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Abstract
Deep neural networks have been used extensively for diverse visual tasks, including object detection, face recognition, and
image classification. However, they face several security threats, such as adversarial attacks. To improve the resistance of
neural networks to adversarial attacks, researchers have investigated the security issues of models from the perspectives
of both attacks and defenses. Recently, the transferability of adversarial attacks has received extensive attention, which
promotes the application of adversarial attacks in practical scenarios. However, existing transferable attacks tend to trap
into a poor local optimum and significantly degrade the transferability because the production of adversarial samples lacks
randomness. Therefore, we propose a self-ensemble-based feature-level adversarial attack (SEFA) to boost transferability
by randomly disrupting salient features. We provide theoretical analysis to demonstrate the superiority of the proposed
method. In particular, perturbing the refined feature importanceweighted intermediate features suppresses positive features and
encourages negative features to realize adversarial attacks. Subsequently, self-ensemble is introduced to solve the optimization
problem, thus enhancing the diversity from an optimization perspective. The diverse orthogonal initial perturbations disrupt
these features stochastically, searching the space of transferable perturbations exhaustively to avoid poor local optima and
improve transferability effectively. Extensive experiments show the effectiveness and superiority of the proposed SEFA, i.e.,
the success rates against undefended models and defense models are improved by 7.7% and 13.4%, respectively, compared
with existing transferable attacks. Our code is available at https://github.com/chengshuyan/SEFA.
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1 Introduction

Breakthroughs in theories and technologies of deep learn-
ing have promoted the application of deep neural networks
(DNNs) across diverse visual tasks, including autonomous
driving [6, 7], medical diagnosis [4, 5], face recognition [2,
3], and image classification [1]. However, recent researches
have revealed the vulnerability of DNNs against adversar-
ial attacks, which add a carefully designed perturbation to
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the image to mislead DNNs. Researchers have proposed a
range of defense methods for building safe and reliable deep-
learning systems. Research on adversarial attacks is also vital
for uncovering defects in DNNs and enhancing their robust-
ness. In particular, researchers explore how different attack
methods (e.g., adversarial sample attacks) can discover the
vulnerabilities of models and how to enhance the robustness
and resilience of models through defense techniques (e.g.,
adversarial training).

Based on the accessible information of target models,
black-box and white-box attacks have developed into two
main branches [19, 20]. White-box attacks allow attackers
full access to target models and manipulate input images to
optimize adversarial objectives. However, attackers are typ-
ically unable to access the complete information of a target
model, which inspires studies on black-box attacks. Black-
box attacks are grouped into query and transferable attacks
based on whether a surrogate model is required. Query
attacks [12, 13] refer to an attacker repeatedly querying a
target model and using its feedback to generate adversar-
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ial samples. Transferable attacks [10, 11, 16, 19] fool an
unknown target model using an adversarial sample gener-
ated by a sourcemodel. Querymethods compute the gradient
while consuming excessive quantities of queries to update the
adversarial perturbations/examples, which limits their prac-
ticality. Instead, relying on the adversarial transferability of
examples across models, transferable attacks that utilize sur-
rogate models instead of target models have received more
attention.

Existing attacks [10, 14] suffer from limited transferabil-
ity because adversarial examples tend to overfit to the source
model. During attacks, adversarial samples may fall into a
local optimum against a source model. Such local optimal
solutions cannot be efficiently transferred across different
models, thus limiting the availability of attacks. Strategies for
improving transferability include data augmentation, gradi-
ent estimation, appropriate optimization objectives, ensem-
ble models, and analysis of specific models. Some studies
have addressed overfitting to surrogate networks through
data enhancement, e.g., translation [11] and random trans-
formation [16]. In terms of the gradient estimation, in several
studies [10, 19, 29], attacks have been executed to solve the
optimization problem using momentum [10], Nesterov [26],
variance tuning [19], etc. In addition, in many studies [17,
18, 20, 23, 27], intermediate-layer based loss functions have
been designed for higher transferability, which drives the
development of feature-level attacks. Based on the findings
of [28], some researchers have attempted to achieve more
transferable adversarial attacks utilizing ensemble models
[9, 28–30]. In a recent study [31], skip connections are used
to generate transferable adversarial examples. Nevertheless,
existing feature-level attacks disturb the features/attentions
in a deterministic gradient-based manner. The generated per-
turbations minimize or maximize the given loss function in a
relatively deterministicmanner,which lacks diversity. There-
fore, these attacks tend to fail to explore an abundant local
optimum and thus suffer from limited transferability. In [45],
DNNs are used to parameterize the adversary’s generators
for producing perturbations. These DNNs learn to produce
adversarial perturbations using latent codes and randomly
disrupt various prominent features for transferability. Atten-
tive diversity attacks [45] rely on a generative adversarial
network (GAN) that requires abundant training, and theGAN
is another intricate and incomprehensible neural network.

Ensemble is one of the most powerful techniques for
enhancing the DNN performance. Allen-Zhu et al. [47]
investigate the working mechanism of ensemble in deep
learning by considering the learning of multi-view data. This
demonstrates that an ensemble of individual networks with
random initialization can extract more comprehensive fea-
tures. Based on the success of the ensemble method, Xu et al.
[48] introduce self-ensemble. The fine-tuning of the model is
improved via self-ensemble and self-distillation, and knowl-

edge extraction is used to improve the fine-tuning efficiency
of the ground truth and models. Self-distillation allows mod-
els to benefit from each other, while self-ensemble improves
model performance by aggregating intermediate pre-trained
models from different time points in the past as base models.
In addition, in some studies, ensemble adversarial attacks
are proposed for transferability. By treating iterative ensem-
ble attacks as a gradient descent process, researchers [16]
decrease the variance of gradients during the ensemble pro-
cess to boost transferability. Xiong et al. [30] adopt two
ensemble strategies and demonstrate that greater diversities
in surrogate ensembles facilitate stronger transferability.

This study aims to enhance the transferability of adver-
sarial perturbations. We propose a self-ensemble based
feature-level adversarial attack (SEFA), which introduces
diverse initializations. In particular, we designed a feature-
level optimization objective with respect to the perturbations
and sample the orthogonal initial perturbations as inputs to
the optimization. Diverse orthogonal initializations guide the
optimizationprocess to search theperturbation space asmuch
as possible to prevent adversarial perturbations from being
trapped in model-specific local optima and to enhance the
transferability of adversarial perturbations. To reduce the
impact of model-specific information, refined aggregate gra-
dients asfeature importances eliminate the noise caused by
aggregation and directs the optimization objective to concen-
trate on the salient features corresponding to gradients with
higher intensity, which guides the perturbation toward amore
transferable direction.

Our contributions are summarized as follows.

• We introduce self-ensemble for increasing the random-
ness of the initial perturbations, i.e., sampling orthogonal
low-dimensional vectors and fitting them to the pertur-
bation space as the initial perturbations.

• We propose the self-ensemble based adversarial attack
in feature space disrupting the salient and critical fea-
tures distinguished by the refined aggregate gradient in a
stochastic manner.

• We develop the combination of SEFA and other trans-
ferability enhancement methods, which generates more
transferable adversarial perturbations and demonstrates
the flexibility of the proposed method.

The remainder of this paper is organized as follows. In
Section II, we provide a concise review of methods pertain-
ing to adversarial attacks and defenses. Section III introduces
the preliminaries. Section IV details the proposed SEFA.
Section V presents empirical evaluations of SEFA and its
comparisons with some baseline attacks. Finally, Section VI
presents the conclusions of this research.
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2 Related work

In this section, we introduce the literature related to adver-
sarial attacks and adversarial defenses.

2.1 Adversarial attack

Szegedy et al. uncover the adversarial vulnerability of DNNs
[15], stating that imperceptible perturbations manipulate the
decisions of neural networks. They reveal two properties of
the adversarial examples, misleading and imperceptible. Ini-
tially, some studies focus on adversarial attacks against image
classification. Then, many attempts prove that the vulnera-
bility exists in diverse mainstream visual tasks, e.g., face
recognization [2, 3], smart healthcare [4, 5], automatic drive
[6, 7]. The generation of adversarial examples has grad-
ually developed into a technique, adversarial attacks. The
transferability of adversarial perturbations seriously affects
the development of deep learning, especially DNNs-based
safety- and security-sensitive applications. Moreover, uti-
lizing adversarial perturbations to boost the robustness of
DNNs and investigate their defects gradually becomes a key
issue. Therefore, adversarial attacks have received consider-
able attention among researchers.

Existing mainstream existence interpretations of adver-
sarial issue focus on the linear nature of neural networks
and non-robust features of datasets. One popular hypothesis
on the adversarial examples is the high dimensional linear
property [8], which also explains their generalization across
datasets and models. [21] demonstrates that the adversarial
nature of examples results from non-robust features, which
are effective sources for achieving higher accuracy in neu-
ral networks and provide an explanation for transferability.
The authors perform training and testing on both robust and
non-robust features, highlighting that human have a limited
perception of non-robust features, yet these features signifi-
cantly influence decisions of the model.

Black-box attacks and white-box attacks are the two main
branches of adversarial attacks. In white-box attacks, the
attackers know the detailed information about the target
model and can accurately generate adversarial perturbations
via computing gradients of the optimization objective with
respect to the images. However, in practice, attackers usu-
ally lack access to target models. In comparison, black-box
attacks canworkwithoutmodel details,which is practical and
challenging. Query attacks and transferable attacks evolve
into two main categories of black-box attacks, where query
attacks do not require surrogate models. Query attacks craft
adversarial examples relying on the approximated gradients
obtained by queries. Specially, a model assigns scores (i.e.,
soft label) to practicable labels for a given input and selects
the label with the highest score as final decision (i.e., hard
label). With soft labels, score-based attacks generate adver-

sarial samples based on the responses of target models to
fool those models. Instead, decision attacks solely require
the hard labels, estimating gradients and updating adversar-
ial examples to adjust the examples on the decision boundary.
However, query-based attacks are impractical in real-world
scenarios due to the large number of queries. More practical
and flexible transfer-based attacks [9–11, 19–22], which rely
on the transferability of adversarial perturbations, receive
widespread attention. Adversarial samples are generated by
surrogate models for attacking unknown target neural net-
works.

Many studies attempt to enhance the transferability of
adversarial perturbations. [16] introduces random transfor-
mation (i.e., input diversity) andDong et al. [11] demonstrate
translation invariance of neural networks. The gradients
are translated during iterations to enhance the robustness.
Exploring the relationship of [16] and [11], [24] pro-
poses resized-diverse-inputs (RDIM) anddiversity-ensemble
(DEM) further boosting the transferability of perturbations.
They aggregate multi-scale gradients generated by RDIM
with region fitting during iterations to generate transferable
adversarial perturbations. [25] aggregates gradients of adver-
sarial samples and their neighboring points during iterations
to stabilize the oscillation of update directions, which boosts
the transferability of adversarial samples to diverse target
networks to a certain extent through data augmentation.

Moreover, improving optimization method for adversar-
ial attacks is also a feasible direction, i.e., gradient ascent
method.Momentum [10], Nesterov accelerated gradient [26]
and variance tuning [19] are adopted during the iterations to
find better local optima by avoiding oscillations in updates.
Intuitively, a series of gradient descent methods can be used
to address the optimization problem in adversarial attacks.

Aggregating surrogate networks improves the probabil-
ity of finding transferable adversarial perturbations. In order
to transfer the adversarial examples to unknown target net-
works, Liu et al. [28] aggregate the gradients of the surrogate
models. They demonstrate that it is challenging for the tar-
get adversarial samples to transfer together with their target
labels to other models, since the label distributions around
the source labels differ amongmodelswith different architec-
tures, even if the architectures are similar. Li et al. [29] fuse
diverse feature-based models via vertical ensemble, devising
ghost networks of the source model for transferability. Xiong
et al. [30] demonstrate that there are variances between differ-
ent model gradients in the aggregation process. They reduce
the variance by stochastic variance reduction for stabilizing
gradient update directions, making updated gradients more
general to the other models. By contrast, Wu et al. [31] intro-
duce decay parameters to reduce the gradients of residual
modules during the computation of model gradients. With
the skip connections similar to ResNet, they generate adver-
sarial samples with higher transferability.
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Based on the conclusion that different models share sim-
ilar features, many attacks disturb the intermediate layers
rather than the output layer, maximizing internal feature
distortion for achieving higher transferability. Naseer et al.
[17] maximize the distance of adversarial intermediate fea-
tures and legitimate intermediate features, which pushes
adversarial images away from the original images. Gane-
shan et al. [18] utilize a discriminative criterion, namely the
mean of channels, to guide the optimization. This method
enhances the features that do not support the ground truth
but suppressed those supporting the truth class to deceive
the source network and target networks. However, it may get
into a local optimization of a particular network. By con-
trast, feature importance-aware attack (FIA) [20] designs an
appropriate optimization objective and aggregates gradient
for eliminating model-specific information and generating
adversarial perturbations. Lu et al. [27] delve into transfer-
ability across vision tasks and achieved powerful cross-task
adversarial attacks by dispersion reduction. However, these
attacks perturb examples along the gradients during the iter-
ations, lacking of stochasticity, and therefore often trap into
poor specific optima and exhibit limited transferability.

2.2 Adversarial defense

Adversarial examples can be used to investigate the inter-
nal shortcomings of DNNs and to improve their robust-
ness. Researchers have proposed many adversarial defense
approaches [32–41] to boost the robustness of neural net-
works, which are categorized into detection only and com-
plete defense. The goal of complete defense is to make the
outputs of the target model consistent with expectations. For
example, a classification model correctly classifies adversar-
ial samples.Moreover, detection only aims to detect potential
adversarial examples for rejection.

Complete defense consists of two mainstream directions:
modified training/input and modified networks. Many works
improve model robustness by adversarial training. Ding et
al. [32] propose consensus-based enhancement samples for
adversarial defense. The intensity of the red, green and blue
components of the image are exchanged to generate the
enhancement samples. The original and consensus samples
are used to train models. In the testing phase, the predic-
tion results of the test and consensus samples are counted.
The category corresponding to themaximum value above the
threshold is the final classification result. If the maximum
value is below the threshold, the test sample is discriminated
as an adversarial sample. Lau et al. [33] propose joint spatial
attack to generate adversarial perturbations against images
and intermediate features. Then [33] uses mixup method to
provide interpolated images for the attack to enhance the
adversarial training. Yin et al. [34] demonstrate that the

difference in feature distribution between the original and
adversarial samples leads to a trade-off between accuracy and
robustness. [34] utilizes a class-conditional discriminator to
learn class-discriminative and attack-invariant features, i.e.,
to learn similar distributions of the original samples and var-
ious attack samples. The neural networks endeavor to learn
domain invariant features to deceive the class-conditional
discriminator. Liu et al. [35] show the vulnerability of adver-
sarial training against transferable adversarial samples. [35]
introduces linear robustness and approximates it with Jaco-
bian norm. In addition, perturbation-based saliency map
regularization is employed to enhance interpretability. Li
et al. [36] analyze the problem that standard gradient reg-
ularization leads to inconsistency between model robustness
and gradient saliency. Then a significant-based gradient reg-
ularization is proposed to reduce the performance gap by
introducing gradient significance in the regularization train-
ing.

In terms of modifying input, researchers have proposed
a variety of defense strategies. [37] proposes a new defense
method to reconstruct legitimate samples using collabora-
tive GANs to filter the perturbation noise in adversarial
samples. The robustness of the model is improved by train-
ing an attacker model to generate adversarial samples and
training a defender model to reconstruct the original sam-
ples. Zhang et al. [38] propose meta-invariant defense as
an attack-independent defense method to achieve general-
izable robustness against unknown adversarial attacks. Jia
et al. [39] address the overfitting problem in fast adversar-
ial training and propose a positive priori-guided adversarial
initialization. Zhao et al. [40] emphasize the limitations
of point-by-point adversarial sampling and introduce vari-
ational adversarial defense for more robust decision bounds.
Niu et al. [41] experimentally demonstrate the correlation
between perturbations and image pixels and the effective-
ness of simultaneously eliminating perturbations in multiple
frequency bands. [41] proposes to compress multiple fre-
quency bands simultaneously to reduce the perturbation and
the perturbation attachment space to purify the adversarial
samples. Downsampling the lower frequency bands to dis-
perse the perturbations and compressing the channel size in
the higher frequency bands.

There are a several studies for detecting antagonistic sam-
ples. Nowroozi et al. [42] extract random features from the
spreading layer of the source network as input to the target
network. Then multiple target networks are trained to detect
adversarial samples. [43] and [44] propose a multi-classifier
architecture for image tampering detection and adversarial
attack detection. Considering the security of the closed deci-
sion of one-class classification and the good performance
of two-class classification, [43] and [44] combine one-class
classification and two-class classification to improve the
detection performance.
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3 Preliminaries

Assuming a neural network for classification Fψ : x �→ cs ,
where x represents the legitimate image, cs is the ground
truth, and ψ denotes the information of the neural network.
The objective of non-target adversarial attacks is to create
an adversarial perturbation δ, which is carefully produced
and results in misclassification on the target model (i.e.,
Fψ

(
xadv

) �= cs , xadv = x + δ). In general, �p-norm is used
to restrict perturbations. We then formulate the generation of
adversarial perturbations as follows.

argmax
xadv

Lψ

(
xadv, cs

)
, s.t.

∥
∥∥x − xadv

∥
∥∥
p

≤ ε. (1)

Function Lψ (·, ·) calculates the distance between the
predicted and true labels, ε constrains the intensity of the
perturbations, and p = 0, 2,∞.

Manyattempts havebeenmade to address the above adver-
sarial optimizationwith the full information of Fψ . However,
the idea is unrealistic in applications. A viable approach is
to optimize the adversarial examples on an accessible sur-
rogate model Fθ . The surrogate model Fθ and target model
Fψ have different architectures and parameters but aligned
outputs, and thus attackers produce transferable adversarial
exampleswith Fθ for attacks. Feature-level attacksmaximize
distortions in intermediate features. Fl (.) denotes the feature
of an input from the l-th layer.

4 The proposedmethod

Following the observation that DNNs tend to extract similar
features, feature-level attacks craft adversarial examples by
perturbing the intermediate features. Therefore, adversarial
examples generated in feature space have higher transfer-
ability, thus allowing them to fool multiple neural networks.
However, these attacks generate perturbations in a specific
gradient-based manner. During the iterations, they maximize
a given loss function to update the perturbation. Owing to the
lack of stochasticity in the process, they are often trapped in
model-specific local optima, thereby reducing their transfer-
ability. Therefore, it is crucial to prevent the local optima
to enhance the transferability. The production of adversar-
ial perturbations requires fine-grained and model-agnostic
features as guidance, i.e., feature importance, and updat-
ing adversarial examples requires diversity. To address these
issues, we design a self-ensemble based feature-level adver-
sarial attack. The devised approach significantly boosts the
transferability of adversarial perturbations by refining the
feature importance and introducing stochasticity into the
optimization process, as exhibited in Fig. 1.

4.1 Self-ensemble for transferable adversarial
attacks

In existing studies, adversarial attacks have been modeled as
optimization problems and the adversarial example has been
updated in a deterministic manner. Therefore, they often fall
into local optima and suffer from limited transferability. In
this study, we attempt to add diverse perturbations to clean
images. Thus, obtaining an optimal δ can be formulated as
the following constrained optimization problem,

argmin
δ

‖δ‖p, s.t.Fθ (x + δ) �= cs . (2)

However, solving problem (2) is not trivial because it is
impractical to determine a search space that satisfies the con-
straint. We obtain the perturbations by maximizing the loss
function, as in the majority of previous studies (Fig. 2).

argmax
δ

Lθ (x + δ, cs) , s.t.‖δ‖p ≤ ε, (3)

where Lθ (·, ·) is a loss function w.r.t. the perturbation δ.
Although problem (3) is not fully equivalent to (2) and may
thus not guarantee that the obtained perturbationswill always
mislead the classifier, it quickly finds a possible perturbation
within the constrained range.

The key to the problem (3) is an appropriate optimization
objective. We design a new optimization objective for the
problem (3) to perturb the object-aware features,

L (δ) =
∑

(W � Fl (x + δ)), (4)

where W is the aggregate gradient (i.e., feature importance)
w.r.t. Fl (x).

W =
∑N

i=1 W
x�Bn

pd
l∥

∥∥∥
∑N

i=1 W
x�Bn

pd
l

∥
∥∥∥
2

,

Bn
pd ∼ Bernoulli (1 − pd) ,

(5)

where the aggregate quantity N is the number of masks
for transform, and pd denotes the probability of random
pixel dropping. Bn

pd , sampled from the Bernoulli distribu-
tion, Bernoulli (.), randomly discards the pixels of x by the
element-wise product with x . Wx

l is expressed as follows,

Wx
l = ∂� (x, cs)

∂Fl (x)
, (6)

where � (., .) donates an unnormalized probability w.r.t. the
ground truth cs . The sign of W indicates the basic stance of
the feature with respect to the truth class, and the intensity
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Fig. 1 Overview of self-ensemble based feature-level adversarial
attack. Given a clean image with an added random initial perturbation
from a Gaussian distribution, intermediate feature maps are extracted
from a surrogate network, and gradients are calculated as the feature
importance backpropagating from the final probabilities to the feature

maps. Then, the optimization of the weighted feature maps enhances
negative features and suppresses positive features. Themutually orthog-
onal initial perturbations are selected successively from the Gaussian
distribution to disrupt the features in a diverse manner, thus achieving
higher transferability

denotes the importance of the feature. The features corre-
sponding to positive and negative gradients are considered
as positive and negative features of the samples, respectively.
MinimizingW � Fl (x + δ) suppresses positive features but
encourages negative ones, manipulating the learnable fea-
tures of the samples. In contrast to previous attacks, i.e.,
feature disruptive attack (FDA) and neural representation
distortion method (NRDM), W � Fl (x + δ) employs W as
a discriminator, thus focusing on salient object features and
avoidingmodel-related information. Therefore, theweighted
representation of the feature W � Fl (x + δ) is a powerful

and transferable optimization objective that directs perturba-
tions towards more transferable directions.

Similar to the trainingof neural networks, anoptimization-
based adversarial attack fixes the parameters of a pre-trained
model and then optimizes the inputs to generate adversarial
examples. The pre-trained model contains prior knowledge
of the dataset distribution. The layers closer to the input layer
capture fine-grained feature information common to multi-
ple models with a high resolution through small receptive
fields. However, the receptive fields and overlapping areas
between them in the layers closer to the output layer gradu-

Fig. 2 Illustration of adversarial
examples produced by
traditional attacks and the
proposed SEFA among the class
decision boundaries of the
surrogate model and target
models. Our attack attempts the
feasible space of adversarial
perturbations extensively then
avoids the local optimum
instead of greedily crafting
deterministic adversarial
examples like the traditional
attacks that easily result in low
local optima and then exhibit
limited transferability among
target models
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ally increase, focusing on model-specific global information
with rich semantic information. By observing the gradient of
(4) w.r.t. δ, we obtain

∂L (δ)

∂δ
= ∂

∑
(W � Fl (x + δ))

∂Fl (x + δ)

∂Fl (x + δ)

∂δ
. (7)

Updating the perturbation involves layers closer to the
input layer, which indicates that the relatively general prior
knowledge of the dataset, rather than the model-specific
knowledge, is used to fine-tune and infect the source exam-
ple.

In this study, we model adversarial attacks as the opti-
mization problem (4). The optimization process significantly
affects the transferability of adversarial perturbations. In
addition, increasing diversity and variability can further
improve the transferability. Therefore, we introduce diversity
fromanoptimizationperspective, samplingorthogonal initial
perturbations in the outer layer of the generation and explor-
ing as diverse directions as possible with a clean image as
the origin. Diverse orthogonal initial perturbations guide the
optimization to attempt different initial directions to increase
the diversity and transferability of adversarial examples. In
particular, given a trainedDNNand an image, the constructed
optimization objective requires an initial perturbation.

δ0 ∼ N
(
0.01, σ 2

)
, δ0 ∈ R

Dim×Dim . (8)

Because the dimension of the image Dim is quite high,
we sample the directions in the subspace and fit them to
the original image space to improve the search efficiency, as
shown in lines 4–7 of Algorithm 1.

δ0 ∼ N
(
0.01, σ 2

)
, δ0 ∈ R

Dim
r × Dim

r ,

δ0 =Interp (δ0) ,
(9)

where r is the dimension reduction factor, and Interp (.)

denotes the bilinear-interpolation. In the n-th outer loop, the
adversarial example x is represented by xnT . Eventually, we
obtain a set of adversarial examples

{
x1T , · · · , xNum

T

}
.

The use of SEFA can be understood as follows. Inspired
by the ensemble, diverse adversarial examples are explored
as much as possible to avoid falling into model-specific
local optima, instead of moving the adversarial example
along a deterministic gradient. The proposed SEFA embod-
ies the idea of an ensemble without aggregation operations
(e.g., averaging). We perform the attacks using the set{
x1T , · · · , xNum

T

}
, preserving the diversity of the adversar-

ial samples and improving the transferability of the attacks.
Comparing [30, 46], in which ensemble adversarial

examples are generated by combining DNNs of different
architectures, we explore adversarial samples with higher

transferability generated by models of the same architec-
ture but with randomness of initialization, which can be
understood as a self-ensemble without external knowledge.
Self-ensemble is utilized not only to enhance robustness
[48], but also to generate adversarial examples. Xu et al.
[48] aggregate intermediate pre-trained models of past time
steps, while the proposed method constructs diverse adver-
sarial examples as candidates by introducing randomness
of initialization. Because we improve the transferability via
an ensemble operation from an optimization perspective, it
can be combined with previous transferability enhancement
methods [9, 11, 16] to perform more powerful adversarial
attacks.

Algorithm 1 SEFA.
Require:

The original image x , surrogate model F , intermediate layer l, filter
probability p f , drop probability pd , ensemble number N , number
of orthogonal perturbations Num, number of iterations T , dimen-
sion reduction factor r , bilinear interpolation Interp(.), and previous

directions Sn−1 :=
{
δ
j
0

}n−1

j=max(n−1,1)
.

Ensure:
The set of adversarial images

{
x1T , · · · , xNum

T

}
.

1: Initialize λ = 1, η = ε
/
T ;

2: W f = Filter p f

⎛

⎝
∑N

i=1 W
x�Bnpd
l∥∥∥∥

∑N
i=1 W

x�Bnpd
l

∥∥∥∥
2

⎞

⎠;

3: for n = 1 to Num do
4: δn0 ∼ N (

0.01, σ 2
)
, δn0 ∈ R

Dim
r × Dim

r ;
5: δn0 = pro jspan(Sn−1)⊥δn0 ;
6: Sn = Sn−1 ∪ {

δn0

}
;

7: δn0 = Interp
(
δn0

)
;

8: L
(
δn0

) = ∑ (
W f � Fl

(
x + δn0

))
;

9: g0 = 0;
10: for t = 0 to T − 1 do
11: gt+1 = λgt + ∇δL(δnt )‖∇δL(δnt )‖2

;

12: δnt+1 = δnt − η · Sign (gt+1);
13: xnt+1 = Clipx,ε

(
x + δnt+1

)
;

14: end for
15: end for
16: return

{
x1T , · · · , xNum

T

}
;

4.2 Feature importance by refined gradient

The feature importance discussed in the previous section
aggregates gradients from a randomly transformed x to
highlight robust/transferable features/gradients while neu-
tralizing non-robust features or gradients. However, the
aggregation of gradients introduces a small amount of noise,
thus causing the optimization objective to focus on a few
robust features from a limited set of transformed x , as shown
in Fig. 3. The noise caused by aggregating gradients is inher-
ently random and may not be shared by DNNs. Figure 3
illustrates the statistical information of the gradients of an
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Fig. 3 Histogram of the
gradients. The gradients indicate
the importance and stance of the
feature w.r.t. the ground truth.
The aggregation based on the
raw gradient yields more values
near zero. p f denotes the
probability for filtering

image. The relatively flat distribution of the aggregated gra-
dients indicates that the information of all the transformed
images is observed, including random noise generated by the
transformation.

To suppress the random noise, we propose the refining
of the gradient, which refines the aggregate gradient from
random transformations of the input image. The refinement
operation eliminates redundancy while preserving the gen-
eral texture and spatial structure. Object-aware and seman-
tical salient features result in larger gradient magnitudes,
which are further emphasized after aggregation. However,
the gradients corresponding to random features have lower
magnitudes. Refining retains the gradients corresponding to
important features, while filtering out other gradients. In this
study, we adopt quantile filtering with the probability p f ,
which can be expressed as follows.

W f =Filter p f

⎛

⎜
⎜
⎝

∑N
i=1 W

x�Bn
pd

l∥∥∥∥
∑N

i=1 W
x�Bn

pd
l

∥∥∥∥
2

⎞

⎟
⎟
⎠ ,

Bn
pd ∼ Bernoulli (1 − pd) .

(10)

Filter p f (.) is expressed as follows.

Filter p f (w) =
{

wi, j
∣
∣wi, j

∣
∣ > Qp f

0
∣∣wi, j

∣∣ ≤ Qp f

, (11)

where Qp f is the 100 × p f -th percentile of |w|, |.| denotes
the absolute value of the input, and wi, j is a pixel at a cell
(i, j) of w.

The refined gradient W f preserves the highlighted criti-
cal and robust semantically meaningful features that provide
more accurate information for generating transferable adver-
sarial perturbations. Figure 4 presents visualizationes of the
refined gradients. Compared to the aggregate gradient, the
refined gradient is cleaner and focused on objects, thus pro-
viding better feature importance for transferable attacks.
After the refinement operation, features with small absolute
values are assigned to 0, and the contrast of the features is
enhanced. In addition, the refined gradient focuses on the
lower-left corner of the red box, i.e., the region of the max-
imum value of the features. The quantified filtering results
are presented in Fig. 3. The change in the gradient distribu-
tion is more distinct when p f = 0.3, whereas subsequent
experiments show that p f = 0.1 is more appropriate from
the perspective of transferability.

4.3 Transferable adversarial attacks

By employing the refined gradient W f (i.e., the feature
importance) and substituting (4) into (3), we obtain the fol-
lowing optimization objective for diverse perturbations in the

123



10616 S. Cheng et al.

Fig. 4 Visualization of feature
maps and corresponding
gradients at the layer Conv3_3
of VGG16. The raw operation
provides the feature map and
gradient from the clean image,
the aggregate feature and
gradient are calculated from
multiple transforms of a
legitimate image, and refining
the aggregate feature and
gradient generates the refined
ones

feature space,

argmax
δ

∑ (
W f � Fl (x + δ)

)
, s.t.‖δ‖p ≤ ε. (12)

The loss function in (12) enhances the salient features
with a negative W f but suppresses those corresponding to
a positive W f . Thus, transferable adversarial attacks can be
achieved.

Algorithm 2 SEFA-DITI.
Require:

The original image x , surrogate model F , intermediate layer l, filter
probability p f , drop probability pd , ensemble number N , number
of orthogonal perturbation Num, number of iterations T , previous

directions Sn−1 :=
{
δ
j
0

}n−1

j=max(n−1,1)
, dimension reduction factor

r , bilinear-interpolation Interp(.), stochastic transform operation
Trans (x, pT ), Gaussian kernel generator Gkern (., .), and size of
Gaussian kernel T kern_si ze.

Ensure:
The set of adversarial images

{
x1T , · · · , xNum

T

}
.

1: Initialize λ = 1, η = ε
/
T ;

2: W f = Filter p f

⎛

⎝
∑N

i=1 W
x�Bnpd
l∥∥∥∥

∑N
i=1 W

x�Bnpd
l

∥∥∥∥
2

⎞

⎠;

3: Tkern = Gkern (T kern_si ze);
4: for n = 1 to Num do
5: δn0 ∼ N (

0.01, σ 2
)
, δn0 ∈ R

Dim
r × Dim

r ;
6: δn0 = pro jspan(Sn−1)⊥δn0 ;
7: Sn = Sn−1 ∪ {

δn0

}
;

8: δn0 = Interp
(
δn0

)
;

9: L
(
x + δn0

) = ∑ (
W f � Fl

(
x + δn0

))
;

10: g0 = 0;
11: for t = 0 to T − 1 do
12: gt+1 = λgt + ∇δL(Trans(x+δn0 ,pT ))

‖∇δL(Trans(x+δn0 ,pT ))‖2
;

13: δnt+1 = δnt − η · Sign (T kern ∗ gt+1);
14: xnt+1 = Clipx,ε

(
x + δnt+1

)
;

15: end for
16: end for
17: return

{
x1T , · · · , xNum

T

}
;

The key to transferability is introducing stochasticity in
the generation of adversarial perturbations. Therefore, we
propose the self-ensemble based transferable attack in the
feature space. The effective adversarial attack framework
comprises two subparts described in the previous subsec-
tions. The entire process is described in Algorithm 1. Given
a clean image x , we generate δnT through optimization with
the initial perturbation δn0 , a random variable from a Gaus-
sian distribution. Subsequently, to make the perturbation as
diverse as possible, we take the δn+1

0 successively, which is
orthogonal to the items of the perturbation set

{
δ00, · · · , δn0

}
.

Finally, we achieve diverse perturbations in the feature space,
which boosts the transferability.

To further improve the transferability,we combine the pro-
posed method with transferability enhancement approaches
such as diverse input [11] and translation operations [16].
We describe the combination of methods in detail to explain
this combination clearly. The combination of SEFA, diverse
inputs iterative method (DIM) [11], and translation-invariant
iterative method (TIM) [16] is referred to as SEFA-DITI,
as shown in Algorithm 2. Trans (., .) is a random transform
operation that creates diverse input images for transferability.

Trans(x, pT ) =
{
Trans(x) with probability pT
x with probability 1 − pT

.

(13)

Gkern (T kern_si ze) yields a two-dimensional Gaussian
kernel T kern with T kern_si ze, which is used to convolve
the gradient gt+1.

Many previous gradient-based attacks have attempted to
solve the optimization objective (12), such as the momentum
iterative method (MIM) [10] and TIM [11]. Given the advan-
tage and superiority of the momentum descent, the approach
is used to address (12), as in [10], and algorithm 1 describes
the details of the attack.
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4.4 Theoretical analysis

Based on the finding that different neural networks extract
similar features, NRDM [17] maximizes the distance between
the features of the adversarial example Fl

(
xadv

)
and legiti-

mate example Fl (x). FDA [18] and FIA [20] perturb salient
features carefully selected according to the activation values
or gradients. For a better illustration, the objective functions
are expressed as follows.

LN RDM =
∥∥∥Fl

(
xadv

)
− Fl (x)

∥∥∥
2
, (14)

LFDA = log
(∥∥
∥Fl

(
xadv

)
|Fl (x) < Cl (i, j)

∥∥
∥
2

)

− log
(∥∥∥Fl

(
xadv

)
|Fl (x) > Cl (i, j)

∥∥∥
2

)
,

(15)

LF I A =
∑(

W � Fl
(
xadv

))
, (16)

where Cl (i, j) denotes the mean activation values across
channels.

With the optimization objectives above, FDA utilizes fea-
ture activation to characterize the importance of features,
thus suppressing the features that support the ground truth
but enhance the others. However, the distinguishable crite-
rion, i.e., the mean activation values across channels, fails to
effectively identify object-aware salient features and abate
model-specific information. NRDM merely maximizes the
distance Fl

(
xadv

)
and Fl (x). In contrast, FIA achieves

higher transferability by minimizing (16).
The gradients of the optimization objectives of NRDM

(14), FDA (15), and FIA (16) are written as follows,

∂LN RDM

∂xadv
= ∂

∥∥Fl
(
xadv

) − Fl (x)
∥∥
2

∂Fl
(
xadv

)
∂Fl

(
xadv

)

∂xadv
, (17)

∂LFDA

∂xadv
= ∂ log

(∥∥Fl
(
xadv

) |Fl (x) < Cl (i, j)
∥
∥
2

)

∂Fl
(
xadv

)
∂Fl

(
xadv

)

∂xadv

− ∂ log
(∥∥Fl

(
xadv

) |Fl (x) > Cl (i, j)
∥∥
2

)

∂Fl
(
xadv

)
∂Fl

(
xadv

)

∂xadv
,

(18)

∂LF I A

∂xadv
= ∂

∑(
W � Fl

(
xadv

))

∂Fl
(
xadv

)
∂Fl

(
xadv

)

∂xadv
. (19)

The comparison of (17), (18), (19), and (7) as well
as the experiments mentioned in the corresponding refer-
ences, clearly indicates that the gradient of feature map

w.r.t. the input
∂Fl

(
xadv

)

∂xadv is the core, and the items (e.g.,

∂
∥∥Fl

(
xadv

)−Fl (x)
∥∥
2

∂Fl(xadv)
) introducemodel-specific information, lim-

iting transferability. While the item
∂

∑ (
��Fl

(
xadv

))

∂Fl(xadv)
contains

the feature importance guiding the adversarial example
towards a more transferable direction. The conclusions and
experiments in their respective papers adequately illustrate
the advantages of FIA. However, it is difficult for FIA to
introduce randomness from the perspective of perturbation.
FIA only moves the adversarial sample along the determin-
istic gradient. Therefore, we introduce a self-ensemble into
the optimization process of (4) to expand the search space
for transferable perturbations. We consider the orthogonal
initial perturbations δn0 (1, 2, · · · , Num) and explore vari-
ous directions at the beginning of the optimization to boost
transferability. The gradient of the optimization objective (4)
during the iterations can be expressed as follows,

∂L (δ)

∂δ
=∂

∑(
W f � Fl (x + δ)

)

∂Fl (x + δ)

∂Fl (x + δ)

∂δ

=∂
∑(

W f � Fl (x + δ)
)

∂Fl (x + δ)

∂Fl
∂Zl

∂Zl

∂Fl−1
· · · ∂F1

∂Z1

∂Z1

∂δ

=∂
∑(

W f � Fl (x + δ)
)

∂Fl (x + δ)

∂Fl
∂Zl

Wl · · · ∂F1
∂Z1

W1,

(20)

where Zl = Wl Fl−1 + Bl , Fl = σ (Zl), and σ (·) is the
activation function. In the case of ReLU, the gradient is

∂L (δ)

∂δ
=∂

∑(
W f � Fl (x + δ)

)

∂Fl (x + δ)
(σ (Zl) � (1 − σ (Zl)))

Wl (σ (Zl−1) � (1 − σ (Zl−1)))W × · · · ×
(σ (Z1) � (1 − σ (Z1)))W1.

(21)

FIA updates the adversarial examples with determin-
istic gradients (19) because Wl , · · · ,W0 are fixed, and
σ (Zl) , · · · , σ (Z1) are stable. As shown in Fig. 2, the pro-
posed SEFA introduces self-ensemble by taking orthogonal
initial perturbations, which introduces diversity from the per-
spective of gradient. Diverse initialization results in different
σ (Zl) , · · · , σ (Z1), contributing to the crafting of diverse
transferable adversarial examples. The self-ensemble is the
key to the proposed SEFA. As demonstrated in the follow-
ing experiments, self-ensemble can significantly improve the
transferability.

5 Experimental results

In this section, we describe the extensive experiments con-
ducted to evaluate the effectiveness of SEFA. First, the
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Fig. 5 Legitimate/adversarial images (top row) produced by the proposed SEFA and their attentions (bottom row). SEFA generates adversarial
examples that disrupt the attentions and final decisions in diverse manners

setup of the experiments is described. The attack results of
SEFA against baselinemethods with undefendedmodels and
advanced defended models are then illustrated. Furthermore,
we perform ablation studies on the probability p f and hyper-
parameter Num in the proposed framework.

5.1 Experiment setup

Based on a baseline attack [20], we establish experimental
settings to compare the transferability of adversarial attacks
fairly. ImageNet [20] is a source dataset widely used for
evaluating adversarial attacks. Figure 5 presents a legiti-
mate image and some adversarial images. The perturbations
generated by the proposed SEFA disrupt the attention and
predictions of the model in various ways, thereby diversify-
ing the enhancement of negative features and the suppression
of positive features in the input images. The experiment setup
is described as follows.

Datatset. The ImageNet-compatible dataset [20] is used
to examine the transferability of the adversarial attacks, con-
taining 1000 instances randomly sampled from different
categories of the ILSVRC 2012 validation set. The CIFAR-
10 dataset is a color image dataset containing 10 categories
with 6000 images of size 32x32 in each category for training
and evaluating image classification models.

Models. We test our method using four source models:
ResNet-v1-152 (Res-152), Inception-ResNet-v2 (InceRes-
v2), Inception-v3 (Ince-v3), and VGG16 (Vgg-16). Con-
sidering both normal and adversarial training, the proposed
SEFA is used to attack several target models, seven normally
trained models, and five defended models. For normal train-
ing, seven normally trained models are selected including
Inception-ResNet-v2, ResNet-v1-50 (Res-50), ResNet-v1-
152, VGG19 (Vgg-19), VGG16, Inception-v4 (Ince-v4), and

Inception-v3. For the adversarial training [9], five adversari-
ally trained models 1 are selected, namely, InceRes-v2-Ens,
Ince-v3-Ens4, Ince-v3-Ens3, InceRes-v2-Adv, and Ince-v3-
Adv. The source and target models above are pretrained with
ImageNet, approaching an almost 100% classification suc-
cess rate on the dataset. To evaluate the performance of the
attackmethods on theCIFAR10dataset,we select four source
models and seven target models for validation. Four source
models, Res-20, Vgg-16, Shuffle-v2 [49], and RepVgg [50],
are utilized to generate the adversarial samples. The seven
target models are Res-20, Res-32, Vgg-16, Vgg-19, Mobile-
v2 [51], Shuffle-v2, and RepVgg.

Baseline Methods. Several gradient iterative attacks are
selected as baselines. In addition, three feature adversarial
attacks, FIA [20], FDA [18], and NRDM [17], are selected
as the comparison baselines. Our method is compared with
these methods to validate the effectiveness and advancement
of the proposed SEFA.

Evaluation. The probability that adversarial images gen-
erated by a source network mislead a target network is called
the attack success rate. When the source network is the same
as the target network, it indicates the success rate of the attack
in a white setting. Instead, it is the black-box success rate of
an attack.

Parameter. For a fair comparison, the parameters are set
as follows, as in [20], step size η = 1.6, number of iterations
T = 10, and perturbation limitation ε = 16 . Themomentum
descent is a generic optimizer for all baselines, where the
decay factor λ is set as 1.0. For patch-wise attack method
(PIM), the project kernel size kw is 3, project factor γ is 0.5,
and amplification factor β is 2.5. The filter probability p f

1 https://github.com/tensorflow/models/tree/archive/research/adv_
imagenet_models
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and Num in SEFA are 0.1 and 50, respectively, and r is 2.
In SEFA-DITI, the kernel size T kern_si ze is 15, and the
transform probability pT is 0.7. As for the target layer of the
surrogate model in feature-level attacks, we select themiddle
layer of the networks for attacks. Mixed_5b in Ince-v3, the
last layer of block2 in Res-152, Conv_4a in InceRes-v2, and
Conv3_3 in Vgg-16 are selected as the target layers. Under
these settings, we could realize a fair comparison between
the devised SEFA and baseline attacks.

5.2 Comparison of transferability

This section presents the performance of the baseline
attacks and proposed SEFA against normally trained models

and adversarially trained ones respectively. We choose four
sourcemodelswith different architectures (Ince-v3, InceRes-
v2, Res-152, and Vgg-16) and attackdefense models and
normally trained models.

Attacking Normally Trained Models. The proposed
SEFA significantly outperforms the baseline attacks, as
shown in Table 1. The success rates of the adversarial exam-
ples produced by the source models Ince-v3 and InceRes-v2
increased by about 10%. In particular, the adversarial exam-
ples generated by SEFA with the surrogate network Vgg-16
successfully transfer among different models, achieving
attack success rates of over 95%. The success rates of the
combination of SEFA and DITI, i.e., SEFA-DITI, increase
by 1% ∼ 3%. Comparing DITI, SEFA, and SEFA-DITI, it

Table 1 Attack success rates of various attacks against normally trained models

Attack Ince-v3 Ince-v4 InceRes-v2 Res-50 Res-152 Vgg-16 Vgg-19

Ince-v3 MIM 100.0% 41.5% 38.9% 35.1% 29.9% 39.9% 40.1%

PIM 97.8% 55.2% 50.9% 53.1% 46.0% 61.6% 61.8%

DITI 96.0% 51.7% 39.6% 57.1% 50.8% 67.2% 65.6%

NRDM 91.0% 61.1% 52.4% 42.2% 31.7% 40.5% 40.7%

FDA 81.7% 42.7% 36.3% 30.1% 25.0% 32.0% 31.5%

FIA 98.1% 82.8% 79.3% 70.0% 64.6% 70.0% 71.5%

SEFA 98.4% 86.7% 85.9% 81.3% 77.4% 80.2% 80.4%

SEFA-DITI 98.7% 88.3% 87.1% 83.7% 78.6% 83.4% 83.5

InceRes-v2 MIM 60.1% 52.0% 99.1% 41.2% 36.2% 43.2% 39.9%

PIM 65.0% 62.8% 99.5% 55.6% 50.4% 63.6% 63.2%

DITI 60.7% 57.7% 89.9% 61.8% 58.9% 69.8% 66.3%

NRDM 72.6% 67.2% 76.4% 55.4% 45.3% 50.5% 51.7%

FDA 69.1% 67.6% 78.2% 51.7% 40.1% 49.0% 44.8%

FIA 80.0% 76.3% 88.3% 71.7% 68.5% 71.2% 71.4%

SEFA 80.6% 77.7% 89.7% 76.6% 73.5% 76.8% 75.9%

SEFA-DITI 83.7% 79.0% 91.8% 78.4% 74.9% 78.7% 78.1%

Res-152 MIM 57.1% 48.9% 42.5% 90.5% 99.6% 71.6% 71.8%

PIM 65.9% 56.7% 51.3% 92.7% 99.9% 83.1% 82.5%

DITI 54.3% 48.2% 41.5% 82.9% 98.9% 78.5% 76.6%

NRDM 64.0% 59.3% 50.7% 87.8% 95.6% 79.2% 79.3%

FDA 60.8% 52.6% 47.9% 84.8% 94.3% 76.3% 76.0%

FIA 85.1% 81.0% 76.8% 97.1% 99.3% 91.2% 91.1%

SEFA 93.6% 90.2% 89.8% 98.4% 99.9% 94.6% 94.0%

SEFA-DITI 95.1% 92.7% 92.1% 98.9% 99.9% 95.7% 96.2%

Vgg-16 MIM 82.3% 82.6% 78.6% 90.2% 85.5% 99.8% 95.4%

PIM 84.2% 82.1% 75.7% 91.1% 85.6% 100.0% 97.4%

DITI 80.8% 81.7% 68.1% 80.2% 78.2% 94.5% 95.2%

NRDM 73.1% 72.2% 57.7% 78.1% 74.1% 94.5% 91.8%

FDA 76.9% 76.8% 64.5% 80.2% 78.3% 94.5% 95.2%

FIA 94.9% 95.7% 91.7% 97.2% 94.9% 99.5% 99.6%

SEFA 98.0% 97.8% 95.9% 98.5% 97.7% 100.0% 99.8%

SEFA-DITI 98.9% 98.5% 97.1% 99.3% 98.6% 100.0% 99.9%

The first column presents the source models (Ince-v3, InceRes-v2, Res-152, and Vgg-16). The best results are indicated in bold
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Table 2 Attack success rates of
various attacks against normally
trained models on the CIFAR10
dataset

Attack Res-20 Res-32 Vgg-16 Vgg-19 Mobile-v2 Shuffle-v2 RepVgg

Res-20 MIM 93.8% 65.3% 44.0% 44.6% 64.4% 54.2% 60.0%

PIM 91.6% 56.3% 37.2% 36.7% 58.9% 49.9% 50.8%

DITI 82.4% 46.0% 31.2% 31.9% 50.1% 48.4% 43.8%

FIA 99.4% 77.2% 54.0% 53.0% 76.6% 63.5% 71.9%

SEFA 98.9% 82.2% 64.0% 62.8% 81.7% 70.8% 77.0%

Vgg-16 MIM 59.7% 58.4% 76.5% 58.2% 59.5% 52.8% 58.6%

PIM 49.0% 47.1% 64.1% 39.6% 49.7% 44.5% 44.5%

DITI 43.0% 40.7% 68.3% 39.8% 45.3% 45.8% 41.8%

FIA 70.1% 69.6% 83.7% 70.1% 70.2% 64.2% 69.8%

SEFA 70.8% 71.3% 88.7% 71.5% 71.2% 63.0% 70.7%

Shuffle-v2 MIM 55.8% 51.7% 39.6% 38.8% 60.4% 93.4% 49.7%

PIM 48.9% 45.0% 32.5% 32.1% 53.2% 88.0% 42.5%

DITI 37.3% 33.4% 25.6% 24.9% 42.1% 80.2% 32.9%

FIA 57.5% 52.6% 38.0% 38.0% 62.6% 97.4% 49.8%

SEFA 61.4% 56.9% 43.9% 42.8% 66.6% 96.6% 53.8%

RepVgg MIM 54.4% 53.0% 42.6% 42.2% 55.1% 47.2% 68.5%

PIM 51.1% 48.7% 35.3% 35.6% 52.7% 44.5% 74.3%

DITI 40.6% 38.0% 29.1% 29.7% 42.8% 41.6% 60.8%

FIA 76.5% 75.7% 64.3% 64.1% 76.4% 66.7% 92.5%

SEFA 78.5% 77.0% 60.5% 59.6% 78.6% 64.5% 97.7%

The first column presents the source models (Ince-v3, InceRes-v2, Res-152 and Vgg-16). The best results are
indicated in bold

can be observed that SEFA contributes more prominently to
SEFA-DITI than DITI. With the source models Inception-
ResNet-v2 and Inception-v3, SEFA has higher success rates
for both black-box and white-box attacks than existing
feature-based attacks such as FIA, FDA, and NRDM. Com-
pared to previous studies, SEFA improves the success rate
against normally trained models by about 7.7%.

The adversarial examples generated by the surrogate net-
work Vgg-16 mislead the target models with success rates of
nearly 96%, while the transferability of the adversarial per-
turbations with surrogate networks Ince-v3 and InceRes-v2
is limited. The results in Table 1 imply that less compli-
cated models (e.g., Vgg-16) tend to craft more transferable
adversarial examples because these models avoid examples
overfitting to the source models compared to complex/large
ones (e.g., Ince-v3 and InceRes-v2). Itwould be interesting to
explore more appropriate models for generating transferable
adversarial perturbations.

For the CIFAR10 dataset, the results of the attacks against
the seven targetmodels are exhibited in Table 2. The layer3_2
of Res-20, features_40 of Vgg-16, stage4_2 of Shuffle-v2,
and stage4_0 of RepVgg are selected as the target intermedi-
ate layers for FIA and SEFA. Table 2 shows that the proposed
SEFA obtains better results. For example, SEFA achieves an
average improvement of 2.7% in the attack success rate com-
pared to FIA. Thus, SEFA is effective for both the large-scale

ImageNet dataset and simple CIFAR10 dataset with a wide
applicability.

We conduct experiments against feature randomization
(FR) [42] on the CIFAR10 dataset to verify the effectiveness
of the attack methods. Following [42], we determine the fea-
ture size FS = {30, 50, 200, 400, NS}. NS denotes the full
size of the flatten layer of the source model Res-20. There
are 50,000 original samples and 50,000 adversarial samples
for training, 5,000 original samples and 5,000 adversarial
samples for validation, and 5,000 original samples and 5,000
adversarial samples for testing. First, we input the samples
into the source model to extract features. Subsequently, we
randomly select 50 times feature vectors from the features.
The Fifty sets of feature vectors of size f s ∈ FS are used to
train 50 support vector machines (SVMs). In the evaluation

Table 3 Attack success rates of various attacks in mis-match index
testing against FR on the CIFAR10 dataset

Attack 30 50 200 400 NS

MIM 71.07% 63.05% 28.86% 48.57% 99.36%

PIM 70.49% 62.65% 28.73% 47.91% 99.83%

DITI 70.55% 62.61% 28.07% 48.1 % 99.66%

FIA 71.10% 64.03% 29.16% 48.64% 99.65%

SEFA 72.21% 64.14% 29.96% 49.24% 99.54%
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phase, we use the 50 SVMs to identify the 50 feature sets of
adversarial samples for different attacks. The success rates
of multiple attacks against FR in mis-match index testing
are shown in Table 3. The experimental results demonstrate
a slight improvement in the attack performance of the pro-
posed SEFA against FR. For example, the attack success rate
of SEFA improves by an average of 0.5% over FIA. FR is
an effective adversarial detection method. The robustness of
attack methods against defenses needs to be improved to fur-
ther facilitate defenses.

Attacking Defense Models. Adversarial training of neu-
ral networks has regularization-like effects, achieving strong
robustness to adversarial examples. In most cases, the pro-
posed SEFA and SEFA-DITI are ranked among the top

two, as shown in Table 4. This is because SEFA-DITI com-
bines SEFA and the enhancement methods DIM and TIM to
introduce randomization. Data enhancement helps to further
improve the generalization of the adversarial samples and
hence the transferability. Compared to the baseline attack,
our approach improves the success rate against the defense
model by about 13.4%. Compared with normally trained
models, the proposed SEFA demonstrates a more significant
improvement in attacking the adversarially trained networks.
This is because the success rates of attacks against the nor-
mal training models are already quite high. There is a small
number of difficult samples for attackers. Therefore, it is dif-
ficult to improve the success rates. Table 4 demonstrates the
threats posed by the proposed SEFA to the defense models.

Table 4 Attack success rates of various attacks against defense models

Attack Ince-v3-Adv Ince-v3-Ens3 Ince-v3-Ens4 InceRes-v2-Adv InceRes-v2-Ens

Ince-v3 MIM 20.8% 15.1% 15.3% 16.4% 6.8%

PIM 34.1% 32.3% 38.1% 30.8% 26.0%

DITI 43.2% 41.8% 46.5% 37.2% 33.0%

NRDM 27.5% 8.6% 12.3% 19.2% 5.0%

FDA 19.5% 8.9% 12.0% 12.2% 5.0%

FIA 53.6% 43.2% 41.1% 53.5% 22.8%

SEFA 66.1% 56.6% 56.5% 67.3% 34.9%

SEFA-DITI 68.2% 57.9% 58.1% 68.7% 37.2%

InceRes-v2 MIM 26.5% 15.4% 16.8% 23.3% 9.8%

PIM 39.1% 38.9% 41.3% 34.5% 32.1%

DITI 51.7% 52.3% 54.4% 55.7% 50.2%

NRDM 36.6% 15.8% 16.6% 29.0% 7.9%

FDA 34.2% 16.2% 15.7% 29.9% 7.9%

FIA 54.9% 45.3% 43.7% 55.5% 36.3%

SEFA 65.3% 60.3% 57.3% 66.9% 49.0%

SEFA-DITI 67.2% 62.5% 59.4% 68.9% 51.3%

Res-152 MIM 41.1% 41.8% 42.3% 39.9% 22.0%

PIM 50.1% 51.5% 50.5% 46.3% 38.5%

DITI 52.6% 55.4% 61.7% 49.9% 48.2%

NRDM 57.1% 48.0% 45.9% 42.2% 36.5%

FDA 56.5% 43.9% 40.9% 40.6% 35.5%

FIA 70.0% 61.4% 59.3% 66.1% 41.5%

SEFA 88.1% 84.9% 84.7% 83.3% 77.1%

SEFA-DITI 89.7% 85.8% 85.4% 84.5% 78.6%

Vgg-16 MIM 65.3% 67.3% 67.7% 64.2% 46.2%

PIM 52.0% 50.0% 56.8% 43.7% 39.5%

DITI 72.7% 67.1% 68.6% 60.6% 57.6%

NRDM 69.3% 67.2% 67.9% 59.5% 56.7%

FDA 72.8% 67.1% 68.8% 60.6% 57.5%

FIA 87.5% 86.2% 85.0% 86.7% 70.7%

SEFA 96.2% 95.2% 95.0% 94.0% 91.8%

SEFA-DITI 97.5% 96.7% 96.3% 95.4% 93.1%

The first column presents the source models (Ince-v3, InceRes-v2, Res-152 and Vgg-16). The best results are indicated in bold
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Tables 1 and 4 present the attack success rates against the nor-
mally trained models and the adversarially trained models,
respectively. The values in the tables indicate the attack suc-
cess rates (corresponding to rows) against the target models
(corresponding to columns).

5.3 Ablation study

There are two parameters in the proposed method: the fil-
ter probability p f and number of initial perturbations Num.
With the parameter settings p f = 0.1 and Num = 50, we
fix one parameter and modify the other to analyze the effect

Fig. 6 Effects of the number of initial perturbations on the attack
success rate. Two source models, Ince-v3 and Res-152, generate adver-
sarial examples with different filter probabilities. The filter probability
changes from 0 to 70. The success rates are the results of attacking four
normally trainedmodels Ince-v3,Vgg-16, InceRes-v2, andRes-152 and
five defense models InceRes-v2-Adv, InceRes-v2-Ens, Ince-v3-Ens4,
Ince-v3-Ens3, and Ince-v3-Adv

of the parameters on the framework.
p f increases from 0 to 0.4 in steps of 0.1, and Num

increases from 0 to 70. Figures 6 and 7 illustrate the effects
of p f and Num on attacks. The effects of the filtering prob-
ability and quantity of initial perturbations on the success
rates of the source and target networks are approximately the
same. The trends in the attack success rates for different tar-
get networks with Num increasing are also approximately
consistent. The attack time increases as Num increases, and
the attack success rate gradually became saturated. There-
fore, the optimal Num for attacking is 50 to achieve a better
tradeoff between effectiveness and efficiency, as shown in
Fig. 6. In terms of the filter probability, a larger p f (e.g.,

Fig. 7 Effects of the filter probability on the attack success rate. Two
source models, Ince-v3 and Res-152, generate adversarial examples
with different filter probabilities. The filter probability changes from
0 to 0.4. The adversarial examples are used to attack four normally
trained models Ince-v3, Vgg-16, InceRes-v2, and Res-152 and five
defense models InceRes-v2-Adv, InceRes-v2-Ens, Ince-v3-Ens4, Ince-
v3-Ens3, and Ince-v3-Adv
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0.4) removes a large amount of redundant feature impor-
tance information. However, the success rates of attacks with
p f = 0.1 increases significantly, as shown in Fig. 7. Finally,
the appropriate number of initial perturbations Num and fil-
ter probability p f are selected for attack.

Moreover, the keys to the proposed SEFA are the stochas-
ticity and refined gradient. To investigate the contributions of
these two factors, we designed four optimization objectives
and experimentally validated them using two source mod-
els: Ince-v3 and Res-152. The four objective functions are
constructed as follows. L1 boosts the positive features and
discourages the negative features from the aggregate gradi-
ent, and L2 uses a refined gradient. L4 is the proposed loss
function (4), and L3 selects the aggregate gradient. Here, L2

and L3 explore the effects of these two items, respectively.
Figure 8 presents the success ratewith the four loss functions.

L1 =
∑ (

W � Fl
(
xadv

))
, (22)

L2 =
∑ (

W f � Fl
(
xadv

))
, (23)

L3 =
∑

(W � Fl (x + δ)), (24)

L4 =
∑(

W f � Fl (x + δ)
)
. (25)

L2 and L3 outperform L1, demonstrating the effective-
ness of the two items-the refined gradient and stochasticity
introduced. L3 surpasses L2, indicating that the stochastic-
ity improves the transferability to a greater extent. In most
cases, the proposed loss L4 significantly outperforms the oth-
ers, demonstrating the advantage of the proposed SEFA.

6 Conclusions

We propose a general framework for adversarial attacks by
introducing self-ensemble. Our method disrupts the salient
features in a stochastic manner through diverse initial pertur-
bations and refining the feature importance, thus significantly
improving the diversity and randomness of adversarial per-
turbations.Consequently, the generated adversarial examples
efficiently avoid being trapped inmodel-specific local optima
and become more transferable among the target models.

Fig. 8 Effect of stochasticity and refined gradient. L1 acts as the baseline. L2 and L3 comprise the stochasticity and refined gradient, respectively.
L4 adopts the above two terms simultaneously
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Moreover, the devised attack can further enhance the trans-
ferability in combination with other methods. Theoretical
analysis and extensive experiments demonstrate the excel-
lent performance of SEFA against the baseline attacks.

In the future, we will consider reducing the computa-
tional complexity of the proposed method. Examining more
effective methods based on self-ensemble, such as transfer-
able targeted adversarial attacks, is a possible future research
direction. Moreover, we intend to explore the generalization
of adversarial attacks to various visual applications such as
object detection and semantic segmentation.
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