left(\frac{\|Z\|^2}{\|Z\|^2 - h^2}\right) & \text{for } \|Z\| < h, \\ 0 & \text{for } \|Z\| \geqslant h; \end{cases}$$

the symbol $\|\cdot\|$ denotes the Euclidean norm and the constant \varkappa is defined by

(12)
$$\int_{\mathbb{R}^N} \omega_1(Z) \, dZ = \int_{\mathbb{R}^N} \omega_h(Z) \, dZ = 1,$$

from which we obtain

$$\varkappa = \left(\int_{\mathbb{R}^N} \exp\left(\frac{\|Z\|^2}{\|Z\|^2 - 1} \right) dZ \right)^{-1}.$$

The first equality (12) follows from the fact that

$$||Z||^2/(||Z||^2 - h^2) = ||Z/h||^2/(||Z/h||^2 - 1)$$

and from the substitution $Z = hX = [hx_1, ..., hx_N]$ which implies $dZ = h^N dX$. Thus the convolution (10) is well-defined for $u \in L_2\Omega$ and its restriction onto $\overline{\Omega}$ belongs to the space $C^{\infty}(\overline{\Omega})$.

We see immediately that $u_{\lambda} \in H^1(\Theta)$. It follows from (4)–(6) that supp $w_{\lambda} \subset \mathcal{K}_1$, where $\mathcal{K}_1 = \{X \in \mathbb{R}^N : \operatorname{dist}(X,\mathcal{K}) < \frac{1}{2}\nu\} \subset \Theta_1$ depends only on \mathcal{K} (because, according to (3), ν depends on \mathcal{K}), and that $w_{\lambda}(X) = 0$ for $X \in Z_{\lambda}(\Gamma)$ (see Fig. 2). In what follows we show that $||u-w_{\lambda}||_{1,\Theta} \to 0$ for $\lambda \to 0$, which proves Lemma 2. \square

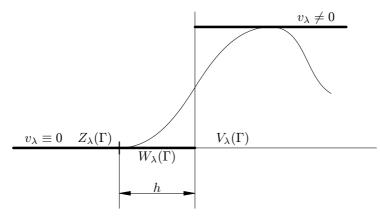


Figure 2. Concerning relations (7)–(12).

Proof of Theorem 1 by means of Lemma 2. Let $u \in V$ be an arbitrary but fixed function. We show that there exists such a sequence $\{u_n\} \subset C^{\infty}(\overline{\Omega})$ that

(13)
$$u_n = 0$$
 on an N-dimensional neighbourhood of Γ_1 ,

(14)
$$u_n \to u$$
 in the space $H^1(\Omega)$.

For better clarity of exposition we restrict ourselves to the two-dimensional case, i.e., N=2.

The domain Ω has a Lipschitz continuous boundary and hence for any $X \in \partial \Omega$ there exists a (local) Cartesian coordinate system (x_1, x_2) and a Lipschitz function $a(x_1)$ with the domain of definition $\Delta = (-\alpha, \alpha) \subset \mathbb{R}^1$ such that¹

$$\mathbb{U} = \{ [x_1, x_2] \colon x_1 \in \Delta, \ a(x_1) - \beta < x_2 < a(x_1) \} \subset \Omega,$$

$$\mathbb{V} = \{ [x_1, x_2] \colon x_1 \in \Delta, \ a(x_1) < x_2 < a(x_1) + \beta \} \subset \mathbb{R}^2 \setminus \overline{\Omega},$$

where $\alpha > 0, \, \beta > 0$ are suitable constants. Let us denote

$$\mathbb{Z} = \mathbb{U} \cup \mathbb{V} \cup \{ [x_1, x_2] : x_1 \in \Delta, x_2 = a(x_1) \}.$$

Owing to the compactness of $\partial\Omega$ we can cover $\partial\Omega$ by a finite number of such domains $\mathbb{Z}_1, \ldots, \mathbb{Z}_m$. (The local Cartesian coordinate system x_1, x_2 and the function $a(x_1)$ corresponding to \mathbb{Z}_r will be now denoted by x_1^r, x_2^r and $a_r(x_1^r)$, respectively.) Further, we can find a domain \mathbb{Z}_0 such that $\overline{\mathbb{Z}}_0 \subset \Omega$ (\mathbb{Z}_0 is considered in the global Cartesian coordinate system x_1, x_2) and

$$\overline{\Omega} \subset \bigcup_{r=0}^m \mathbb{Z}_r.$$

Owing to the compactness of $\overline{\Omega}$ we can construct a partition of unity, i.e., a system of functions $\varphi_r \in C_0^{\infty}(\mathbb{Z}_r)$ (r = 0, 1, ..., m) which for $X \in \overline{\Omega}$ (the points X are considered in the global system x_1, x_2) satisfy

$$0 \leqslant \varphi_r(X) \leqslant 1, \qquad \sum_{r=0}^m \varphi_r(X) = 1.$$

We can transform \mathbb{U}_r $(r=1,\ldots,m)$ to the parallelepiped

$$\Theta = (-\alpha, \alpha)^{N-1} \times (-\beta, 0)$$
 (in our case $N = 2$)

If N > 2 then we substitute $[x_1, x_2]$ by $[X', x_N] = [x_1, \dots, x_{N-1}, x_N]$ and the function $a(x_1)$ by a(X') with the domain of definition $\Delta = (-\alpha, \alpha)^{N-1} \subset \mathbb{R}^{N-1}$.

by means of the lipschitzian mapping

$$\mathcal{T}_r$$
: $\xi_1 = x_1^r$, $\xi_2 = x_2^r - a_r(x_1^r)$.

This transformation maps continuously $H^1(\mathbb{U}_r)$ $(1 \leqslant r \leqslant m)$ onto $H^1(\Theta)$ (see [7, Lemma 2.3.2 on p. 66]) and supp φ_r onto a compact set $\mathcal{K}_r \subset \Theta_1 = \mathcal{T}_r(\mathbb{Z}_r)$, $\mathcal{K}_r = \mathcal{T}_r(\sup \varphi_r)$.

Let $G^r = \mathcal{T}_r(\Gamma_1 \cap \operatorname{supp} \varphi_r)$. We have $G^r \subset \overline{G^r} \subset \Delta$. Thus $\mathcal{K}_r \subset \Theta_1$ is the compact set \mathcal{K} from Lemma 2. Let $\mathcal{K}_{r,1} \subset \Theta_1$ $(\mathcal{K}_{r,1} \supset \mathcal{K}_r)$ be the compact set \mathcal{K}_1 from Lemma 2.

Hence, according to Lemma 2, we can approach $\mathcal{T}_r(\varphi_r u)$ by a sequence $\{v_{n,r}\} \subset C^{\infty}(\overline{\Theta}_1)$, supp $v_{n,r} \subset \mathcal{K}_{r,1} \setminus \overline{\Gamma}^r$ $(\Gamma^r = G^r \times \{0\})$.

The main step of the proof consists in the following argument: The functions $\tilde{u}_{n,r} = \mathcal{T}_r^{-1}(v_{n,r})$ belong to $H^1(C)$ $(C \subset \mathbb{R}^N)$ is an N-dimensional cube which contains $\overline{\Omega}$),

(15)
$$\tilde{u}_{n,r} = 0$$
 in a neighbourhood of $\overline{\Gamma}_1 \cap \operatorname{supp} \varphi_r$

and $\tilde{u}_{n,r} \to u\varphi_r$ in $H^1(\Omega)$.

Applying the mollifier ω_h to $\tilde{u}_{n,r}$ we can replace $\tilde{u}_{n,r}$ by $u_{n,r} \subset C^{\infty}(\overline{\Omega})$ having the same property (15) and converging to $u\varphi_r$ in $H^1(\Omega)$. Finally, we approach $u\varphi_0$ by the sequence $\{u_{n,0}\} \subset C_0^{\infty}(\Omega)$ and write $u_n = \sum_{r=0}^m u_{n,r}$, which proves the theorem.

The detailed proof of Lemma 2. Let us denote $\sigma_{\lambda} = \Theta \setminus \overline{V_{\lambda}(\Gamma)}$, $P_{\lambda} = V_{\lambda}(\Gamma) \cap \Theta$ and recall that $\Theta_2 = \Delta \times (-\beta, h)$. The proof proceeds as follows: Due to the fact that $\overline{\Theta} = \overline{\sigma_{\lambda}} \cup \overline{P_{\lambda}}$, we can write

(16)
$$||w_{\lambda} - u||_{1,\Theta} \leq ||u - u_{\lambda}||_{1,\Theta} + ||u_{\lambda} - w_{\lambda}||_{1,\Theta}$$

$$\leq ||u - u_{\lambda}||_{1,\Theta} + ||u_{\lambda} - w_{\lambda}||_{1,\sigma_{\lambda}} + ||u_{\lambda} - w_{\lambda}||_{1,P_{\lambda}}$$

$$\leq ||u - u_{\lambda}||_{1,\Theta} + ||u_{\lambda} - w_{\lambda}||_{1,\sigma_{\lambda}} + ||u_{\lambda}||_{1,P_{\lambda}} + ||w_{\lambda}||_{1,P_{\lambda}}$$

and prove successively (in parts A–D) that all terms on the right-hand side of (16) tend to zero with $\lambda \to 0$. The main difficulty is to prove that $\|w_{\lambda}\|_{1,P_{\lambda}} \to 0$ (if $\lambda \to 0$), in particular to prove

$$\left\| \frac{\partial w_{\lambda}}{\partial x_{i}} \right\|_{0, P_{\lambda}} \to 0 \quad \text{if } \lambda \to 0 \qquad (i = 1, \dots, N).$$

A. First we prove

(17)
$$\lim_{\lambda \to 0} \|u - u_{\lambda}\|_{1,\Theta} = 0.$$

Let us denote

$$\overline{h} = (0, \dots, 0, h).$$

As

$$||u - u_{\lambda}||_{0,\Theta} = \sqrt{\int_{\Theta} [u(X) - u(X - \overline{h})]^2 dX},$$

we have, according to [5, Theorem 2.4.2] (the mean continuity theorem for L_2 -functions),

(18)
$$\lim_{\lambda \to 0} \|u - u_{\lambda}\|_{0,\Theta} = 0.$$

As $D^{\alpha}u \in L_2(\Theta)$, $D^{\alpha}u_{\lambda} \in L_2(\Theta)$ $(|\alpha| = 1)$ and as

$$||D^{\alpha}u - D^{\alpha}u_{\lambda}||_{0,\Theta} = \sqrt{\int_{\Theta} [(D^{\alpha}u)(X) - (D^{\alpha}u)(X - \overline{h})]^2 dX},$$

we have again, according to [5, Theorem 2.4.2],

(19)
$$\lim_{\lambda \to 0} \|D^{\alpha}u - D^{\alpha}u_{\lambda}\|_{0,\Theta} = 0.$$

Relations (18) and (19) together give relation (17).

B. Now we prove

(20)
$$\lim_{\lambda \to 0} \|u_{\lambda}\|_{1, P_{\lambda}} = 0.$$

We have mentioned at the end of the idea of the proof of Lemma 2 that

(21)
$$u_{\lambda} \in H^1(\Theta).$$

As (see Fig. 3)

(22)
$$P_{\lambda} = V_{\lambda}(\Gamma) \cap \Theta,$$

we have, due to (21),

$$(23) u_{\lambda} \in H^1(P_{\lambda}).$$

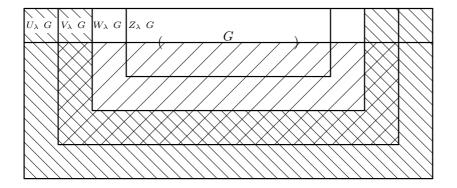




Figure 3. Domains P_{λ} and Q_{λ} .

By the definition of $V_{\lambda}(\Gamma)$ we have

(24)
$$\lim_{\lambda \to 0} (\operatorname{meas}_N V_{\lambda}(\Gamma)) = 0;$$

hence, taking into account (22), we obtain from (24)

(25)
$$\lim_{\lambda \to 0} \operatorname{meas}_N P_{\lambda} = 0.$$

Relation (23) yields

(26)
$$u_{\lambda} \in L_2(P_{\lambda}), \quad D^{\alpha}u_{\lambda} \in L_2(P_{\lambda}) \quad (|\alpha| = 1).$$

Relations (25) and (26) imply, according to the theorem on the absolute continuity of an integral, relation (20).

C. Our task in this subsection is to prove that

(27)
$$\lim_{\lambda \to 0} \|u_{\lambda} - w_{\lambda}\|_{1,\sigma_{\lambda}} \to 0,$$

where u_{λ} and w_{λ} are defined in (7)–(9). As

(28)
$$\sigma_{\lambda} = \Theta \setminus \overline{V_{\lambda}(\Gamma)}$$

we have

(29)
$$\Theta_2 \setminus \overline{W_{\lambda}(\Gamma)} \supset \sigma_{\lambda}.$$

As $u_{\lambda} \in H^{1}(\Theta)$ and $\operatorname{supp} u \subset \mathcal{K}$ we have (by (7)) $u_{\lambda} \in H^{1}(\Theta_{2})$. Hence $v_{\lambda} \in H^{1}(\Theta_{2} \setminus \overline{W_{\lambda}(\Gamma)})$ and (by (29)) $v_{\lambda} \in H^{1}(\sigma_{\lambda})$. By (3), (7), (8) and the assumption $\operatorname{supp} u \subset \mathcal{K}$ we have $\operatorname{dist}(\operatorname{supp} v_{\lambda}, \mathbb{R}^{N} \setminus \Theta_{1}) \geqslant h$. Thus we can repeat with another notation the proof of [10, Lemma 3.6] and prove the implication

(30)
$$X \in \sigma_{\lambda} \cap \operatorname{supp} v_{\lambda} \Rightarrow \frac{\partial}{\partial x_{i}} (\omega_{h} * v_{\lambda}) = \omega_{h} * \frac{\partial v_{\lambda}}{\partial x_{i}}.$$

(Using the notation of [10, Chapter 3] we have $\omega_h * u = R_h u$.) By [10, Theorem 3.7] implication (30) yields (together with the preceding text)

$$||u_{\lambda} - w_{\lambda}||_{1,\sigma_{\lambda}} = \sqrt{\int_{\sigma_{\lambda} \cap \text{supp } v_{\lambda}} \sum_{|\alpha| \leq 1} [D^{\alpha}u_{\lambda} - D^{\alpha}(\omega_{h} * v_{\lambda})]^{2} dX}$$

$$= \sqrt{\int_{\sigma_{\lambda} \cap \text{supp } v_{\lambda}} \sum_{|\alpha| \leq 1} [D^{\alpha}u_{\lambda} - \omega_{h} * D^{\alpha}u_{\lambda}]^{2} dX} \to 0 \quad \text{if } \lambda \to 0.$$

This proves relation (27).

D. Our task is now to estimate the function w_{λ} as an element of $H^{1}(P_{\lambda})$ (for the definition of P_{λ} see (22)). To this end, let us denote $Q_{\lambda} = U_{\lambda}(\Gamma) \setminus \overline{W_{\lambda}(\Gamma)}$. Owing to the choice of h we obtain for $X \in P_{\lambda}$ (cf. Fig. 3, properties of ω_{h} and definitions of u_{λ} and v_{λ} ; we must realize that $h \to 0$ —in Fig. 1 the variable quantity h is relatively large—and that \mathcal{K} and \mathcal{K}_{1} are fixed)

(31)
$$w_{\lambda}(X) = \int_{\mathbb{R}^{N}} \omega_{h}(X - Y) v_{\lambda}(Y) \, dY$$

$$= \int_{\mathbb{R}^{N} \setminus W_{\lambda}(\Gamma)} \omega_{h}(X - Y) v_{\lambda}(Y) \, dY$$

$$= \int_{Q_{\lambda}} \omega_{h}(X - Y) u_{\lambda}(Y) \, dY \quad (X \in P_{\lambda})$$

(if $X \in P_{\lambda}$ then ||X - Y|| < h only for the points $Y \in Q_{\lambda}$) and similarly (again for $X \in P_{\lambda}$)

(32)
$$\psi_{i}(X) = \frac{\partial w_{\lambda}}{\partial x_{i}}(X) = \int_{Q_{\lambda}} \frac{\partial \omega_{h}}{\partial x_{i}}(X - Y)u_{\lambda}(Y) dY$$
$$= -\int_{Q_{\lambda}} \frac{\partial \omega_{h}}{\partial y_{i}}(X - Y)u_{\lambda}(Y) dY \quad (X \in P_{\lambda}).$$

Now we apply [5, Theorem 2.5.3] (see also [10, Theorem 3.7]) which asserts that

$$\lim_{\varepsilon \to 0^{+}} \|D^{\alpha}(R_{\varepsilon}u) - D^{\alpha}u\|_{L_{2}(\Omega^{*})} = 0 \quad (\overline{\Omega}^{*} \subset \Omega).$$

To this end let us denote by \tilde{u}_{λ} the extension of the function u_{λ} by zero onto the domain Θ_1 . In the notation of [5, Theorem 2.5.3] (or [10, Theorem 3.7]) we have

(33)
$$\Omega = \Theta_1, \quad \Omega^* = P_{\lambda}.$$

The extended function \tilde{u}_{λ} satisfies

$$\tilde{u}_{\lambda} \in L_2(\Theta_1).$$

An application of [5, Theorem 2.5.3] (or [10, Theorem 3.7]) with $|\alpha| = 0$ to the functions

$$u = \tilde{u}_{\lambda}, \quad R_{\varepsilon}u = w_{\lambda}$$

and domains (33) yields

$$\lim_{\lambda \to 0} \|w_{\lambda} - u_{\lambda}\|_{0, P_{\lambda}} = 0.$$

Let us combine (34) with the inequality

$$||w_{\lambda}||_{0,P_{\lambda}} \le ||u_{\lambda}||_{0,P_{\lambda}} + ||w_{\lambda} - u_{\lambda}||_{0,P_{\lambda}}$$

and relation (20). Then we obtain

$$\lim_{\lambda \to 0} \|w_{\lambda}\|_{0, P_{\lambda}} = 0.$$

The same device cannot be used in the case of the functions ψ_i (given by (32)) because $\tilde{u}_{\lambda} \notin H^1(\Theta_1)$ and hence

$$\frac{\partial \tilde{u}_{\lambda}}{\partial x_i} \notin L_2(\Theta_1).$$

Another approach must be used. Let us consider now the $L_2(P_{\lambda})$ -norm of ψ_i . We shall distinguish two cases: i = N (considered in D1) and i < N (see D2.1 and D2.2).

D1. Let i = N. As $Q_{\lambda} \in \tilde{\mathcal{C}}^{0,1}$ we can use the Green-Gauss-Ostrogradskij formula and obtain from (32)—see Fig. 3 $(X \in P_{\lambda})$ (note that $U_{\lambda}(G)$ and $W_{\lambda}(G)$ are (N-1)-dimensional sets)

(36)
$$\psi_{N}(X) = \int_{Q_{\lambda}} \omega_{h}(X - Y) \frac{\partial u_{\lambda}}{\partial y_{N}}(Y) \, dY$$

$$+ \int_{U_{\lambda}(G)} \omega_{h}(X - [Y', -\lambda]) u_{\lambda}(Y', -\lambda) \, dY'$$

$$- \int_{W_{\lambda}(G)} \omega_{h} \left(X - \left[Y', -\frac{1}{2}\lambda\right]\right) u_{\lambda} \left(Y', -\frac{1}{2}\lambda\right) dY'$$

$$- \int_{U_{\lambda}(G) \setminus W_{\lambda}(G)} \omega_{h} \left(X - \left[Y', \frac{1}{4}\lambda\right]\right) u_{\lambda} \left(Y', \frac{1}{4}\lambda\right) dY'.$$

Let us note that we have used the Green-Gauss-Ostrogradskij theorem in the form

$$\int_{Q_{\lambda}} \frac{\partial \omega_{h}}{\partial y_{N}} (X - Y) u_{\lambda}(Y) \, dY = \int_{\partial Q_{\lambda}} \omega_{h} (X - Y) u_{\lambda}(Y) n_{N}(Y) \, d\sigma$$
$$- \int_{Q_{\lambda}} \omega_{h} (X - Y) \frac{\partial u_{\lambda}}{\partial y_{N}} (Y) \, dY$$

where $n_N = -1$ on the base of Q_{λ} , $n_N = 1$ on the parts of ∂Q_{λ} parallel with the base of Q_{λ} and $n_N = 0$ otherwise (see Fig. 3).

First we shall prove that the first integral on the right-hand side of (36) tends to zero in $L_2(P_{\lambda})$; this means that we shall prove

(37)
$$\lim_{\lambda \to 0} \int_{P_{\lambda}} \left(\int_{Q_{\lambda}} \omega_h(X - Y) \frac{\partial u_{\lambda}}{\partial y_N}(Y) \, dY \right)^2 dX = 0.$$

We have

(38)
$$\int_{P_{\lambda}} \left(\int_{Q_{\lambda}} \omega_{h}(X - Y) \frac{\partial u_{\lambda}}{\partial y_{N}} (Y) \, dY \right)^{2} dX$$
$$= \varkappa \int_{P_{\lambda}} \left\{ \int_{Q_{\lambda}} h^{-N} \exp\left(\frac{\|X - Y\|^{2}}{\|X - Y\|^{2} - h^{2}}\right) \frac{\partial u_{\lambda}}{\partial y_{N}} (Y) \, dY \right\}^{2} dX.$$

For the sake of brevity, let us denote

(39)
$$E_h(X,Y) := \exp\left(\frac{\|X - Y\|^2}{\|X - Y\|^2 - h^2}\right), \quad F(Y) := \frac{\partial u_\lambda}{\partial y_N}(Y).$$

Using this notation we further denote

(40)
$$F_h(X) = \frac{1}{h^N} \int_{\mathcal{O}_X} E_h(X, Y) F(Y) \, \mathrm{d}Y.$$

By (39), (40) we can write

$$(41) |F_h(X)| \leqslant \frac{1}{h^N} \int_{\Omega_N} \sqrt{E_h(X,Y)} \sqrt{E_h(X,Y)} |F(Y)| \, \mathrm{d}Y.$$

Let us square inequality (41) and to the resulting right-hand side let us apply the Schwarz inequality; we thus obtain

$$(42) |F_h(X)|^2 \leqslant \frac{1}{h^N} \int_{\Omega_X} E_h(X, Y) \, dY \cdot \frac{1}{h^N} \int_{\Omega_X} E_h(X, Y) |F(Y)|^2 \, dY.$$

We have (see [8, p. 218, relation (168)], where the case N=2 is considered)

$$\int_{Q_{\lambda}} E_h(X, Y) \, \mathrm{d}Y = Ch^N.$$

Hence

(43)
$$\frac{1}{h^N} \int_{Q_\lambda} E_h(X, Y) \, \mathrm{d}Y = C.$$

Let us use (43) and let us integrate inequality (42) over P_{λ} with respect to X. We obtain

(44)
$$\int_{P_{\lambda}} |F_h(X)|^2 dX \leq \frac{C}{h^N} \int_{P_{\lambda}} \left\{ \int_{Q_{\lambda}} E_h(X, Y) |F(Y)|^2 dY \right\} dX.$$

Now we use the Fubini theorem on the right-hand side of (44) and then relation (43) (where we write now P_{λ} instead of Q_{λ}). We conclude (if we use also notation (39)₂):

$$(45) \qquad \int_{P_{\lambda}} |F_h(X)|^2 dX \leqslant C \int_{Q_{\lambda}} \left\{ |F(Y)|^2 \frac{1}{h^N} \int_{P_{\lambda}} E_h(X, Y) dX \right\} dY$$
$$= C^2 \int_{Q_{\lambda}} |F(Y)|^2 dY = C^2 \int_{Q_{\lambda}} \left(\frac{\partial u_{\lambda}}{\partial y_N} (Y) \right)^2 dY.$$

Using the relation

$$\lim_{\lambda \to 0} (\text{meas}_N Q_{\lambda}) = 0$$

and the theorem on the absolute continuity of the Lebesgue integral we see that the right-hand side of (45) tends to zero if $\lambda \to 0$. This proves (37).

Now we prove that the second and the fourth integrals on the right-hand side of (36) are equal to zero for $X \in P_{\lambda}$. We recall that

$$h = \frac{1}{4}\lambda$$
.

As to the second integral, for $X \in P_{\lambda} = V_{\lambda}(\Gamma) \cap \Theta$ we have

(46)
$$\omega_h(X - [Y', -\lambda]) = \omega_h([X', x_N] - [Y', -\lambda])$$
$$= \omega_h(X' - Y', x_N + \lambda)$$
$$= \omega_h(X' - Y', x_N + 4h) = \omega_h(Z),$$

where we set

$$Z = [X' - Y', x_N + 4h].$$

We further have

(47)
$$||Z|| = \sqrt{(X' - Y')^2 + (x_N + 4h)^2},$$

where we set for the sake of brevity

$$(X'-Y')^2 = (x_1-y_1)^2 + \ldots + (x_{N-1}-y_{N-1})^2.$$

The most inconvenient case is

$$(X'-Y')^2=0.$$

Since in the case $X \in P_{\lambda} = V_{\lambda}(\Gamma) \cap \Theta$ we have

$$(48) x_N \in (-3h, 0)$$

we obtain from (47)

$$(49) ||Z|| \geqslant h,$$

which implies by (46) (and by the fact that $\omega_h(Z) = 0$ for $||Z|| \geqslant h$) that

$$\omega_h(X - [Y', -\lambda]) = 0.$$

This proves that the second integral on the right-hand side of (36) is equal to zero for $X \in P_{\lambda}$.

As to the fourth integral on the right-hand side of (36), we have

$$\omega_h\left(X - \left[Y', \frac{1}{4}\lambda\right]\right) = \omega_h(X' - Y', x_N - h).$$

As (48) holds we obtain again (49) with $Z = [X' - Y', x_N - h]$. This proves that the fourth integral on the right-hand side of (36) is equal to zero for $X \in P_{\lambda}$.

Let us consider the third integral on the right-hand side of (36) (in the second equality we use (7)):

$$\psi_{N,3}(X) = \int_{W_{\lambda}(G)} \omega_h \left(X - \left[Y', -\frac{1}{2} \lambda \right] \right) u_{\lambda} \left(Y', -\frac{1}{2} \lambda \right) dY'$$
$$= \int_{W_{\lambda}(G)} \omega_h \left(X' - Y', x_N + \frac{1}{2} \lambda \right) u \left(Y', -\frac{3}{4} \lambda \right) dY'.$$

As

$$\omega_h(X'-Y',x_N+\frac{1}{2}\lambda)=0 \quad \forall \|X'-Y'\|\geqslant h$$

we can write

$$\psi_{N,3}(X) = \int_{\|X'-Y'\| \le h} \omega_h \left(X' - Y', x_N + \frac{1}{2} \lambda \right) u \left(Y', -\frac{3}{4} \lambda \right) dY'.$$

From this identity we obtain by the Schwarz inequality (and by extending the domain of integration in the case of the first integral)

$$(50) |\psi_{N,3}(X)|^{2} = \left(\int_{\|X'-Y'\| < h} \omega_{h} \left(X'-Y', x_{N} + \frac{1}{2}\lambda\right) u\left(Y', -\frac{3}{4}\lambda\right) dY'\right)^{2}$$

$$\leq \int_{\|X'-Y'\| < h} \omega_{h}^{2} \left(X'-Y', x_{N} + \frac{1}{2}\lambda\right) dY'$$

$$\times \int_{\|X'-Y'\| < h} u^{2} \left(Y', -\frac{3}{4}\lambda\right) dY'$$

$$\leq \int_{\mathbb{R}^{N-1}} \omega_{h}^{2} \left(X'-Y', x_{N} + \frac{1}{2}\lambda\right) dY'$$

$$\times \int_{\|Y'-X'\| < h} u^{2} \left(Y', -\frac{3}{4}\lambda\right) dY'$$

$$= \int_{\mathbb{R}^{N-1}} \omega_{h}^{2} \left(Z', x_{N} + \frac{1}{2}\lambda\right) dZ' \int_{\|Y'-X'\| < h} u^{2} \left(Y', -\frac{3}{4}\lambda\right) dY'.$$

(We have used also the fact that $\omega_h(X'-Y',x_N+\frac{1}{2}\lambda)=\omega_h(Y'-X',x_N+\frac{1}{2}\lambda)$.) Integrating (50) over P_λ with respect to X (and extending the domain of integration in the case of the first integral) we obtain

$$(51) \quad \|\psi_{N,3}\|_{0,P_{\lambda}}^{2} = \int_{-3\lambda/4}^{0} \left(\int_{\mathbb{R}^{N-1}} \omega_{h}^{2} \left(Z', x_{N} + \frac{1}{2}\lambda \right) dZ' \right) dx_{N}$$

$$\times \int_{V_{\lambda}(G)} \left(\int_{\|Y' - X'\| < h} u^{2} \left(Y', -\frac{3}{4}\lambda \right) dY' \right) dX'$$

$$\leqslant \left(\int_{\mathbb{R}^{N}} \omega_{h}^{2}(Z) dZ \right) \int_{V_{\lambda}(G)} \left(\int_{\|Y' - X'\| < h} u^{2} \left(Y', -\frac{3}{4}\lambda \right) dY' \right) dX'.$$

Now we prove that

(52)
$$\int_{\mathbb{R}^N} \omega_h^2(Z) \, \mathrm{d}Z = Ch^{-N}.$$

Let K_h be the disc (or the sphere) with its center at the origin and its radius equal to h. Then

$$\operatorname{meas}_{N} K_{h} = \begin{cases} \pi h^{2} & \text{for } N = 2, \\ \frac{4}{3} \pi h^{3} & \text{for } N = 3 \end{cases}$$

and the mean value theorem yields

$$\int_{\mathbb{R}^N} \omega_h^2(Z) \, dZ = \int_{K_h} \omega_h^2(Z) \, dZ = \varkappa h^{-2N} \cdot C_0 \cdot \operatorname{meas}_N K_h$$
$$= \varkappa h^{-2N} \cdot C_0 \cdot \tilde{C}h^N = Ch^{-N},$$

where we set

$$C_0 = \exp\left(\frac{\|Z_0\|^2}{\|Z_0\|^2 - h^2}\right) \leqslant 1, \quad C = \varkappa C_0 \tilde{C}.$$

This proves relation (52).

From now on we shall assume that the functions considered are sufficiently *smooth* and we will extend our result by the density argument (i.e., by means of [5, Theorem 5.5.9]). For easier understanding we shall distinguish two cases: N=2 and N=3.

a) N=2: In this case (considering for simplicity that G=(a,b)) we have by (4)

(53)
$$U_{\lambda}(G) = (a - \lambda, b + \lambda),$$

$$V_{\lambda}(G) = \left(a - \frac{3}{4}\lambda, b + \frac{3}{4}\lambda\right).$$

We recall that

$$h = \frac{1}{4}\lambda.$$

Let us consider the second integral on the right-hand side of (51). In the case of N=2 we have

(54)
$$\int_{V_{\lambda}(G)} \left(\int_{\|Y' - X'\| < h} u^{2} \left(Y', -\frac{3}{4} \lambda \right) dY' \right) dX'$$
$$= \int_{a-3\lambda/4}^{b+3\lambda/4} \left(\int_{x_{1}-h}^{x_{1}+h} u^{2} (y_{1}, -\frac{3}{4} \lambda) dy_{1} \right) dx_{1}.$$

Using the mean value theorem we obtain (owing to the sufficient smoothness of functions considered)

$$\int_{a-3\lambda/4}^{b+3\lambda/4} \left(\int_{x_1-h}^{x_1+h} u^2 \left(y_1, -\frac{3}{4} \lambda \right) dy_1 \right) dx_1 = \int_{a-3\lambda/4}^{b+3\lambda/4} u^2 \left(\tilde{y}_1, -\frac{3}{4} \lambda \right) dx_1 \cdot \int_{x_1-h}^{x_1+h} dy_1
= 2h \int_{a-3\lambda/4}^{b+3\lambda/4} u^2 \left(\tilde{y}_1, -\frac{3}{4} \lambda \right) dx_1,$$

where

$$\tilde{y}_1 = x_1 + \eta, \quad \eta \in (-h, h).$$

The transformation $x_1 + \eta = t$ with (55) yields

$$2h \int_{a-3\lambda/4}^{b+3\lambda/4} u^2 \left(\tilde{y}_1, -\frac{3}{4}\lambda\right) dx_1 = 2h \int_{a-3\lambda/4+\eta}^{b+3\lambda/4+\eta} u^2 \left(t, -\frac{3}{4}\lambda\right) dt$$

$$\leq 2h \int_{a-\lambda}^{b+\lambda} u^2 \left(t, -\frac{3}{4}\lambda\right) dt.$$

Using (53) and combining the result just obtained with (54) we obtain (in the case N=2)

$$(56) \qquad \int_{V_{\lambda}(G)} \left(\int_{\|Y'-X'\| < h} u^2 \left(Y', -\frac{3}{4} \lambda \right) \mathrm{d}Y' \right) \mathrm{d}X' \leqslant 2h \int_{U_{\lambda}(G)} u^2 \left(Y', -\frac{3}{4} \lambda \right) \mathrm{d}Y'$$

and thus we have (in the case of N = 2), due to (51) and (52),

(57)
$$\|\psi_{N,3}\|_{0,P_{\lambda}}^{2} \leqslant C_{2}h^{-1}\int_{U_{\lambda}(G)} u^{2}(Y', -\frac{3}{4}\lambda) \,dY'.$$

b) N=3: Our task is now to prove relation (57) in the case N=3 (i.e., to prove relation (62)). Now the domains $U_{\lambda}(G)$ and $V_{\lambda}(G)$ are given by (4)₁ and (4)₂, respectively. Using the mean value theorem we obtain

(58)
$$\int_{V_{\lambda}(G)} \left(\int_{\|Y'-X'\| < h} u^{2} \left(Y', -\frac{3}{4} \lambda \right) dY' \right) dX'$$

$$= \int_{V_{\lambda}(G)} u^{2} \left(\tilde{Y}', -\frac{3}{4} \lambda \right) dX' \cdot \int_{\|Y'-X'\| < h} dY'$$

$$= \pi h^{2} \int_{V_{\lambda}(G)} u^{2} \left(\tilde{Y}', -\frac{3}{4} \lambda \right) dX',$$

where

(59)
$$\tilde{Y}' = X' + [\eta_1, \eta_2], \quad [\eta_1, \eta_2] \in \{ \|Y' - X'\| < h \}.$$

This means that

(60)
$$\eta_1 \in (-h\cos\alpha, h\cos\alpha), \quad \eta_2 \in (-h\sin\alpha, h\sin\alpha), \quad \alpha \in \langle 0, \pi \rangle.$$

The transformation

$$x_1 + \eta_1 = s_1, \quad x_2 + \eta_2 = s_2$$

with (59) and (60) yields

$$\pi h^2 \int_{V_{\lambda}(G)} u^2 \left(\tilde{Y}', -\frac{3}{4} \lambda \right) dX' \leqslant \pi h^2 \int_{U_{\lambda}(G)} u^2 \left(S', -\frac{3}{4} \lambda \right) dS'.$$

Using $(4)_1$, $(4)_2$ and combining the result just obtained with (58) we obtain (in the case of N=3)

$$(61) \quad \int_{V_{\lambda}(G)} \left(\int_{\|Y'-X'\| < h} u^2 \left(Y', -\frac{3}{4} \lambda \right) \mathrm{d}Y' \right) \mathrm{d}X' \leqslant \pi h^2 \int_{U_{\lambda}(G)} u^2 \left(Y', -\frac{3}{4} \lambda \right) \mathrm{d}Y'$$

and thus we have (if N = 3), due to (51) and (52),

(62)
$$\|\psi_{N,3}\|_{0,P_{\lambda}}^{2} \leqslant C_{2}h^{-1}\int_{U_{\lambda}(G)} u^{2}\left(Y', -\frac{3}{4}\lambda\right) dY'.$$

Let us consider the integral on the right-hand side of (62) or on the right-hand side of (57). (Note that relation (62) has the same form as relation (57) which is written in the case of N = 2.) We obtain for $Y' \in U_{\lambda}(G)$ (let us point out that we assume u to be *smooth* enough and extend then the result by the density argument (see [5, Theorem 5.5.9])):

$$u(Y', -\frac{3}{4}\lambda) = u(Y', 0) + \int_0^{-3\lambda/4} \frac{\partial u}{\partial y_N}(Y', \xi) d\xi;$$

now we square this relation, use the inequality $(a+b)^2 \leq 2(a^2+b^2)$ and then apply the Schwarz inequality; finally, we extend the interval of integration $(-\frac{3}{4}\lambda,0)$ to $(-\lambda,0)$ arriving at

$$\begin{split} u^2\Big(Y', -\frac{3}{4}\lambda\Big) &\leqslant 2\bigg[u^2(Y',0) + \left(\int_0^{-3\lambda/4} \frac{\partial u}{\partial y_N}(Y',\xi) \,\mathrm{d}\xi\right)^2\bigg] \\ &= 2\bigg[u^2(Y',0) + \left(-\int_{-3\lambda/4}^0 \frac{\partial u}{\partial y_N}(Y',\xi) \,\mathrm{d}\xi\right)^2\bigg] \\ &\leqslant 2\bigg[u^2(Y',0) + \frac{3}{4}\lambda\int_{-3\lambda/4}^0 \left(\frac{\partial u}{\partial y_N}(Y',\xi)\right)^2 \,\mathrm{d}\xi\bigg] \\ &\leqslant 2\bigg[u^2(Y',0) + \frac{3}{4}\lambda\int_{-\lambda}^0 \left(\frac{\partial u}{\partial y_N}(Y',\xi)\right)^2 \,\mathrm{d}\xi\bigg]. \end{split}$$

Hence $(h = \frac{1}{4}\lambda)$

$$(63) h^{-1} \int_{U_{\lambda}(G)} u^{2} \left(Y', -\frac{3}{4} \lambda \right) dY' \leqslant C_{3} \left[h^{-1} \int_{U_{\lambda}(G)} u^{2} (Y', 0) dY' + \int_{U_{\lambda}(G)} \left(\frac{\partial u}{\partial y_{N}} (Y', \xi) \right)^{2} dY' d\xi \right].$$

The theorem on the absolute continuity of an integral implies

(64)
$$\int_{U_{\lambda}(\Gamma)} \left(\frac{\partial u}{\partial y_N}(Y',\xi) \right)^2 dY' d\xi \to 0 \quad (\text{with } \lambda \to 0)$$

and further we have (owing to the fact that $u|_{\Gamma} = 0$, $\Gamma = G \times \{0\}$)

(65)
$$\int_{U_{\lambda}(G)} u^{2}(Y',0) \, dY' = \int_{U_{\lambda}(G) \backslash G} u^{2}(Y',0) \, dY'.$$

When analyzing the integral on the right-hand side of (65) we shall distinguish between the cases N=2 and $N\geqslant 3$ (in applications it is sufficient to consider the case N=3).

1) The case N=2. Again, let for simplicity G=(a,b) (see Fig. 1). Then

$$\int_{U_{\lambda}(G)\backslash G} u^{2}(Y',0) \, dY' = \int_{a-\lambda}^{a} u^{2}(y_{1},0) \, dy_{1} + \int_{b}^{b+\lambda} u^{2}(y_{1},0) \, dy_{1} = I_{1} + I_{2}.$$

The integral I_1 will be written in the form

$$I_1 = -\int_{0}^{a-\lambda} u^2(y_1,0) \,\mathrm{d}y_1$$

and the substitution $y_1 = a - t$, where $t \in (0, \lambda)$, will be used. We obtain, according to the theorem on substitution in a simple integral,

$$I_1 = \int_0^{\lambda} u^2(a-t,0) dt.$$

Similarly, using in the integral I_2 the substitution $y_1 = b + t$ where $t \in (0, \lambda)$, we obtain

$$I_2 = \int_0^{\lambda} u^2(b+t,0) dt.$$

Hence, according to the theorem on differentiation of an integral as a function of the upper limit and by the l'Hospital rule (and taking into account that the first integral on the right-hand side of (63) is multiplied by h^{-1}), we obtain

(66)
$$\lim_{\lambda \to 0+} \frac{1}{\lambda} \int_{U_{\lambda}(G)\backslash G} u^{2}(Y',0) \, dY'$$

$$= \lim_{\lambda \to 0+} \frac{1}{\lambda} \left(\int_{0}^{\lambda} u^{2}(a-t,0) \, dt + \int_{0}^{\lambda} u^{2}(b+t,0) \, dt \right)$$

$$= \lim_{\lambda \to 0+} (u^{2}(a-\lambda,0) + u^{2}(b+\lambda,0))$$

$$= u^{2}(a,0) + u^{2}(b,0) = 0,$$

because u(a,0)=0, u(b,0)=0 (u is, according to our assumption, a *smooth* function). All these results yield $\|\psi_N\|_{0,P_\lambda}\to 0$ with $\lambda\to 0$ (when N=2).

2) In this part of the proof we use, beside the Trace Theorem in the form of [5, Theorem 6.8.13] (which concerns the mapping $\mathfrak{R} \colon H^{1,p} \to H^{1-\frac{1}{p},p}(\partial\Omega)$), the following theorem (we cite it from [1], where it is introduced by the following words: "We shall not attempt any proof" and references to the works of Besov [2], Uspenskij [9] and Lizorkin [6] are given. Adams further writes: "The theorem is stated for \mathbb{R}^N but can obviously be extended to domains with sufficient regularity" (as, for example, domains $\Omega \in \tilde{\mathcal{C}}^{0,1}$).

Theorem A. Let s > 0, $1 , and <math>1 \leqslant k \leqslant n$. Let $\chi = s - n/p + k/q$. If

- (1) $\chi \geqslant 0$ and p < q, or
- (2) $\chi > 0$ and χ is not an integer, or
- (3) $\chi \geqslant 0$ and 1 ,

then (direct imbedding theorem)

(67)
$$W^{s,p}(\mathbb{R}^n) \to W^{\chi,q}(\mathbb{R}^k).$$

Imbedding (67) does not necessarily hold for p = q > 2 and χ a nonnegative integer.

In this part of the proof we restrict ourselves to the case N=3. Our considerations start now again from relation (65). Using the Trace Theorem in the form of [5, Theorem 6.8.13] we see that

(68)
$$u(Y',0) \in H^{\frac{1}{2}}(\Delta).$$

Now we use Theorem A: We have (using the notation of Theorem A)

$$s = \frac{1}{2}$$
, $p = q = 2$, $n = N - 1$, $k = n - 1 = N - 2$.

Hence

$$\chi = s - \frac{n}{p} + \frac{k}{q} = \frac{1}{2} - \frac{N-1}{2} + \frac{N-2}{2} = 0.$$

Thus, according to the assertion of Theorem A,

$$H^{\frac{1}{2}}(\mathbb{R}^{N-1}) = W^{\frac{1}{2},2}(\mathbb{R}^{N-1}) \to H^0(\mathbb{R}^{N-2}) = L_2(\mathbb{R}^{N-2}),$$

and consequently

$$H^{\frac{1}{2}}(\Delta) \to L_2(\partial \Delta)$$

and also (again according to Theorem A, because $G \subset \Delta$)

$$H^{\frac{1}{2}}(\Delta) \to L_2(\partial G).$$

Thus (as
$$u(Y',0)=u\big|_G)$$

$$u(Y',0)\big|_{\partial G}\in L_2(\partial G).$$

Then the convergence

$$\frac{1}{\lambda} \int_{U_{\lambda}(G)\backslash G} u^{2}(Y',0) \, dY' \to 0 \quad \text{(with } \lambda \to 0)$$

follows from the properties of traces: Of course, locally we have

$$\int_{\mathcal{R}} u^2(Y',0) \, dY' \leqslant \int_{\mathcal{R}'} \left(\int_{a(z_1) - K\lambda}^{a(z_1)} u^2(z_1, z_2, 0) \, dz_2 \right) dz_1,$$

where \mathcal{R} is the intersection of $U_{\lambda}(G) \setminus G$ with some suitable neighbourhood

$$\mathcal{R}_1 = \{ [z_1, z_2] \colon z_1 \in \mathcal{R}', z_2 \in (a(z_1) - \gamma, a(z_1) + \gamma) \}$$

of any fixed point of ∂G (see Fig. 4) and $a(z_1)$ is the function which represents ∂G

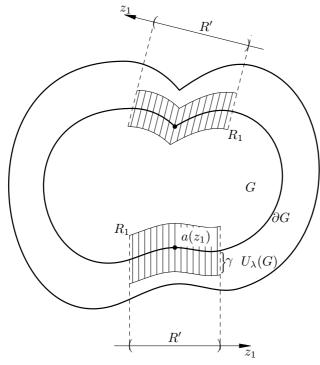


Figure 4. Concerning the case N=3 (see 1 b) of part D1.)

with respect to a local Cartesian coordinate system of axes (z_1, z_2) with a Lipschitz constant L and $K \leq \sqrt{L^2 + 1}$. The function

(69)
$$\Phi(\eta) = \int_{\mathcal{R}'} u^2(z_1, a(z_1) - \eta, 0) \, \mathrm{d}z_1$$

is a continuous function of $\eta \in \langle -\gamma, 0 \rangle$: indeed, the function $u(z_1, z_2, 0)$ is assumed sufficiently smooth on $\mathcal{R}' \times (-\gamma, \gamma)$, hence it is continuous on $\overline{\mathcal{R}'} \times \langle -\gamma, \gamma \rangle$; by Cantor's theorem it is there uniformly continuous. As $a(z_1)$ is Lipschitz continuous on $\overline{\mathcal{R}'}$, we have $|a(z_1) - a(z_1')| < L|z_1 - z_1'|$. All these facts imply that (according to the definition of uniform continuity of a function of two variables)

$$|u(z_1, a(z_1) - \eta, 0) - u(z_1', a(z_1') - \eta', 0)| < \varepsilon \text{ for } |z_1 - z_1'| < \frac{\delta}{2L}, \quad |\eta - \eta'| < \frac{\delta}{2}.$$

It suffices now to use the theorem on continuity of an integral with respect to a parameter.

Thus, using the Fubini theorem and making the change of variables in the form $\eta = a(z_1) - z_2$, we obtain by means of the l'Hospital rule and the theorem on differentiation of the integral as a function of the upper limit

$$\lim_{\lambda \to 0+} \frac{1}{\lambda} \int_{\mathcal{R}} u^2(Y', 0) \, \mathrm{d}Y' \leqslant K \lim_{\lambda \to 0+} \frac{1}{K\lambda} \int_{-K\lambda}^0 \Phi(\eta) \, \mathrm{d}\eta = -K\Phi(0) = 0,$$

because $u|_{\Gamma} = 0$ and the function $\Phi(\eta)$ is given by relation (69); we must keep in mind that $u^2(z_1, a(z_1), 0)|_{z_1 \in \mathcal{R}'} = u^2|_{\partial G} = u^2|_{\Gamma} = u^2|_{\Gamma} = 0$.

D2.1. N=2. First we shall discuss the case N=2. Let, for simplicity, the set G be an open interval on the axis x_1 :

$$G = (a, b).$$

Then

$$U_{\lambda}(G) = (a - \lambda, b + \lambda), \quad V_{\lambda}(G) = \left(a - \frac{3}{4}\lambda, b + \frac{3}{4}\lambda\right),$$
$$W_{\lambda}(G) = \left(a - \frac{1}{2}\lambda, b + \frac{1}{2}\lambda\right), \quad Z_{\lambda}(G) = \left(a - \frac{1}{4}\lambda, b + \frac{1}{4}\lambda\right),$$

and

$$U_{\lambda}(\Gamma) = (a - \lambda, b + \lambda) \times \left(-\lambda, \frac{1}{4}\lambda\right),$$

$$V_{\lambda}(\Gamma) = \left(a - \frac{3}{4}\lambda, b + \frac{3}{4}\lambda\right) \times \left(-\frac{3}{4}\lambda, \frac{1}{4}\lambda\right),$$

$$W_{\lambda}(\Gamma) = \left(a - \frac{1}{2}\lambda, b + \frac{1}{2}\lambda\right) \times \left(-\frac{1}{2}\lambda, \frac{1}{4}\lambda\right),$$

$$Z_{\lambda}(\Gamma) = \left(a - \frac{1}{4}\lambda, b + \frac{1}{4}\lambda\right) \times \left(-\frac{1}{4}\lambda, \frac{1}{4}\lambda\right).$$

By (32), Fig. 3 and the Green-Gauss-Ostrogradskij theorem we have

$$(70) \quad \psi_{1}(X) = \frac{\partial w_{\lambda}}{\partial x_{1}}(X) = \int_{Q_{\lambda}} \frac{\partial \omega_{h}}{\partial x_{1}}(X - Y)u_{\lambda}(Y) \, dY$$

$$= -\int_{Q_{\lambda}} \frac{\partial \omega_{h}}{y_{1}}(X - Y)u_{\lambda}(Y) \, dY =$$

$$= \int_{Q_{\lambda}} \omega_{h}(X - Y) \frac{\partial u_{\lambda}}{\partial y_{1}}(Y) \, dY$$

$$-\int_{-\lambda}^{\lambda/4} \omega_{h}(X - [b + \lambda, y_{2}])u_{\lambda}(b + \lambda, y_{2}) \, dy_{2}$$

$$+\int_{-\lambda/2}^{\lambda/4} \omega_{h}\left(X - \left[b + \frac{1}{2}\lambda, y_{2}\right]\right)u_{\lambda}\left(b + \frac{1}{2}\lambda, y_{2}\right) \, dy_{2}$$

$$-\int_{-\lambda/2}^{\lambda/4} \omega_{h}\left(X - \left[a - \frac{1}{2}\lambda, y_{2}\right]\right)u_{\lambda}\left(a - \frac{1}{2}\lambda, y_{2}\right) \, dy_{2}$$

$$+\int_{-\lambda}^{\lambda/4} \omega_{h}(X - [a - \lambda, y_{2}])u_{\lambda}(a - \lambda, y_{2}) \, dy_{2}.$$

Similarly to Section D1 the first integral on the right-hand side of (70) tends to zero in $L_2(P_{\lambda})$; this means

(71)
$$\lim_{\lambda \to 0} \int_{P_{\lambda}} \left(\int_{Q_{\lambda}} \omega_h(X - Y) \frac{\partial u_{\lambda}}{\partial y_1}(Y) \, dY \right)^2 dX = 0,$$

where (see Fig. 3)

$$P_{\lambda} = V_{\lambda}(\Gamma) \cap \Theta, \quad Q_{\lambda} = U_{\lambda}(\Gamma) \setminus \overline{W_{\lambda}(\Gamma)}.$$

Now we prove that the second and fifth integrals on the right-hand side of (70) are equal to zero. We have

$$\omega_h(X - [b + \lambda, y_2]) = \omega_h([x_1, x_2] - [b + \lambda, y_2])$$

$$= \omega_h(x_1 - b - \lambda, x_2 - y_2)$$

$$= \omega_h(x_1 - b - 4h, x_2 - y_2) = \omega_h(Z),$$

where we set

$$Z = [x_1 - b - 4h, x_2 - y_2].$$

Thus

$$||Z|| = \sqrt{(x_1 - b - 4h)^2 + (x_2 - y_2)^2}.$$

The most inconvenient situation occurs when

$$(x_2 - y_2)^2 = 0.$$

As $X \in P_{\lambda} = V_{\lambda}(\Gamma) \cap \Theta$ we have

(72)
$$x_1 \in \left(a - \frac{3}{4}\lambda, b + \frac{3}{4}\lambda\right) = (a - 3h, b + 3h).$$

In such a situation the inequality

$$||Z|| \geqslant h$$

holds because for every x_1 satisfying (72) we have

$$(x_1 - b - 4h)^2 > [(b + 3h) - b - 4h]^2 = h^2.$$

Hence the *second* integral on the right-hand side of (70) is equal to zero.

A similar situation arises in the case of the *fifth* integral on the right-hand side of (70) because

$$\omega_h(X - [a - \lambda, y_2]) = \omega_h(x_1 - a + 4h, x_2 - y_2) = \omega_h(Z)$$

and again we have

$$(x_1 - a + 4h)^2 > [(a - 3h) - a + 4h]^2 = h^2$$

for every x_1 satisfying (72), hence relation (73) holds again.

As to the *third* and *fourth* integrals on the right-hand side of (70) they can be different from zero. We see it (in the case of the third integral) from the relation

$$\omega_h \left(X - \left[b + \frac{1}{2} \lambda, y_2 \right] \right) = \omega_h (x_1 - b - 2h, x_2 - y_2) = \omega_h (Z)$$

where, due to (72), we can have $x_1 = b + 2h$, and thus it is possible that

$$||Z|| < h$$
.

Thus, let us consider

(74)
$$\psi_{1,3}(X) = \int_{-\lambda/2}^{\lambda/4} \omega_h \left(X - \left[b + \frac{1}{2} \lambda, y_2 \right] \right) u_\lambda \left(b + \frac{1}{2} \lambda, y_2 \right) dy_2,$$

(75)
$$\psi_{1,4}(X) = \int_{-\lambda/2}^{\lambda/4} \omega_h \left(X - \left[a - \frac{1}{2} \lambda, y_2 \right] \right) u_\lambda \left(a - \frac{1}{2} \lambda, y_2 \right) dy_2.$$

Taking into account the preceding text and relation (70) we can write

(76)
$$|\psi_1(X)|^2 = (\psi_{1,3}(X) + \psi_{1,4}(X))^2 \leqslant 2(|\psi_{1,3}(X)|^2 + |\psi_{1,4}(X)|^2);$$

thus it suffices to consider the case of relation (74); the considerations in the case of (75) follow the same lines.

Using the Schwarz inequality and relation (74) we obtain

$$(77) \qquad |\psi_{1,3}(X)|^2 \leqslant \int_{-\lambda/2}^{\lambda/4} \omega_h^2 \left(X - \left[b + \frac{1}{2} \lambda, y_2 \right] \right) dy_2 \int_{-\lambda/2}^{\lambda/4} u_\lambda^2 \left(b + \frac{1}{2} \lambda, y_2 \right) dy_2.$$

Inequality (77) will be rewritten to the form

$$(78) \quad |\psi_{1,3}(X)|^2 \leqslant \int_{-\lambda/2}^{\lambda/4} \omega_h^2 \left(x_1 - b - \frac{1}{2} \lambda, x_2 - y_2 \right) dy_2 \int_{-\lambda/2}^{\lambda/4} u_\lambda^2 \left(b + \frac{1}{2} \lambda, y_2 \right) dy_2$$
$$\leqslant \int_{-\infty}^{\infty} \omega_h^2 \left(x_1 - b - \frac{1}{2} \lambda, y_2 - x_2 \right) dy_2 \int_{-\lambda/2}^{\lambda/4} u_\lambda^2 \left(b + \frac{1}{2} \lambda, y_2 \right) dy_2.$$

In the first integral on the right-hand side of (78) we transform the variables in the form

$$y_2 - x_2 = z_2 \Rightarrow dy_2 = dz_2$$

and in the second integral we change the notation of the integration variable. We obtain

$$(79) \qquad |\psi_{1,3}(X)|^2 \leqslant \int_{-\infty}^{\infty} \omega_h^2 \left(x_1 - b - \frac{1}{2}\lambda, z_2 \right) dz_2 \int_{-\lambda/2}^{\lambda/4} u_\lambda^2 \left(b + \frac{1}{2}\lambda, s \right) ds.$$

Let us integrate inequality (79) over P_{λ} :

$$(80) \int_{P_{\lambda}} |\psi_{1,3}(X)|^{2} dX$$

$$\leqslant \int_{P_{\lambda}} \left\{ \int_{-\infty}^{\infty} \omega_{h}^{2} \left(x_{1} - b - \frac{1}{2} \lambda, z_{2} \right) dz_{2} \int_{-\lambda/2}^{\lambda/4} u_{\lambda}^{2} \left(b + \frac{1}{2} \lambda, s \right) ds \right\} dX$$

$$= \int_{a-3\lambda/4}^{b+3\lambda/4} \left(\int_{-\infty}^{\infty} \omega_{h}^{2} \left(x_{1} - \frac{1}{2} \lambda - b, z_{2} \right) dz_{2} \right) dx_{1}$$

$$\times \int_{-3\lambda/4}^{0} dx_{2} \int_{-\lambda/2}^{\lambda/4} u_{\lambda} \left(b + \frac{1}{2} \lambda, s \right) ds$$

$$\leqslant \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \omega_{h}^{2} \left(x_{1} - b - \frac{1}{2} \lambda, z_{2} \right) dz_{2} \right) dx_{1} \cdot 3h \int_{-\lambda/2}^{\lambda/4} u_{\lambda} \left(b + \frac{1}{2} \lambda, s \right) ds.$$

In the first integral on the right-hand side of (80) we transform the variables in the form

$$x_1 - b - \frac{1}{2}\lambda = z_1 \Rightarrow dx_1 = dz_1;$$

hence we obtain

(81)
$$\|\psi_{1,3}\|_{0,P_{\lambda}}^{2} \leqslant \int_{\mathbb{R}^{2}} \omega_{h}^{2}(Z) \, \mathrm{d}Z \cdot 3h \int_{-\lambda/2}^{\lambda/4} u_{\lambda} \left(b + \frac{1}{2}\lambda, s\right) \, \mathrm{d}s.$$

Relations (81) and (52) (with N=2) yield

(82)
$$\|\psi_{1,3}\|_{0,P_{\lambda}}^{2} \leqslant C_{2}h^{-1} \int_{-\lambda/2}^{\lambda/4} u_{\lambda}^{2} \left(b + \frac{1}{2}\lambda, s\right) ds.$$

Inequality (82) is a one-dimensional analogue of inequalities (57) and (62). In this case we proceed as follows (we use definition (7) of the function u_{λ} and the definition of h: $h = \frac{1}{4}\lambda$):

(83)
$$h^{-1} \int_{-\lambda/2}^{\lambda/4} u_{\lambda}^{2} \left(b + \frac{1}{2}\lambda, s\right) ds = h^{-1} \int_{-2h}^{h} u_{\lambda}^{2} \left(b + \frac{1}{2}\lambda, s\right) ds$$
$$= \frac{1}{h} \int_{-2h}^{0} u^{2} \left(b + \frac{1}{2}\lambda, s - h\right) ds + \frac{1}{h} \int_{0}^{h} u^{2} \left(b + \frac{1}{2}\lambda, s - h\right) ds.$$

Let $h \to 0$ and let us evaluate each limit on the right-hand side of (83) separately. In both cases we have the limit of type $\frac{0}{0}$; thus we can use the l'Hospital rule and the theorem on differentiation of an integral as a function of the upper limit. Again, as in part D1, we assume the function u to be sufficiently *smooth* and then extend the result by a density argument (see [5, Theorem 5.5.9]). First we consider the limit of the second term on the right-hand side of (83):

(84)
$$\lim_{h \to 0} \frac{1}{h} \int_{0}^{h} u^{2} \left(b + \frac{1}{2} \lambda, s - h \right) ds = \lim_{h \to 0} u^{2} (b + 2h, 0) = 0,$$

because $[b,0] \in \overline{\Gamma} = \overline{G \times \{0\}}$ and $u\big|_{\Gamma} = 0$. (The function u is smooth.)

As to the first term on the right-hand side of (83), we proceed as follows:

(85)
$$-2\lim_{h\to 0} \frac{1}{2h} \int_0^{-2h} u^2 \left(b + \frac{1}{2}\lambda, s - h\right) ds = -2\lim_{h\to 0} u^2 (b + 2h, -3h)$$
$$= -2u^2 (b, 0) = 0.$$

Relations (81)–(85) yield

(86)
$$\lim_{\lambda \to 0} \|\psi_{1,3}\|_{0,P_{\lambda}}^2 = 0.$$

We can prove in the same way that

(87)
$$\lim_{\lambda \to 0} \|\psi_{1,4}\|_{0,P_{\lambda}}^2 = 0.$$

Relations (76) and (86), (87) imply

(88)
$$\lim_{\lambda \to 0} \|\psi_1\|_{0, P_{\lambda}}^2 = 0.$$

The proof of Lemma 2 in the case N=2 is complete.

D2.2. N = 3. Now we shall consider the situation i < N in the case N = 3, this means the cases i = 1 and i = 2.

For greater simplicity we assume that $G \subset \overline{G} \subset \Delta$ is a simply connected domain. Further we assume that the boundary ∂G consists of a finite number of smooth arcs; this assumption is sufficient for applications. In the case N=3 the sets $U_{\lambda}(G), \ldots, Z_{\lambda}(G)$ and $U_{\lambda}(\Gamma), \ldots, Z_{\lambda}(\Gamma)$ are defined by relations (4) and (5), respectively. Domains (5) are three-dimensional cylinders with bases parallel to the coordinate plane (x_1, x_2) and with the lateral area of a cylinder formed by straightlines parallel to the axis x_3 . The projections of both bases of the cylinder $M_{\lambda}(\Gamma)$ $(M=U,\ldots,Z)$ are identical with the two-dimensional domain $M_{\lambda}(G)$ which lies in the coordinate plane (x_1,x_2) .

Let $M_{\lambda}^1(\Gamma)$ and $M_{\lambda}^2(\Gamma)$ be the lower and upper bases of the cylinder $M_{\lambda}(\Gamma)$, respectively, and let $M_{\lambda}^3(\Gamma) = \partial M_{\lambda}(\Gamma) \setminus (M_{\lambda}^1(\Gamma) \cup M_{\lambda}^2(\Gamma))$. Let $X \in \partial M_{\lambda}(\Gamma)$ be an arbitrary point except for the points at which $\partial M_{\lambda}(\Gamma)$ is not smooth. Let n(X) be the unit outer normal to $\partial M_{\lambda}(\Gamma)$ at the point X. Then we have

(89)
$$X \in M^1_{\lambda}(\Gamma) \Rightarrow n(X) = (0, 0, -1),$$

(90)
$$X \in M_{\lambda}^{2}(\Gamma) \Rightarrow n(X) = (0, 0, 1),$$

(91)
$$X \in M_{\lambda}^{3}(\Gamma) \Rightarrow n(X) = (n_{1}(X), n_{2}(X), 0), \quad n_{1}^{2}(X) + n_{2}^{2}(X) = 1.$$

Now we shall compute the functions $\psi_i(X)$ given by relation (32) for i = 1 and i = 2. By the Green-Gauss-Ostrogradskij theorem and relations (89)–(91) we have

(92)
$$\psi_{i}(X) = \int_{Q_{\lambda}} \omega_{h}(X - Y) \frac{\partial u_{\lambda}}{\partial y_{i}}(Y) \, dY$$
$$- \int_{U_{\lambda}^{3}(\Gamma)} \omega_{h}(X - Y) u_{\lambda}(Y) n_{i}(Y) \, d\sigma_{Y}$$
$$+ \int_{W_{\lambda}^{3}(\Gamma)} \omega_{h}(X - Y) u_{\lambda}(Y) n_{i}(Y) \, d\sigma_{Y}.$$

The last two integrals appearing on the right-hand side of (92) are surface integrals of the first kind. Similarly to Section D1 the first integral on the right-hand side of (92) tends to zero in $L_2(P_{\lambda})$; this means

(93)
$$\lim_{\lambda \to 0} \int_{P_{\lambda}} \left(\int_{Q_{\lambda}} \omega_h(X - Y) \frac{\partial u_{\lambda}}{\partial y_1}(Y) \, dY \right)^2 dX = 0,$$

where (see Fig. 3)

$$P_{\lambda} = V_{\lambda}(\Gamma) \cap \Theta, \quad Q_{\lambda} = U_{\lambda}(\Gamma) \setminus \overline{W_{\lambda}(\Gamma)}.$$

Now we prove that the second integral on the right-hand side of (92) is equal to zero. We have

$$||X - Y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}.$$

The most inconvenient situation occurs when $x_3 - y_3 = 0$ (in this case the points X, Y lie in a plane which is parallel to the coordinate plane (x_1, x_2)) and when the point X is very close to $V_{\lambda}^3(\Gamma)$ or lies on $V_{\lambda}^3(\Gamma)$. As $Y \in U_{\lambda}^3(\Gamma)$ and $X \in P_{\lambda}$ we see that in every case we have $||X - Y|| \ge h$. Thus $\omega_h(X - Y) = 0$ and the second integral on the right-hand side of (92) is equal to zero. Hence

$$\psi_i(X) = \int_{W_3^3(\Gamma)} \omega_h(X - Y) u_\lambda(Y) n_i(Y) \, \mathrm{d}\sigma_Y.$$

Using the Schwarz inequality and the fact that $|n_i(Y)| \leq 1$ we obtain

(94)
$$|\psi_i(X)|^2 \leqslant \int_{W_{\lambda}^3(\Gamma)} \omega_h^2(X - Y) \, d\sigma_Y \int_{W_{\lambda}^3(\Gamma)} u_{\lambda}^2(Y) \, d\sigma_Y$$

$$= \int_{W_{\lambda}^3(\Gamma)} \omega_h^2(X - Y) \, d\sigma_Y \int_{W_{\lambda}^3(\Gamma)} u_{\lambda}^2(Z) \, d\sigma_Z.$$

Integration of inequality (94) over P_{λ} yields

(95)
$$\|\psi_i\|_{0,P_\lambda}^2 \leqslant \int_{P_\lambda} \left\{ \int_{W^3(\Gamma)} \omega_h^2(X - Y) \, \mathrm{d}\sigma_Y \right\} \mathrm{d}X \cdot \int_{W^3(\Gamma)} u_\lambda^2(Z) \, \mathrm{d}\sigma_Z.$$

First let us consider the second surface integral appearing on the right-hand side of (95). As $W_{\lambda}^{3}(\Gamma) = \partial W_{\lambda}(G) \times (-\frac{1}{2}\lambda, \frac{1}{4}\lambda)$ we can write using definition (7) of the function u_{λ} and the properties of a line integral of the first kind:

(96)
$$\int_{W_{\lambda}^{3}(\Gamma)} u_{\lambda}^{2}(Z) d\sigma_{Z} = \int_{\partial W_{\lambda}(G) \times (-\frac{1}{2}\lambda, \frac{1}{4}\lambda)} u^{2}(z_{1}, z_{2}, z_{3} - h) d\sigma_{Z}$$
$$= \sum_{k=1}^{m} \int_{-\lambda/2}^{\lambda/4} \left\{ \int_{R'_{k}} u^{2}(z_{1}, a_{k,\lambda}(z_{1}), z_{3} - h) \sqrt{1 + [a'_{k,\lambda}(z_{1})]^{2}} dz_{1} \right\} dz_{3},$$

where $a_{k,\lambda}$ is a local representation of the curve $\partial W_{\lambda}(G)$. (The situation is similar to that which is sketched in Fig. 4.) We have $|a'_{k,\lambda}(z_1)|^2 < C_k$, where the constant C_k depends only on the Lipschitz constant of the function $\alpha_k(z_1)$ which represents locally the curve ∂G (which does not depend on λ ; however, $\partial W_{\lambda}(G)$ depends, similarly as $W_{\lambda}(G)$, on λ —see (4)₃; attention: the symbols $a_{k,\lambda}$ and α_k represent two different parallel arcs). The symbol R'_k ($k=1,\ldots,m$) denotes a segment on the z_1 -axis of the kth local coordinate system (z_1, z_2). (It would be more precise to use the notation ($z_1^{(k)}, z_2^{(k)}$) instead of the notation (z_1, z_2); however, it would have been very cumbersome.) Thus

(97)
$$\int_{W_{\lambda}^{3}(\Gamma)} u_{\lambda}^{2}(Z) d\sigma_{Z} \leqslant C_{0} \sum_{k=1}^{m} \int_{-\lambda/2}^{\lambda/4} \left\{ \int_{R'_{k}} u^{2}(z_{1}, a_{k,\lambda}(z_{1}), z_{3} - h) dz_{1} \right\} dz_{3},$$

where $C_0 = \max(C_1, \ldots, C_m)$. Let us consider the expression

(98)
$$\frac{1}{h} \int_{-\lambda/2}^{\lambda/4} \left\{ \int_{R'_k} u^2(z_1, a_{k,\lambda}(z_1), z_3 - h) \, \mathrm{d}z_1 \right\} \, \mathrm{d}z_3$$
$$= \int_{R'_k} \left\{ \frac{1}{h} \int_{-2h}^0 u^2(z_1, a_{k,\lambda}(z_1), z_3 - h) \, \mathrm{d}z_3 \right.$$
$$+ \frac{1}{h} \int_0^h u^2(z_1, a_{k,\lambda}(z_1), z_3 - h) \, \mathrm{d}z_3 \right\} \, \mathrm{d}z_1,$$

where we have used the Fubini theorem. Let $h \to 0$ in (98). First let us consider the second expression appearing on the right-hand side of (98). To this end, the following fact should be noted: if $h \to 0$ then $\partial W_{\lambda}(G)$ tends to ∂G . The corresponding kth part of ∂G is described in the local coordinate system (z_1, z_2) by the function $\alpha_k(z_1)$. Hence (as the limit is of the type $\frac{0}{0}$, we use the l'Hospital rule and the theorem on differentiation of an integral as a function of the upper limit)

$$\lim_{h \to 0} \frac{1}{h} \int_0^h u^2(z_1, a_{k,\lambda}(z_1), z_3 - h) \, \mathrm{d}z_3 = \lim_{h \to 0} u^2(z_1, a_{k,\lambda}(z_1), 0) = u^2(z_1, a_k(z_1), 0).$$

As $[z_1, \alpha_k(z_1), 0] \in \partial G$ and $u|_{\Gamma} = 0$, where $\Gamma = G \times \{0\}$, we have by the assumed continuity of the function u

$$u^2(z_1, \alpha_k(z_1), 0) = 0.$$

which yields

(99)
$$\lim_{h \to 0} \frac{1}{h} \int_0^h u^2(z_1, a_{k,\lambda}(z_1), z_3 - h) \, \mathrm{d}z_3 = 0.$$

As to the first expression appearing on the right-hand side of (98) we have by the same argument

(100)
$$\lim_{h \to 0} \frac{1}{h} \int_{-2h}^{0} u^{2}(z_{1}, a_{k,\lambda}(z_{1}), z_{3} - h) dz_{3} = -2 \lim_{h \to 0} u^{2}(z_{1}, a_{k,\lambda}(z_{1}), -3h)$$
$$= -2u^{2}(z_{1}, \alpha_{k}(z_{1}), 0) = 0.$$

We see from relations (95)–(100) that to complete the proof of Lemma 2 in the case N=3 means to prove

(101)
$$\int_{P_{\lambda}} \left\{ \int_{W_{\lambda}^{3}(\Gamma)} \omega_{h}^{2}(X - Y) \, \mathrm{d}\sigma_{Y} \right\} \mathrm{d}X = Ch^{-1}.$$

The Fubini theorem and the mean value theorem yield

$$(102) \int_{P_{\lambda}} \left\{ \int_{W_{\lambda}^{3}(\Gamma)} \omega_{h}^{2}(X - Y) \, d\sigma_{Y} \right\} dX = \int_{W_{\lambda}^{3}(\Gamma)} \left\{ \int_{P_{\lambda}} \omega_{h}^{2}(X - Y) \, dX \right\} d\sigma_{Y}$$

$$= \int_{W_{\lambda}^{3}(\Gamma)} \left\{ \int_{\|X - Y\| < h} \omega_{h}^{2}(X - Y) \, dX \right\} d\sigma_{Y}$$

$$= \int_{W_{\lambda}^{3}(\Gamma)} \omega_{h}^{2}(X_{0} - Y) \, d\sigma_{Y} \int_{\|X - Y\| < h} dX.$$

$$= \int_{W_{\lambda}^{3}(\Gamma)} \omega_{h}^{2}(X_{0} - Y) \, d\sigma_{Y} \int_{\|X - Y\| < h} dX.$$

We have

(103)
$$\int_{\substack{\|X-Y\| < h \\ Y \in W^3(\Gamma)}} dX = \frac{4}{3} \pi h^3.$$

As to the first integral on the right-hand side of (102), the case $X_0 \in W^3_\lambda(\Gamma)$ is most inconvenient. As the inequality $||X_0 - Y|| < h$ must hold for $\omega_h^2(X_0 - Y) > 0$ we find

$$\int_{W_{\lambda}^{3}(\Gamma)} \omega_{h}^{2}(X_{0} - Y) d\sigma_{Y} = \int_{\sigma(X_{0})} \omega_{h}^{2}(X_{0} - Y) d\sigma_{Y},$$

where

$$\sigma(X_0) \subset W^3_{\lambda}(\Gamma), \quad \text{meas}_2 \, \sigma(X_0) \leqslant Ch^2.$$

Hence, taking into account (11) with N=3, we conclude that

(104)
$$\int_{W_{\lambda}^{3}(\Gamma)} \omega_{h}^{2}(X_{0} - Y) d\sigma_{Y} = \omega_{h}^{2}(X_{0} - Y_{0}) \int_{\sigma(X_{0})} d\sigma_{Y} \leqslant Ch^{-4}.$$

Relations (102)–(104) imply the desired result (101). Lemma 2 is completely proved.

Acknowledgement.

The authors are very indebted to Prof. Michal K í ek for his comments.

References

- [1] R. A. Adams: Sobolev Spaces. Academic Press, New York-San Francisco-London, 1975.

 Zbl 0314.46030
- [2] O. V. Besov. On some families of functional spaces. Imbedding and continuation theorems. Doklad. Akad. Nauk SSSR 126 (1959), 1163–1165. (In Russian.) Zbl 0097.09701
- [3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

 Zbl 0383.65058
- [4] P. Doktor: On the density of smooth functions in certain subspaces of Sobolev space.
 Commentat. Math. Univ. Carol. 14 (1973), 609–622.
 Zbl 0268.46036
- [5] A. Kufner, O. John, and S. Fučík: Function Spaces. Academia, Praha, 1977.

Zbl 0364.46022

- [6] P. I. Lizorkin: Boundary properties of functions from "weight" classes. Sov. Math. Dokl. 1 (1960), 589–593; transl. from Dokl. Akad. Nauk SSSR 132 (1960), 514–517. (In Russian.)
 Zbl 0106.30802
- [7] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Praha, 1967.
- [8] V. I. Smirnov: A Course in Higher Mathematics V. Gosudarstvennoje izdatelstvo fiziko-matematičeskoj literatury, Moskva, 1960. (In Russian.)
- [9] S. V. Uspenskij: An imbedding theorem for S. L. Sobolev's classes W_p^T of fractional order. Sov. Math. Dokl. 1 (1960), 132–133; traslation from Dokl. Akad. Nauk SSSR 130 (1960), 992–993.
- [10] A. Ženíšek: Sobolev Spaces and Their Applications in the Finite Element Method. VUTIUM, Brno, 2005; see also A. Ženíšek: Sobolev Spaces. VUTIUM, Brno, 2001. (In Czech.)

Authors' addresses: P. Doktor, Českolipská 12, 19000 Prague 9, Czech Republic; A. Ženíšek, Department of Mathematics FME, Technická 2, 61669 Brno, Czech Republic, e-mail: zenisek@fme.vutbr.cz.