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Abstract
Conventional statistical methods for missing data imputation have been challenging to adapt to the large-scale new features
of high dimensionality. Moreover, the missing data imputation methods based on Generative Adversarial Networks (GAN)
are plagued with gradient vanishing and mode collapse. To address these problems, we have proposed a new imputation
method based on GAN to enhance the accuracy of missing data imputation in this study. We refer to our missing data method
using Generative Adversarial Imputation Networks (MGAIN). Specifically, the least squares loss is first introduced to solve
the gradient vanishing problem and ensure the high quality of the output data in MGAIN. To mitigate mode collapse, dual
discriminator is used in the model, which improved the diversity of output data to avoid the degradation of computational
performance caused by single data. As a result, MGAIN generates rich and accurate imputation values. TheMGAIN enhances
imputation accuracy and reduces the root mean square error metric by 21.66% compared to the baseline model. We evaluated
our method on baseline datasets and found that MGAIN outperformed state-of-the-art and popular imputation methods,
demonstrating its effectiveness and superiority.

Keywords Missing Data Imputation · Generative Adversarial Networks · Least squares · Dual discriminator

1 Introduction

The issue of missing data is a significant problem in statisti-
cal analysis across all statistical applications.Various reasons
formissing data includemechanical andhuman reasons.Data
play a crucial role in artificial intelligence, and high-quality
data directly affect the quality of knowledge output. Since the
quality of data is an essential indicator of their value, a sub-
stantial amount of data in a real production setting can lead to
quality problems. Moreover, a large amount of low-quality
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data can lower the density of values in the data, potentially
resulting in a biased final analysis that does not fully lever-
age information inherent in the data. Therefore, correctly and
efficiently handling missing data is critical [1, 2].

The current state-of-the-art missing data imputation algo-
rithms fall into two main categories: discriminative algo-
rithms and generative algorithms. Discriminative algorithms
include Multiple Imputation by Chained Equations (MICE)
[3], MissForest [4], and matrix completion [5]. Furthermore,
generative algorithms include K-NearestNeighbor (KNN)
[6], Expectation Maximization (EM) [7], and machine
learning-based algorithms such as Auto-encoders (AE) [8]
and GAN [9]. However, current generative algorithms have
some limitations. They are basedondata distribution assump-
tions [10], making them less suitable for datasets containing
mixed categories and continuous variables.

In previous statistical studies, the sample sizes were
often small and the proportion of missing data was low.
Researchers usually use subjective judgment to discard or
manually process the missing records. However, with the
advent of the big data era, the proportion of missing data has
become larger because data dimensions have skyrocketed.
Manual processing is inefficient at this point. Discarding
missing records leads to a loss of a significant amount of
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information [11], leading to systematic differences between
incomplete and complete observations. Analyzing such data
is likely to lead to wrong conclusions. As data volume and
dimension increase, statistical learning methods are widely
used in daily classification [12, 13], prediction [14, 15], and
dimensionality reduction [16]. However, when the original
input data of statistical learningmethods containmissing val-
ues, most statistical learning methods will be unusable. Only
specialized methods such as methods based on decision trees
(Cox Regression Model Combined with Decision Tree [17],
Branch-Exclusive Splits Trees (BEST) [18], and Other vari-
ants of decision trees [19]) and methods based on random
forests (Depth-Weighted Prevalence for an random forests
Tree Ensemble [20], PhyloMissForest [21], Logistic Ridge
Regression and Random Forest Ensemble Model [22], and
Random forest with the assignation of missing entries [23])
can handle missing values, but they still have limitations,
such as significant degradation in the prediction accuracy.

Imputation of missing data has always been a difficult
and hot problem. Various computational methods have been
proposed to addressmissing data inmultiple fields, including
medical [24], image mapping [25], and financial data [26,
27]. In a study tackling the missing MRI problem, Sharma et
al. used the GAN and designed a multi-input, multi-output
network model to fill in the missing information. GAN was
found to have good applicability in multimodal problems
[28].

Using machine learning methods to handle missing data
has become an active research. However, existing machine
learningmethods for processingmissing data still face limita-
tions. A new approach calledGenerativeAdversarial Imputa-
tionNetworks (GAIN) has gained attention since its proposal
in 2018 [29]. GAIN leverages the capabilities of GAN to
learn the original data distributions for imputation, surpass-
ing the traditional statistical methods and other machine
learning methods in dealing with missing data. Awan [30]
proposed a new method for computing missing data based
on class-specific features to address the challenges of mod-
eling a single distribution over the entire dataset. However,
this method ignores the problem of class-specific features
of the data. Conditional Generative Adversarial Imputation
Networks (CGAIN) address this issue using class-specific
distributions for missing data, producing the best estimate of
missing values.

Additionally, PC-GAIN, a new unsupervisedmissing data
computation method, addresses the problem of GAIN, over-
looking the issue of the latent class information reflecting
the relationship between samples. PC-GAIN uses the latent
class information to further improve the accuracy of fill-
ing in the missing values [31]. The Generative Adversarial
Guider Imputation Network proposed in 2022 focuses on
unsupervised interpolation to handle the locally homoge-
neous regions, particularly at the boundaries [32]. Wu et al.

proposed a method based on the Fuzzy c-Means algorithm
and GAIN to exploit the information on the local samples
[33]. Zhao et al. introduced an imputation method called
Multiple Generative Adversarial Imputation Networks based
on data attributes [34]. A study also uses deep metric learn-
ing and MisGAN methods for multi-tasking missing data
imputation [35]. For time series continuous missing val-
ues, Wang et al. proposed Wasserstein GAN with gradient
penalty (CWGAIN-GP) [36]. However, the discriminator of
WGAN-GP usually fails tomaintain continuity in the periph-
eral region of the true sample distribution.

However, the aboveGAIN-baseddata imputationmethods
address the original issues of the original gradient vanish-
ing and mode collapse in GAN. This limitation can affect
the model performance and lead to model overfitting. More-
over, the data that are filled out may lack high quality and
diversity. For example, the generators of PC-GAIN andMis-
GANmay get stuck in a dead-end loop of generating similar
samples, resulting to a lack of diversity in filling results.
CWGAIN-GP is sensitive to noise or outliers, leading to
unstable or inaccurate filling results. This study proposes
MGAIN to overcome these challenges. Unlike traditional
imputation methods and other popular imputation methods,
MGAIN incorporates least squares loss to address the gradi-
ent vanishing and uses dual discriminator to mitigate mode
collapse, ensuring high quality and diversity of the output
data. Therefore, the motivation of this paper is to utilize the
MGAIN to address the problems of traditional imputation
methods and GAN-based approaches, enhancing the quality
and diversity of missing data imputation, and offering a more
reliable and effective solution for real data processing tasks.

Missing data are classified mainly into three categories,
including completely random missing, random missing, and
nonrandom missing [37]. Completely random missing data
refer to data that are entirely missing at random, independent
of incomplete or complete variables, and do not introduce
bias to the sample. Random missing data are the probabil-
ity of missing data not related to the missing data but only
to the partially observed data. The nonrandom missing data
occur when the missingness is related to the values taken
by the incomplete variables. This paper focuses on missing
completely at random (MCAR) data.

Therefore, we followed the approach depicted in Fig. 1.
First, we processed the original datasets with four missing
rates of 0.2, 0.4, 0.6, and 0.8. Subsequently, the missing data
was subjected to data preprocessing. Then, the data were
compared using different imputation methods. Finally, con-
clusions were drawn based on the experiments and results.
The main contributions of this paper are as follows,

1. A novel missing data imputation method, MGAIN, has
been developed to address the issue of missing data. This
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Fig. 1 Graphical abstract

approach address the challenges associated with incom-
plete data.

2. A combination of least squares loss function and dual dis-
criminator has been proposed to overcome the challenges
of mode collapse and gradient vanishing in GAN. This
innovative approach effectively solves these problems,
and theoretically demonstrates its feasibility.

3. We extensively tested the proposed model on diverse
datasets to assess its effectiveness and generalizabil-
ity. These experimental results demonstrate the model’s
potential to address the challenges of missing data esti-
mation in various practical applications.

The remainder of this paper is organized as follows. In
Section 2, we review GAN and its variants. Section 3 pro-
vides a detailed overview of the proposed method. Section 4

presents the theoretical analysis. Section 5 presents the exper-
imental methodology and the experimental results. Finally,
Section 6 summarizes the paper.

2 Methodology

In this section, we mainly review the model principles and
computational problems based on GAN, which mainly focus
on our research work. This section mainly introduces GAN,
Least Squares Generative Adversarial Networks (LSGAN)
and Dual Discriminator Generative Adversarial Networks
(D2GAN) as shown in Fig. 2. LSGAN and D2GAN are vari-
ants of GAN. We utilize variants of GAN for missing data
imputation. To the best of our knowledge, this is the first time
that both variants have been applied to missing data.

Fig. 2 Framework diagram of GAN and its variants
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2.1 GAN

Goodfellow (2014) introduced a GAN consisting of a gen-
erator and a discriminator (Fig. 2(a)), both of which are
composed ofmultilayer perceptrons [9]. The generator learns
the original data distribution to create artificial samples
(called fake samples) that are similar to real samples, while
the discriminator distinguishes the difference between real
and generated samples. The core logic of all GAN networks
is that generator and discriminator play against each other.
And generation is mainly embodied in the two-player games
until the generator can generate the discriminator can not
determine the real or fake samples.

x ∼ Pdata is the original data distribution, and z ∼ pz is
generally a noise that obeys a uniform or normal distribution.
The generator and discriminator are abbreviated as G and D,
respectively. z is used as input to G, which is then fed into
an output G(z), which is then fed into a D. Then the input
to D is two parts x and G(z), and tries to determine whether
the input is real or fake. Therefore, the discriminator is a
binary classification problem using a Sigmoid function that
produces outputs in the range between 0 and 1. The GAN
framework corresponds to an extremely large and extremely
small two-player game with the following objective function
L(D,G):

min
G

max
D

L(D,G) = Ex∼Pdata [log D(x)]+Ez∼Pz [log(1−D(G(z)))].
(1)

LG = Ez∼Pz [log(1 − D(G(z)))]. (2)

LD = −Ex∼Pdata [log D(x)] − Ez∼Pz [log(1 − D(G(z)))].
(3)

where LD and LG are the objective functions D of G and ,
respectively.

As a powerful deep learning model, GAN has achieved
great success in many tasks, but it also has some shortcom-
ings and challenges. During training, the generator may fall
into mode collapse, resulting in a lack of diversity in the gen-
erated samples and toomany repetitions of the same patterns.
This can limit the quality of the generated results. Similarly,
gradient vanishing is a commonproblem that hinders the con-
vergence and training effectiveness of the model and tends to
lead to training instability. Overall, GAN, while making sig-
nificant progress in generative tasks, still face challenges and
require further research and improvements to address these
issues.

2.2 LSGAN

The LSGAN is a variant of GAN proposed in 2017 [38]. It is
shown in Fig. 2(b). The cross-entropy loss function used in
the original GAN leads to the problem of gradient vanishing,
and to solve this problem, LSGAN takes the least squares loss
function network. And LSGAN has two benefits over con-
ventional GAN. First, LSGAN can generate higher-quality
images. Second, LSGAN is more stable in the learning pro-
cess. The following is the objective function of LSGAN:

min
D

LD = 1

2
Ex∼Px∼data

[
(D(x) − b)2

]+ 1

2
Ez∼Pz

[
(D(G(z)) − a)2

]
.

(4)

min
G

LG = 1

2
Ez∼Pz

[
D(G(z) − c)2

]
. (5)

where LD and LG are the objective functions of D and G,
respectively. a and b are the labels of the generated and real
data, respectively. c denotes the value of the generated data
that the generator wants the discriminator to believe. In this
paper, a = 0 and b = c = 1.

Compared with traditional GAN, LSGAN is more stable
in the training process, which avoids the common training
instability problem in traditional GAN. LSGAN has a posi-
tive impact onboth the generator and the discriminator,which
improves the overall training effect and the quality of the
generated results. However, LSGAN still suffers from mode
collapse, resulting in a lack of diversity in the generated
results. On the whole, LSGAN has some advantages over
traditional GAN in terms of stability and quality of gener-
ated results. However, LSGAN also has some disadvantages,
which need to be weighed and selected according to the spe-
cific tasks and datasets. For some specific generation tasks,
LSGAN may be an valid choice.

2.3 D2GAN

D2GAN [39], proposed byNguyen et al. (2017), differs from
the original GAN in that D2GAN contains not only one
generator but also two discriminators. As shown in (c) in
Fig. 2. It combines theKullback-Leibler (KL) divergence and
reverse KL divergence into a unified objective function, thus
utilizing the complementary statistical properties of these
divergences to effectively disperse the estimation density and
alleviate the mode collapse problem. The objective function
L (G, D1, D2) of D2GAN can be expressed as follows:

min
G

max
D1,D2

L (G, D1, D2) =α × Ex∼Pdata

[
log D1(x)

] + Ez∼Pz
[−D1(G(z))

]

+ Ex∼Pdata

[−D2(x)
] + β × Ez∼Pz

[
log D2(G(z))]

.

(6)
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where D1, D2 and G denote discriminator 1, discriminator
2, and generator, respectively. α and β are hyperparameters,
0 < α ≤ 1, 0 < β ≤ 1. The role of α and β is to control the
effect of KL divergence and inverse KL divergence on the
optimization problem.

D2GAN can efficiently learn multimodal data distribu-
tions through the triple confrontation of the generator and
the two discriminators. D1 and D2 are giving high scores to
the distribution Pdata from the original data and PG from the
generated data and vice versa. D1 and D2 do not share their
parameters.

By introducing two discriminators, D2GAN can evalu-
ate the realism of the generated samples more efficiently,
thus facilitating the generation of more realistic and high-
quality samples by the generator. Moreover, D2GAN can
also reduce the risk of mode collapse and avoid the gener-
ator from falling into local optimal solutions for generating
repeated samples. However, D2GAN still faces some diffi-
culties, such as gradient vanishing and training instability.
Overall, D2GAN improves the performance of the genera-
tor,which brings higher-quality generated samples, but it also
needs to face challenges such as increased training complex-
ity.

The current GAN and its various variants are riddled with
problems such as gradient vanishing, modal collapse, and
training instability, limiting their performance and applica-
tions.We propose a newGANvariant to address these issues,
improving model stability and generation.We apply this new
GANvariant to dealingwithmissing data. ApplyingMGAIN
to missing data can effectively improve data generation and
increase themodel’s ability to handlemissing data. This inno-
vative GAN variant introduces new ideas and methods to
address missing and incomplete data in practical problems
and has a wide range of application prospects and research
value.

3 Proposedmethod

In this section, a noteworthy GAIN is proposed, which is a
new method to deal with missing data based on GAN. Yoon
et al take each value in incomplete data whether it is miss-
ing or not, as a category label constitutes the missing mask,
and combinedwith Conditional GAN (CGAN), they propose
GAIN model to realize the imputation of missing data, and
experimentally illustrate that the method is better than the
traditional imputation method. However, GAIN suffers from
the common problems of GAN, i.e., gradient vanishing and
mode collapse problems. Therefore, to solve the above prob-
lems, a new imputation method based on GAN is proposed
in this paper. As shown in Fig. 3. This structure and theory
are described in detail below.

3.1 Inputs of themodel

First, define the original data as X = (X1, X2, X3, ..., Xn).
X is a random variable in the n-dimensional space X =
(X1 × X2 × X3 × ... × Xn), and n represents the total num-
ber of samples. Define M to be the mask vector, M =
(M1, M2, M3, ..., Mn), which takes values from {0, 1}n .
Define a new random variable X̃ =

(
X̃1, X̃2, X̃3, ..., X̃n

)
,

X̃ is a random variable in the n-dimensional space X̃ =(
X̃1 × X̃2 × X̃3 × ... × X̃n

)
, which is obtained from the fol-

lowing equation:

X̃i =
{
Xi , i f Mi = 1

∗, otherwise
. (7)

where Mi = 1 means that these data are not missing,
otherwise it is missing.

The purpose of the calculation method is to calculate
the missing values in X̃ . The purpose of the missing data
calculation is to generate samples based on the conditional

probability of X given X̃ , i.e., P
(
X |X̃ = X̃i

)
.

3.2 Generator

From Fig. 2 we can see that the input to the generator
consists of the trio of data matrix X, mask matrix M, and
random matrix Z(aka noise). Similar to the data and mask
matrices, the random matrix is a n-dimensional vector Z =
(Z1, Z2, Z3, ..., Zn).

The generator G is equivalent to a mapping function of
X̃×{0, 1}×[0, 1]n → X. Now define two random variables:

X̄ = G
(
X̃ , M, (1 − M) � Z

)

X̂ = M � X̃ + (1 − M) � X̄ .

(8)

where � denotes the element level multiplication, X̄
denotes the missing value portion computed by the gener-
ator, and X̂ is composed of two variables, X and X̄ . That is,
the missing value portion is filled by the X̄ inferred by the
generator, and the rest of the unmissing data consist of the
original observations.

3.3 Discriminator

Unlike other GAN-based applications for missing data, the
method proposed in this paper consists of two discriminators.
For example, GAIN has only one discriminator; however,
there are two generators (generator, hint generator). Then
the mode collapse problem arises, so in order to mitigate the
mode collapse problem, the dual discriminator approach is
used in this study.
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Fig. 3 Framework of MGAIN

The discriminator of the GAN in dealing with missing
data does not determine whether the whole variable is true
(the output is 0 or 1), but rather determines which of the
components are observations and which are generated. In
this process, then, it is equivalent to de-predicting the mask
vector. Similarly to the generator, the discriminator D is
equivalent to being a mapping function of X → [0, 1]n . The
ith component of D

(
x̂
)
is the probability that the ith element

of x̂ is observed.

3.4 Hint Generator

Similarly to the hint mechanism of Yoon et al., our approach
includes a hint mechanism. The cue is represented as a ran-
dom variable H which takes values in the cue space H. The
cue vector supports D by telling D some input and obser-
vation values, allowing D to decide whether to input other
values or observe other values. Similar to G and D earlier,
H is a mapping function of X × H → [0, 1]n . The hinting
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mechanism is necessary becauseG can producemultiple dis-
tributions, and for all of them, D cannot distinguish between
real and false values. Thus, giving H to D restricts the solu-
tion to a single distribution. H is obtained using (9).

H = B � M + 0.5 � (1 − B) . (9)

where B ∈ {0, 1}n is the random variable obtained by uni-
formly sampling k from {0, 1, 2, ..., n}n and applying (10).

Bi =
{
1, i f i �= k

0, i f i = k
. (10)

3.5 Objective function

Inspired by GAN and its variants as well as GAIN, the objec-
tive function of our MGAIN method has two parts. Second,
we train G to minimize the probability that D predicts m cor-
rectly. The overall objective function, and loss function of
the MGAIN method are given in (11) and (12).

min
G

max
D1,D2

V (G, D1, D2) . (11)

V (G, D1, D2) =α

2
× Ex∼Pdata

[
M

(
D1(X̂ , H) − 1

)2]

+1

2
Ez∼Pz

[
(1 − M)

(
D1(X̂ , H)

)2]

+1

2
× Ex∼Pdata

[
M

(
D2(X̂ , H) − 1

)2]

+β

2
× Ez∼Pz

[
(1 − M)

(
D2(X̂ , H)

)2]

.

(12)

where, α, β are hyperparameters, 0 < α, β ≤ 1. The role of
α and β is to control the effect of minimizing the loss on the
optimization problem. D1 and D2 represent discriminator 1
and discriminator 2, respectively. D1 and D2 are the ones that
give high scores to the data from the original data distribution
Pdata and to the data from the generated data distribution
PG , and vice versa. Where D1 and D2 do not share their
parameters.

D2GAN can mitigate mode collapse, but cannot avoid the
problem of vanishing gradient and instability. LSGAN can
solve the problem of gradient vanishing, but it is difficult
to avoid the problem of mode collapse, which is the lack
of diversity in the generated samples. Therefore, this paper
draws on the advantages and disadvantages of these two and
combines D2GAN and LSGAN to propose a new generative

adversarial inference network, a model that not only miti-
gates mode collapse, but also solves the gradient vanishing
problem.

The same as [29] the loss function of G consists of two
parts, the loss of estimates and the loss of observations.
Unlike it, the loss function of G consists of two discrimi-
nators and the least squares loss. The combined loss function
VG is given in (13).

VG =1

2
Ez∼Pz

[
(1 − M)

(
D1(X̂ , H)

)2]

+ β

2
Ez∼Pz

[
M

(
D2(X̂ , H)

)2]

+ λ

n∑

i=1

mi Lobs(xi , x
′
i ).

. (13)

where λ and β are the hyperparameters, mi is the element
in the mask matrix M. In this paper, λ = 0.4. Lobs(xi , x

′
i ) is

defined by (14):

Lobs(xi , x
′
i ) =

{
(xi , x

′
i )
2, i f xi is continuous

−xi log(x
′
i ), i f xi is binary

. (14)

To be concrete, the pseudo-code of the algorithm of
MGAIN is shown in Algorithm 1.

Algorithm 1MGAIN
1: Input: missing dataset T , D1 batch size nD1 , D2 batch size nD2 , G

batch size nG
2: Output: Final complete data and Trained algorithm
3: while training loss does not converge do
4: 1. Discriminator1 and Discriminator2 optimization
5: Draw TD samples from the dataset {(x̃(i),m(i))}TDi=1

6: Draw TD i.i.d samples, {z(i)}TDi=1 of Z

7: Draw TD i.i.d samples, {b(i)}TDi=1 of B
8: for i = 1, 2, ..., TD do
9: x̄(i) ← G(x̃(i),m(i), z(i))
10: x̂(i) ← m(i) � x̃(i) + (1 − m(i)) � x̄(i)
11: h(i) ← b(i) � m(i) + 0.5(1 − b(i))
12: end for
13: Update D1, D2 using stochastic gradient descent (SGD)
14: 2. Generator optimization
15: Draw TG samples from the dataset {(x̃(i),m(i))}TGi=1

16: Draw TG i.i.d samples, {z(i)}TGi=1 of Z

17: Draw TG i.i.d samples, {b(i)}TGi=1 of B
18: for i = 1, 2, ..., TG do
19: h(i) ← b(i) � m(i) + 0.5(1 − b(i))
20: end for
21: Update G using SGD with fixed D1 and D2
22: end while
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4 Theoretical analysis

Now provide a formal theoretical analysis of our proposed
model, essentially showing that givenG, D1 and D2 have suf-
ficient capacity, i.e., in the nonparametric limit, at the optimal
point, G can recover the data distribution by minimizing the
divergence between themodel and the data distribution. Con-
sider first the optimization problem of a (w.r.t.) discriminator
given a fixed generator.

Proposition 1 Minimizing V (G, D1, D2) for a given gener-
ator yields the following closed-form optimal discriminator:

D∗
1 = αMPdata

αMPdata + (1 − M)Pz

D∗
2 = MPdata

MPdata + β(1 − M)Pz

where, V (G, D1, D2) is the overall objective function of
MGAIN. D∗

1 and D∗
2 are the optimal value of D1 and D2.

α and β are hyperparameters, same as for α and β as men-
tioned in Section 3.5 M is the mask matrix mentioned in
Section 3.2 Pdata and Pz represent both the raw data distri-
bution and the noise distribution, respectively.

Proof

V (G, D1, D2) =α

2
Ex∼Pdata

[
M

(
D1(X̂ , H) − 1

)2]

+1

2
Ez∼Pz

[
(1 − M)

(
D1(X̂ , H)

)2]

+1

2
Ex∼Pdata

[
M

(
D2(X̂ , H) − 1

)2]

+β

2
Ez∼Pz

[
(1 − M)

(
D2(X̂ , H)

)2]

=
∫

α

2
Pdata(x)

[
M

(
D1(X̂ , H)−1

)2]
dx

+
∫

1

2
Pz(z)

[
(1 − M)

(
D1(X̂ , H)

)2]
dz

+
∫

1

2
Pdata(x)

[
M

(
D2(X̂ , H) − 1

)2]
dx

+
∫

β

2
Pz(z)

[
(1 − M)

(
D2(X̂ , H)

)2]
dz

Let ∂V (G,D1,D2)
∂D1

= 0, ∂V (G,D1,D2)
∂D2

= 0, the optimal D1

and D2, that is, D∗
1 and D∗

2 , are obtained.
In the following, fixing D1 = D∗

1 and D2 = D∗
2 , and then

going to compute V
(
G, D∗

1 , D
∗
2

)
yields the optimal G∗ for

generator G. ��

5 Experiments

5.1 Datasets and evaluationmetrics

5.1.1 Datasets

We tested the proposed MGAIN method using several pub-
licly available real-world datasets provided by the University
ofCalifornia, Irvine (UCI)MachineLearningRepository and
a database of handwritten digits provided by Yann. These
datasets are listed in Table 1. We compare our method with
the state-of-the-art GAIN method and other popular imputa-
tionmethods.We also evaluated it on different proportions of
missing data, ranging from 20% to 80%. In all experiments,
the missing data were randomly deleted as MCAR.

The missing rate (MR) is the missing rate of the data,
which can be expressed by the following equation:

MR = Number of missing values

T otal number of samples
. (15)

Table 1 Datasets Datasets Instances Source Categorial variables Numerical variables

Spam 4601 UCI 1 57

Letter 20000 UCI 0 16

MNIST 60000 Github 10 0

Default 30000 UCI 10 14

News 39644 UCI 23 35

Breast Cancer 569 UCI 9 10

Credit 30000 UCI 9 14

Air quality 6941 UCI 0 12

Wine quality 4898 UCI 1 11

Beijing Air quality 503 UCI 0 6

123



11076 X. Qin et al.

Table 2 Main parameters of MGAIN

Main parameters parameter values

Batch size 128

epochs 10000

Hint rate 0.9

MR 0.2, 0.4, 0.6, 0.8

Activation function (Output Layer) Sigmoid

Number of Convolutional Layers 3

λ 0.4

α 0.5

β 1

5.1.2 Evaluation metrics

The experimental results are based on the use of real-world
datasets. We use the root mean square error (RMSE) to eval-
uate the experimental computational performance results:

RMSE = 1

N

√√√√
N∑

i=1

(yi − ŷi )2. (16)

where, yi and ŷi are real values and generated values respec-
tively. N is the number of data. To evaluate the models, this
work compares the RMSE of all models on test data. This
is the same evaluation metrics used by Yoon et al. [29] and
Stefenon et al. [40].

Experimental prediction performance results are evalu-
ated using Area Under the Receiver Operating Characteristic
Curve (AUC). AUC is defined as the area under the ROC
curve. where, the ROC curve is called the receiver operating
characteristic curve, with the TPR as the vertical coordinate
and the FPR as the horizontal coordinate. TPR is the true
positive rate, i.e., the proportion of true positive cases that
are correctly predicted to be positive cases; FPR is the false
positive rate, i.e., the proportion of true negative examples
that are incorrectly predicted to be positive.

T PR = T P

T P + FN
. (17)

FPR = FP

FP + T N
. (18)

Table 3 RMSE for differentand α and β

Spam Letter Default News Breast Cancer Credit MNIST Air Quality Wine Quality Beijing Air Quality

α = 0.1 β = 0.2 0.0551 0.1247 0.2002 0.2440 0.0897 0.1975 0.1046 0.0802 0.1164 0.1263

β = 0.4 0.0571 0.1261 0.1889 0.2541 0.0911 0.1947 0.1113 0.0833 0.1279 0.1148

β = 0.6 0.0533 0.1393 0.2023 0.2477 0.0852 0.2065 0.1108 0.0889 0.1237 0.1037

β = 0.8 0.0546 0.1281 0.2009 0.2423 0.0960 0.2023 0.1102 0.0864 0.1432 0.1010

β = 1 0.0533 0.1273 0.2061 0.2473 0.0749 0.2041 0.1112 0.0912 0.1211 0.0764

α = 0.3 β = 0.2 0.0549 0.1290 0.2005 0.2460 0.0933 0.1954 0.1003 0.1032 0.1123 0.1046

β = 0.4 0.0549 0.1251 0.2029 0.2526 0.0903 0.2033 0.1081 0.0916 0.1131 0.0749

β = 0.6 0.0551 0.1309 0.1872 0.2417 0.0831 0.2002 0.1135 0.0857 0.1044 0.1377

β = 0.8 0.0568 0.1308 0.2000 0.2697 0.0915 0.1956 0.1131 0.1125 0.1065 0.1991

β = 1 0.0517 0.1243 0.2052 0.2525 0.0871 0.2033 0.1110 0.0913 0.1110 0.0828

α = 0.5 β = 0.2 0.0566 0.1257 0.1947 0.2582 0.0842 0.2011 0.0998 0.0848 0.1170 0.0752

β = 0.4 0.0581 0.1274 0.1925 0.2448 0.0806 0.2008 0.0997 0.0814 0.1216 0.0765

β = 0.6 0.0531 0.1285 0.1891 0.2465 0.0748 0.1979 0.0999 0.0923 0.1078 0.0808

β = 0.8 0.0566 0.1271 0.2054 0.2519 0.0871 0.1965 0.0990 0.0867 0.1146 0.0749

β = 1 0.0517 0.1214 0.1633 0.2366 0.0709 0.1956 0.0969 0.0759 0.1036 0.0725

α = 0.7 β = 0.2 0.0563 0.1291 0.1955 0.2403 0.0868 0.2006 0.0996 0.0841 0.1200 0.0888

β = 0.4 0.0568 0.1256 0.1958 0.2448 0.0994 0.1982 0.0980 0.0802 0.1115 0.0779

β = 0.6 0.0521 0.1241 0.2034 0.2454 0.0712 0.2029 0.0980 0.0889 0.1306 0.1279

β = 0.8 0.0548 0.1252 0.1884 0.2426 0.0924 0.1995 0.0996 0.0873 0.1117 0.1084

β = 1 0.0543 0.1250 0.1961 0.2413 0.0826 0.1976 0.0989 0.0834 0.1103 0.0906

α = 0.9 β = 0.2 0.0535 0.1273 0.2049 0.2518 0.0754 0.2026 0.1110 0.0831 0.1264 0.1005

β = 0.4 0.0533 0.1253 0.2043 0.2564 0.0927 0.2052 0.1101 0.1011 0.1139 0.1027

β = 0.6 0.0540 0.1242 0.1932 0.2492 0.0765 0.2075 0.1081 0.1098 0.1121 0.0953

β = 0.8 0.0535 0.1619 0.2063 0.2526 0.0858 0.2052 0.1066 0.0940 0.1182 0.0789

β = 1 0.0544 0.1305 0.2062 0.2442 0.0861 0.2038 0.1146 0.0831 0.1249 0.1860
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Table 4 RMSE for MR=0.2

Datasets Mean KNN MICE MissForest EM Auto-encoder GAIN PC-GAIN CWGAIN-GP Proposed

Spam 0.0589 0.0537 0.0546 0.0518 0.0575 0.0556 0.0540 0.0577 0.0854 0.0517

Letter 0.1845 0.1931 0.1900 0.1948 0.1927 0.1356 0.1317 0.1414 0.1351 0.1214

Default 0.2364 0.2242 0.2079 0.2172 0.2413 0.1956 0.1864 0.1851 0.1846 0.1633

News 0.2549 0.2351 0.2352 0.2428 0.2386 0.2499 0.2375 0.2348 0.2327 0.2306

Breast Cancer 0.1174 0.1316 0.1320 0.1359 0.1360 0.2098 0.1008 0.1243 0.1560 0.0709

Credit 0.1977 0.1998 0.2051 0.2047 0.2103 0.1959 0.2006 0.1998 0.2008 0.1956

MNIST 0.1795 0.1669 0.2082 0.2234 0.1629 0.1449 0.1523 0.1562 0.1664 0.0969

Air Quality 0.1519 0.1631 0.1606 0.1637 0.1634 0.0989 0.1146 0.1061 0.1143 0.0759

Wine Quality 0.1618 0.1479 0.1499 0.1549 0.1500 0.1679 0.1094 0.1107 0.1534 0.1036

Beijing Air Quality 0.1026 0.1906 0.1950 0.1863 0.1873 0.2734 0.0841 0.0836 0.0946 0.0725

where, TP, FP, TN, andFNdenote true positive, false positive,
true negative, and false negative in the samples, respectively.
HigherAUCvalues correspond to highermodel classification
accuracy.

5.2 Design of experiments

In order to compare and investigate with existing missing
value imputation methods, 10 datasets and 8 existing sam-
pling methods were selected for comparison to validate the
effectiveness of MGAIN. The number of missing regions is
determined based on a specified missing rate. Subsequently,
these regions are randomly assigned asmissing regions based
on the defined missing rate to generate complete data. We
performed a 5-fold cross-validation in our experiments. Each
experiment is repeated ten times, and its average performance
is reported.

In Table 2, Batch size is the batch size, epochs is the num-
ber of iterations of the network, the hint rate is the percentage
of the hintingmechanism, andMR is themissing rate of (15).
α and β are the hyperparameters in (12). λ is the hyperpa-

rameters in (13).Moreover, during the training process of the
MGAIN model, the Adam optimizer was used in this paper.

5.3 Quantitative analysis of MGAIN

First, we performed experiments to find the appropriate α

and β then compared RMSE and AUC with other missing
data imputation methods. This experiment was conducted
when the missing rate was 0.2, and the specific experimental
results are shown in Table 3. The best results among all the
experimental results in this section are highlighted in bold.

According to Table 3 we can observe that the proposed
model in this paper has the best performance at α = 0.5,β =
1. Therefore, α = 0.5,β = 1 is chosen for the following
comparison experiments with other methods.

We compared our proposed MGAIN method with Mean,
KNN, MICE, MissForest, EM, Auto-encoder, GAIN, PC-
GAIN, and CWGAIN-GP methods. Mean, KNN, MICE and
EM are popular statistical imputation methods, whereas, in a
recent study, GAIN, MissForest, Auto-encoder, PC-GAIN,
and CWGAIN-GP completions were the best-performing

Table 5 RMSE for MR=0.4

Datasets Mean KNN MICE MissForest EM Auto-encoder GAIN PC-GAIN CWGAIN-GP Proposed

Spam 0.1418 0.1313 0.1219 0.0818 0.0883 0.0594 0.0539 0.0579 0.1287 0.0538

Letter 0.2600 0.2666 0.2685 0.2746 0.2712 0.1428 0.1359 0.1354 0.1840 0.1328

Default 0.1953 0.2870 0.2507 0.1887 0.1848 0.1813 0.1846 0.1845 0.2199 0.1808

News 0.2691 0.2621 0.2520 0.2585 0.3666 0.2626 0.2537 0.2522 0.1891 0.0964

Breast Cancer 0.1663 0.1814 0.1888 0.1936 0.1923 0.2216 0.1054 0.1111 0.1560 0.0709

Credit 0.2007 0.1968 0.2007 0.1994 0.1968 0.2005 0.2045 0.1980 0.2083 0.1952

MNIST 0.1996 0.2013 0.2319 0.2557 0.1991 0.1903 0.2063 0.1765 0.1937 0.1236

Air Quality 0.1717 0.2217 0.2290 0.2311 0.2288 0.1908 0.1250 0.1242 0.1372 0.1057

Wine Quality 0.1866 0.2070 0.2109 0.2152 0.2147 0.1781 0.1514 0.1243 0.1989 0.1084

Beijing Air Quality 0.1379 0.2519 0.2625 0.2709 0.2666 0.3165 0.0983 0.0940 0.1294 0.0912
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Table 6 RMSE for MR=0.6

Datasets Mean KNN MICE MissForest EM Auto-encoder GAIN PC-GAIN CWGAIN-GP Proposed

Spam 0.0728 0.0634 0.0604 0.0626 0.0579 0.0619 0.0639 0.0642 0.1625 0.0555

Letter 0.3189 0.3310 0.3286 0.3352 0.3266 0.1665 0.1459 0.1588 0.1995 0.1414

Default 0.2778 0.2946 0.2854 0.2609 0.2474 0.2552 0.2046 0.2094 0.2155 0.2060

News 0.2689 0.2929 0.2857 0.3129 0.2836 0.2666 0.2637 0.2565 0.3068 0.2516

Breast Cancer 0.2019 0.2122 0.2296 0.2373 0.2222 0.2333 0.1060 0.1466 0.2192 0.1059

Credit 0.2087 0.2133 0.2132 0.2237 0.2099 0.2214 0.2247 0.1899 0.2251 0.1896

MNIST 0.2116 0.2351 0.2558 0.2551 0.2097 0.2118 0.2176 0.1887 0.1975 0.1484

Air Quality 0.1837 0.2703 0.2801 0.2779 0.2734 0.2508 0.1510 0.1384 0.1774 0.1272

Wine Quality 0.2070 0.2555 0.2568 0.2607 0.2542 0.1895 0.1636 0.1507 0.2101 0.1272

Beijing Air Quality 0.1732 0.3134 0.3231 0.3240 0.3212 0.3160 0.1498 0.1277 0.1455 0.1089

methods. We performed experiments at missing rates of 0.2,
0.4, 0.6, and 0.8, and the results are shown in Tables 4, 5, 6
and 7.

The proposed MGAIN model had exhibited the best per-
formance with MR=0.2. For example, MGAIN reduced the
RMSE by up to 0.2029 on the Beijing Air Quality dataset,
because EM did not effectively handle the missing values
when faced with time series datasets. CWGAIN-GP was
introduced as themethod to dealwithmissing time series data
in 2024, indicating that MGAIN was better than CWGAIN-
GP, could handle tabular data, and had some generalization
ability on time series data.

Table 5 presents the results of RMSE at MR=0.4. The
proposed model outperformed classical and GAIN-based
methods. For example, our models demonstrated superiority
on the Spam and BreastCancer datasets, reducing 0.088 and
0.1158, respectively, compared with the worst model. Addi-
tionally, we found that the errors of all models were generally
larger on the two datasets with the largest amount of data
(MNIST and News) than on the other datasets. However, our
models performed best on these two datasets, demonstrating
the capability of MGAIN to handle large amount of data.

At MR=0.6, the experimental results demonstrated the
effectiveness of the proposed method in dealing with high
missing rate data. First, the RMSE of MGAIN was smaller
than that of all other methods. For example, on the News
dataset, the RMSE of MGAIN is 0.0049 lower than that of
the second-best model, PC-GAIN. Second, the missing rate
ranged from 0.2 to 0.6, with a smaller increase in MGAIN.
For instance, with MR=0.2, MGAIN’s RMSE on the Let-
ter dataset increaseed by 0.02 from 0.1214 to 0.1414, while
MissForest’s RMSEon the Letter dataset increases by 0.2404
from 0.1948 to 0.3352, suggesting that MGAIN can handle
missing data with stability.

We also conducted experiments with MR=0.8, and the
specific results are shown in Table 7. MGAIN performed
excellently when MR=0.8. MGAIN decreased by 0.1776
compared with the latest model CWGAIN-GP on the Beijing
Air Quality dataset. This result indicates that CWGAIN-GP
is unsuitable for handling data with a high missing rate. Dur-
ing the experiments, the PC-GAIN running time was longer
than that of othermodels. Therefore, the three Spam,Default,
and News datasets are visualized as examples to better view
the proposed model’s superiority, as shown in Fig. 4.

Table 7 RMSE for MR=0.8

Datasets Mean KNN MICE MissForest EM Auto-encoder GAIN PC-GAIN CWGAIN-GP Proposed

Spam 0.1980 0.1356 0.1309 0.1481 0.1264 0.1341 0.0775 0.1238 0.1532 0.0571

Letter 0.3682 0.3805 0.3770 0.3869 0.3707 0.1890 0.2065 0.2510 0.2530 0.1703

Default 0.2952 0.3025 0.2940 0.3038 0.2499 0.2415 0.2389 0.2188 0.2609 0.1853

News 0.3096 0.3458 0.3227 0.3712 0.3452 0.3026 0.2992 0.3357 0.3567 0.2569

Breast Cancer 0.2298 0.2399 0.2582 0.2685 0.2425 0.2540 0.2253 0.2832 0.3317 0.1635

Credit 0.2229 0.2248 0.2129 0.2182 0.2127 0.2218 0.2312 0.2156 0.2479 0.2081

MNIST 0.2443 0.2607 0.2179 0.2691 0.2309 0.2501 0.3024 0.2139 0.3016 0.2035

Air Quality 0.2429 0.3114 0.3182 0.3050 0.2884 0.1880 0.1510 0.1758 0.2881 0.1521

Wine Quality 0.2227 0.2955 0.2958 0.2937 0.2877 0.2575 0.2038 0.1986 0.2529 0.1408

Beijing Air Quality 0.2030 0.3481 0.3407 0.3513 0.3279 0.3506 0.2625 0.2042 0.3648 0.1864
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Based on Fig. 4, our model exhibited strong validity and
stability in the four cases, with theMRbeing 0.2, 0.4, 0.6, and
0.8. Contrarily, other models had apparent fluctuations when
the MR changed, particularly at a higher MR. However, the
proposed model was not overly affected by changes in MR.
On the contrary, MGAIN showed a lower RMSE than other
models under different MR. It also exhibited a closer RMSE
and a certain stability.

5.4 Prediction performance of MGAIN

Wealso compared theMGAINdata prediction accuracy after
missing data imputation, and it demonstrated the best pre-
diction accuracy. For this purpose, we chose AUC as the
performance metric. To be fair, we chose the logistic regres-
sion (LR) prediction model for the Default, News, Breast
Cancer, and credit dataset with MR of 0.4 and 0.8. The spe-
cific results are shown in Tables 8 and 9.

From Table 8, MGAIN is the optimal method for making
predictions after missing data imputation, showing the best
prediction accuracy.However, the improvement in prediction
accuracy was not always significant, even when computa-
tional accuracy was greatly improved. For example, on the
BreastCancer dataset, the AUC of the data after MGAIN
filling was 0.9943. whereas the AUC of the data after the
second-best model, PC-GAIN filling, is 0.9913. However,
MGAIN improves only 0.003. possibly because there is
enough information to predict labels with 0.6 of the observed
data. Therefore,we conducted another comparison of the pre-
diction performancewith 0.8missing data, and the results are
shown in Table 9.

The results in Table 9 demonstrated that MGAIN was
effective at high MR compared with other models. For
instance, on the BreastCancer dataset, the AUC of the data
after MGAIN filling was 0.0068 higher than that of the data
after PC-GAIN filling. The performance gap was even more
significant than at MR=0.4. On the News dataset, MGAIN
improves its performance over the worst model, Mean, by
0.4244. On the Credit dataset, MGAIN improved its AUC
over the second-best model, PC-GAIN, by 0.0311.

In contrast, the latest model, CWGAIN-GP, consistently
performed poorly, suggesting its ineffectiveness at handling
data with a highMR, which is consistent with the conclusion
drawn in Section 5.3 MGAIN outperformed other models in
terms of computational performance method. It also exhib-
ited an advantage in prediction performance. Tables 8 and 9
visualize this advantage in Fig. 5, indicating that the pro-
posed model performed better than other models, especially
on the Default, News, and Credit datasets. This superiority is
attributed to the BreastCancer dataset being smaller by 569,
less than other datasets, resulting in less information for the

estimation model. Nonetheless, the predictive performance
of MGAIN is still better than that of other models.

5.5 Ablation study

To validate the effectiveness of incorporating the least
squares loss and dual discriminator in the model, we per-
formed ablation experiments, the specific results of which
are shown in Table 10. This experiment was conducted with
MR = 0.2.

In Table 10, adding least squares loss and dual discrimina-
tor is reasonably practical. The RMSE of GAIN (with least
square loss) and GAIN (with dual discriminator) was not as
low as theRMSEofGAINon theNews dataset. However, the
RMSE of MGAIN was lower than that of GAIN, suggesting
that adding these two strategies alone does not fully address
gradient vanishing and mode collapse, resulting in a higher
RMSE. Since LSGAN solves the gradient vanishing problem
but not the mode collapse problem, adding least squares loss
or dual discriminator alone does not significantly improve
the results. However, D2GAN, alleviates the mode collapse
but still faces the gradient vanishing problem. Therefore,
this study combines the advantages to allow the proposed
MGAIN to alleviate mode collapse and avoid gradient van-
ishing simultaneously, leading to better overall performance.
As a result, MGAIN has high filling accuracy, and good
prediction accuracy after filling due to the improved learn-
ing ability of the original missing data. Therefore, MGAIN
exhibits better performance.

6 Conclusions

The current methods for dealing with missing data are lim-
ited. We also observed a lack of effective imputation models,
especially when faced with high missing rates. Traditional
imputation methods have limitations that can affect model
accuracy and stability. Advanced GAN-based imputation
methods also face problems such as gradient vanishing and
model collapse. Therefore, in this paper, we take the missing
data as the research object and construct the MGAIN model.
We introduce the least squares loss and dual discriminator
to solve these problems. In the empirical analysis, MGAIN
was found to reduce the RMSE error by up to 0.2029 when
the missing rate was 0.2. In contrast, MGAIN can reduce the
RMSE error by up to 0.2166 when the missing rate was 0.8.
In addition, we evaluated the prediction of the filled missing
data. The experimental results demonstrated that MGAIN
outperformed traditional and GAN-based imputation meth-
ods. For example, on the Credit dataset, MGAIN improved
the prediction performance by 13.65% compared with the
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Fig. 4 Analysis of various MR

Table 8 AUC predicted at MR=0.4

Datasets Mean KNN MICE MissForest EM Auto-encoder GAIN PC-GAIN CWGAIN-GP Proposed

Default 0.5079 0.5096 0.5103 0.5134 0.5289 0.5210 0.7416 0.6518 0.6742 0.8064

News 0.5137 0.6015 0.6994 0.6914 0.7055 0.7871 0.9495 0.9348 0.8216 0.9871

Breast Cancer 0.6853 0.7311 0.9655 0.9746 0.9820 0.9901 0.9911 0.9913 0.9018 0.9943

Credit 0.5984 0.6337 0.7216 0.7235 0.7199 0.7209 0.7468 0.7581 0.7135 0.7665

Table 9 AUC predicted at MR=0.8

Datasets Mean KNN MICE MissForest EM Auto-encoder GAIN PC-GAIN CWGAIN-GP Proposed

Default 0.5000 0.5001 0.5098 0.5007 0.5187 0.5111 0.6786 0.6035 0.5930 0.7632

News 0.5094 0.5438 0.6497 0.6635 0.6593 0.7349 0.8461 0.8553 0.7923 0.9338

Breast Cancer 0.6301 0.6889 0.8996 0.8759 0.8998 0.9150 0.9437 0.9601 0.8872 0.9668

Credit 0.5531 0.5998 0.6438 0.6534 0.6431 0.6339 0.6990 0.7001 0.5947 0.7312

Fig. 5 The AUC performance with MR=0.4(a) and MR=0.8(b)

Table 10 Ablation experiment

Datasets GAIN GAIN(with least square loss) GAIN(with dual discriminator) Proposed

Spam 0.0540 0.0534 0.0549 0.0517

Letter 0.1317 0.1307 0.1314 0.1214

Default 0.1864 0.2050 0.2060 0.1633

News 0.2375 0.2532 0.2530 0.2366

Breast Cancer 0.1008 0.0889 0.0871 0.0709

Credit 0.2006 0.2011 0.1984 0.1956

MNIST 0.1523 0.1129 0.1141 0.0969

Air Quality 0.1146 0.1213 0.0893 0.0759

Wine Quality 0.1094 0.1184 0.1084 0.1036

Beijing Air Quality 0.0841 0.0734 0.0760 0.0725
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state-of-the-art CWGAIN-GP model when the missing rate
was 0.8. In summary, the proposed model in this paper
demonstrates excellent superiority and stability in experi-
mental results. This indicates that MGAIN has important
application prospects in real-world scenarios dealing with
high missing rates data, which can provide an effective solu-
tion for data analysis and prediction tasks.
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