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Abstract

Heterogeneous Graph Neural Networks represent a powerful approach to understand and utilize the intricate structures and
semantics within complex graphs. When it comes to semi-supervised learning on graphs, the challenge lies in effectively
leveraging labeled data to generalize predictions to unlabeled nodes. Traditional methods often fall short in fully utilizing
labeled information, limiting their performance to the number of available labels. To overcome these limitations, in this
paper, we propose a Semi-Supervised Heterogeneous Graph Contrastive Learning with Label-Guided (SSGCL-LG) model.
SSGCL-LG tackles this challenge by fully integrating label information into the learning process through contrastive learning.
Specifically, it constructs a label graph that incorporates both node and label representations, enhancing the supervised signal.
Moreover, we propose a novel strategy for selecting positive and negative samples based on labels and meta-paths, effectively
pulling positive samples closer together in the embedding space. To optimize node representations, SSGCL-LG combines
contrastive loss with semi-supervised loss, enabling the model to learn from both labeled and unlabeled data. Extensive
experiments on real-world datasets validate the effectiveness of our framework, demonstrating its superiority over existing

methods. The code for this work is publicly available in the https://github.com/sun281210/SSGCL-LG.

Keywords Heterogeneous graph neural networks - Semi-supervised learning - Contrastive learning - Label information

1 Introduction

Heterogeneous Graph (HG), also known as Heterogeneous
Information Network (HIN), are common network structures
composed of multiple types of nodes and edges in the real
world [1]. For example, an academic network can be repre-
sented as a HG, which consists of three types of nodes (author,
paper, subject) and two types of edges (authors write papers,
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papers contain subject) as shown in Fig. 1(a). Similarly, a
network of legal documents, such as civil judgments, can
also be represented as a HG, which consists of five types
of nodes (plaintiff, defendant, judge, instrument, cause) and
three types of edges (judges write instruments, instruments
contain causes, plaintiffs and defendants are parties involved
in the instruments) as shown in Fig. 1(b). Inrecent years, Het-
erogeneous Graph Neural Networks (HGNNs) have achieved
significant success in handling HG data [2]. This is pri-
marily due to their effective integration of message-passing
mechanisms with the inherent complexity of heterogene-
ity, enabling a more comprehensive capture of the intricate
structures and rich semantic information inherent in het-
erogeneous graphs [3]. With the prevalence of large-scale
complex networks, HGNNs have become a powerful tool for
processing fields such as social networks [4], e-commerce
[5], smart justice [6], and bioinformatics [7].
Semi-supervised learning (SSL) [8] is a machine learning
paradigm aimed at enhancing model performance by leverag-
ing both labeled and unlabeled data. In traditional supervised
learning, models are trained and predicted using only labeled
data. However, in many practical scenarios, obtaining a large
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(a) Academic Heterogeneous Graph
Fig.1 Examples of heterogeneous graphs

amount of labeled data can be expensive or challenging. The
goal of semi-supervised learning is to improve the general-
ization capability and performance of models by utilizing a
limited amount of labeled data alongside a significant amount
of unlabeled data.

In recent years, graph-based SSL methods have made sig-
nificant progress [9]. However, few studies have provided an
overarching view to address the core issue of SSL, which is
that the insufficiency of labeled data can lead to overfitting
and distribution shift problems in the model [10]. In addi-
tion, existing SSL methods such as GCN (Semi-supervised
classification with graph convolu- tional network) [11],
GraphSAGE (Inductive Representation Learning on Large
Graphs) [12], GAT (Graph attention network) [13], etc., typ-
ically focus on learning the mapping function between node
representation and labels, where labels are only used to com-
pute the classification loss of the output. This means that the
process of learning node representation does not fully utilize
label information, limiting the comprehensive consideration
of label information in SSL [14].

The fundamental idea of graph contrastive learning [15], a
novel approach in self-supervised graph representation learn-
ing, aims to optimize the model by minimizing the distance
between the target node and positive samples and maxi-
mizing the distance with negative samples [16]. Although
contrastive learning can use the data itself to provide supervi-
sory information for representation learning, it is not directly
applicable to SSL [17]. Contrastive learning focuses on
extracting features by learning the similarity and dissimilar-
ity between data samples, typically used in unsupervised or
self-supervised learning tasks. However, in semi-supervised
learning, we often have a small amount of labeled data and a
large amount of unlabeled data. In this scenario, contrastive
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learning may face several challenges: firstly, due to the vast
number of unlabeled data compared to labeled data, con-
trastive learning may be affected by issues such as excessive
unlabeled data, difficulties in measuring similarity, leading to
instability and inaccuracy in feature learning; secondly, semi-
supervised learning emphasizes how to utilize information
from labeled data to guide the learning process, while con-
trastive learning’s core lies in unsupervised learning, which
may not effectively utilize information from labeled data.
Therefore, contrastive learning cannot be directly applied
to semi-supervised learning. Furthermore, few studies have
fully utilized valuable label information to supervise the
construction of effective positive and negative samples in
contrastive loss.

Indeed, labels can carry valuable information that is ben-
eficial for node classification. Firstly, each label can be
seen as a virtual center for nodes belonging to that label,
reflecting the proximity of intra-class nodes. For example,
in an academic network, papers within the same field are
more relevant than those from different fields. In a business
network, products within the same category often share sim-
ilar characteristics. Secondly, labels are associated with rich
semantics, and certain labels can be semantically close to
each other. For instance, the fields of artificial intelligence
and machine learning are more interrelated than artificial
intelligence and chemistry. The relationship between com-
puters and mice is closer than that between computers and
digital cameras. Therefore, when classifying paper domains
or product categories, it is essential to explore the rich infor-
mation provided by labels. This motivates us to design a
new framework that thoroughly considers the performance
of GNNs in semi-supervised node classification by leverag-
ing label information.
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In this work, we focus on exploring, building upon,
and proposing a label information based method for semi-
supervised HGNN. To achieve this, we are faced with two key
challenges: (1) How to explicitly incorporate label signals
into the graph structure? (2) How to construct more reli-
able positive and negative samples by the label and semantic
information in HGs?

To address the issues, we propose a new framework Semi-
Supervised Heterogeneous Graph Contrastive Learning with
Label-Guided (SSGCL-LG) designed to maximize the use
of label information, thereby enhancing the performance of
HGNNSs in semi-supervised tasks. In the paper, we inte-
grate rich label information comprehensively into GNN to
facilitate semi-supervised node classification. We construct
a label graph where a novel node is created for each label
with semantic features, and connections are established with
intra-class nodes, making each label act as the center for its
corresponding nodes. By utilizing a message passing mech-
anism to jointly learn node and label representations, we
can effectively smooth intra-class node representations and
explicitly encode label semantics. Additionally, we apply
label information to the selection of positive samples, fully
leveraging label information to tightly integrate nodes of the
same category in embeddings.

Specifically, to capture both homogeneous and heteroge-
neous neighborhood information effectively, we decompose
the heterogeneous graph into multiple homogeneous and het-
erogeneous subgraphs based on metapaths. We first introduce
a strategy where heterogeneous subgraphs guide the fusion
of homogeneous subgraphs. Then, we treat labels as special
nodes and design a label graph to explicitly encode label
information into the learning process of Graph Neural Net-
works (GNNs). Furthermore, we introduce a contrastive loss
for semi-supervised learning, aiming to fully leverage the
supervisory signals inherent in the data itself. The semi-
supervised contrastive loss is built upon the foundation of
self-supervised contrastive loss functions, utilizing the super-
vision signals from both labeled and unlabeled data. This
tightens the embedding of nodes within the same class, lead-
ing to improved classification accuracy. This method enables
better utilization of label information in SSL, overcoming the
challenge of sparse labeled data, thereby enhancing the per-
formance of HGNNS in semi-supervised tasks.

The remainder of this paper is organized as follows:
Section 2 surveys the related work. Section 3 presents some
theories about heterogeneous graphs and provides formal
definitions. Section 4 presents the Semi-Supervised Het-
erogeneous Graph Contrastive Learning with Label-Guided
model. Section 5 describes the experiments performed in this
study with results analysis. Finally, Section 6 concludes this
paper and future work.

2 Related work

In this section, we will introduce the related work about graph
neural networks, and give a brief description of graph repre-
sentation learning as well as graph contrast learning.

2.1 Graph neural networks

GNNs propagate and aggregate node features through mul-
tiple neural layers to predict labels from feature propagation
[18]. For example, GCN [11] obtains node representa-
tion that aggregate neighborhood information through an
approximation of spectral graph convolutions. GAT [13]
assigns attention coefficients based on the similarity of
features between nodes to aggregate neighborhood informa-
tion. GraphSAGE [12] samples a fixed number of neighbor
nodes and aggregates the representation of neighbors at
each layer. Additionally, AM-GCN (Adaptive Multi-channel
Graph Convolutional Networks) [19] learns specific and
common embedding for nodes in both topological and feature
spaces and constrains the diversity and consistency of node
embedding by measuring the similarity between specific and
common embedding. However, it is important to note that
the aforementioned models cannot be directly applied to het-
erogeneous graphs.

HGNNs learn node representation by capturing infor-
mation from different types of nodes and edges through
metapaths or relation types. For instance, HAN (Heteroge-
neous graph attention network) [20] learns the importance
between nodes and their neighbors under meta-paths through
node-level attention and the importance of different meta-
paths through semantic-level attention. Building upon HAN,
MAGNN (Metapath Aggregated Graph Neural Network for
Heterogeneous Graph Embedding) [21] further enhances
node representation by aggregating information from het-
erogeneous nodes within meta-paths. Additionally, HetGNN
(Heterogeneous Graph Neural Network) [22] uses random
walks with a restart to sample a fixed-size neighborhood and
integrates features of the same or different types of nodes
through a bidirectional LSTM (Long Short Term Memory).
HGT (Heterogeneous Graph Transformer) [23] captures the
importance of different types of edges by computing atten-
tion coefficients between nodes and aggregates edge attention
with node information for message passing. Finally, HGSL
(Heterogeneous Graph Structure Learning for Graph Neu-
ral Networks) [24] achieves heterogeneous graph structure
learning by fusing multiple subgraphs (feature graph, seman-
tic graph, and the original graph). ie-HGCN (Interpretable
and Efficient Heterogeneous Graph Convolutional Network)
[25] is a relation extraction model based on graph neu-
ral networks that uses a combination of various relation
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representation methods, effectively capturing dependencies
and contextual information between entities. RoHe (Robust
Heterogeneous Graph Neural Networks against Adversarial
Attacks) [26] employs an attention purifier that can prune
malicious neighbors based on topology and features, thus
eliminating the negative influence of malicious neighbors in
the soft attention mechanism. HPN (Heterogeneous Graph
Propagation Network) [27] is a graph neural network model
for graph classification that enhances model performance
through hierarchical graph pooling and structure learning,
effectively handling graph structures at different levels.

2.2 Graph contrastive learning

Contrastive learning on graphs follows the principle of
Mutual Information (MI) maximization [28], which aims to
pull closer the representation of samples with similar infor-
mation while pushing away the representation of unrelated
samples [29]. In heterogeneous graph contrastive learning, it
is common to perform MI maximization on samples at dif-
ferent scales (i.e., node-level and graph-level representation).
HDGI (Heterogeneous Deep Graph Infomax) [30] fuses node
representation under different meta-paths through semantic-
level attention to form positive sample node representation
and optimizes node representation by maximizing the mutual
information between positive samples and graph-level rep-
resentation. DMGI (Unsupervised Attributed Multiplex Net-
work Embedding) [31] optimizes node representation by
maximizing mutual information between subgraph-level rep-
resentation learned under each relation subgraph and node-
level representation. Additionally, a recent self-supervised
heterogeneous graph neural network HeCo (Self-supervised
Heterogeneous Graph Neural Network with Co-contrastive

Fig.2 An example of HIN

O Paper (P)

Learning) [32] that maximizes node-level mutual informa-
tion has attracted widespread attention. It employs collabo-
rative contrastive learning from the perspectives of network
schema and meta-paths to uncover more information in het-
erogeneous graphs. However, existing heterogeneous graph
contrastive learning methods are only used in self-supervised
models and cannot directly utilize label information.

Although these methods provide insightful solutions for
utilizing labels, they still fail to capture the rich information
contained in the labels.

This paper proposes a label-guided semi-supervised con-
trastive learning framework that integrates the rich label
information into GNN learning by jointly learning the repre-
sentation of nodes and labels.

3 Preliminary

Definition 1. Heterogeneous Graph. A Heterogeneous
graphisdefinedas G = (V, E, A, R, ¢, ¢). Where, V and E
represent sets of nodes and edges, respectively. A and R rep-
resent sets of node types and edge types, where |A+R| > 2.
There are two types of node mappings: ¢ : V — A for node
types and ¢ : E — R for edge types. V is defined as having
two categories: labeled nodes V; and unlabeled nodes Vi,
where V; + Vy = V. The labeled nodes are defined as V.

For example, Fig. 2(a) illustrates a heterogeneous graph
composed of multiple types of nodes (paper, author, subject)
and relationships (the writing relationship between author
and paper, the purpose relationship between paper and sub-
ject).

Definition 2. Metapath. A metapath is defined as a path

Ry

. R R
in a heterogeneous graph: Aj A S S A+,

D Author (A) Label (L)
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representing a composite connection relationship R = Rj o
Ry o --- 0o R; between Aj and A;41, where o denotes the
composition operator on relationships, A; € A, R; € R.

“path” typically refers to a sequence of connections

between nodes in a graph, while “metapath” refers to a spe-
cific type of path pattern. For example, in Fig. 2(b), two
metapaths PAP and PSP are illustrated. Where, PAP rep-
resents the connection where two papers share a common
author, and PSP represents the connection where two papers
jointly express the same topic.
Definition 3. Metapath-based Homogeneous Subgraph.
For a given heterogeneous graph G, a metapath P, and a
node V, the homogeneous subgraph G = (V, E, A, R) €
G is defined as the graph constructed from all neighbor pairs
based on metapath P. Please note that P starts and ends with
the same node type, where A = 1 and R = 1.

For example, in Fig. 2(c), it shows the homogeneous

subgraph generated by the two metapaths PAP and PSP,
where the homogeneous subgraph only contains nodes of
type paper.
Definition 4. Metapath-based Heterogeneous Subgraph.
Given a metapath P and a node V in a heterogeneous
graph G, the metapath-based heterogeneous subgraph G"¢ =
(V, E, A, R) € G isdefined as the graph constructed by pairs
of neighboring nodes of different types connected to node V
through the metapath, where | A + R| > 2.

For example, in Fig. 2(d), it shows the heterogeneous

subgraph based on two metapaths PAP and PSP. The het-
erogeneous subgraph under the metapath PAP contains only
paper nodes and author nodes, while the heterogeneous sub-
graph under the metapath PSP contains only paper nodes and
subject nodes.
Definition 5. Label Graph. The node label graph GY e
RM*C is composed of one-hot vectors for labeled nodes and
zero vectors for unlabeled nodes, where M is the number of
nodes in V, and C is the number of label classes. Specifically,
each labeled node V; € V} has a one-hot vector Y; € {0, l}C,
where 1 indicates the label category of V;. For each unlabeled
node V; € Vy, Y, € {O}Cis a all-zero vector, where all ele-
ments are 0.

For example, in Fig. 2(e), the labeled node Vi has Yy =
{1, 0}, where 1 represents that the node Vj belongs to label
0. In the label graph GY shown in Fig. 2(e), it is represented
as

10
00
01
10
00
01

Definition 6. Node Embedding [21]. Node Embedding is a
technique that maps nodes in a graph to a low-dimensional
vector space, commonly used for representation learning of
graph data.

For a node v; € V, its Node Embedding is denoted as
vi = f(vi, G), where f is a mapping function that maps
node v; and the entire graph G to a vector representation v;
in RY space. v; € R?, where d is the dimensionality of the
chosen embedding space.
Problem. Heterogeneous Graph Embedding. Given a
heterogeneous graph G = (V, E, A, R, ¢, ), with node
attribute matrices X 4,, heterogeneous graph embedding is
the task to learn the d-dimensional node representa-tions
7 € R? with d <« |V| that are able to capture rich struc-
tural and semantic information involved in G.

4 The proposed method

In this section, we propose a Semi-Supervised Heteroge-
neous Graph Contrastive Learning with Label-Guided, as
illustrated in Fig. 3. The model comprises three parts: (a)
Metapath-based Heterogeneous Subgraph, (b) Metapath-
based Homogeneous Subgraph, and (c) contrastive learning.
Specifically, to better capture information from homo-
geneous and heterogeneous neighbors in the heteroge-
neous graph, SSGCL-LG decomposes the graph into mul-
tiple metapath-based homogeneous and heterogeneous sub-
graphs. In (a) Metapath-based Heterogeneous Subgraph,
information from different metapath-based heterogeneous
subgraphs is aggregated using attention mechanisms. In (b)
Metapath-based Homogeneous Subgraph, a label graph is
constructed and concatenated with the homogeneous sub-
graphs to learn node representations using a GNN Encoder.
Finally, in (c) contrastive learning, different positive and neg-
ative samples are selected, optimizing the model through a
combination of contrastive loss and cross-entropy loss.

4.1 Metapath-based heterogeneous subgraph
embedding

Most current research on heterogeneous graphs is based on
metapaths, used to capture specific semantic information in
graphs. However, these heterogeneous graph models are pri-
marily constrained by two limitations: firstly, many of them
only aggregate information from homogeneous neighbors
connected by meta-paths, thereby discarding rich structural
and attribute information from heterogeneous neighbors;
secondly, some studies aggregate information from both
homogeneous and heterogeneous neighbors but treat these
neighbors indiscriminately in the same way. As a result, these
methods may lose important information and lead to sub-
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optimal performance. We illustrate this point through the
following example. Therefore, the heterogeneous graph is
first partitioned into homogenous and heterogeneous sub-
graphs based on Metapath, enabling the comprehensive
learning of complex information in the heterogeneous graph.
As shown in Fig. 2(c) of the heterogeneous graph con-
structed with the metapath PAP, a homogeneous subgraph
is formed with paper nodes (Vy, Vi, Va, Vs). For a specific
node (e.g., Vp), if we only aggregate information from homo-
geneous neighbors (Vy, V3, Vs), the structural and attribute
information contributed by heterogeneous neighbors (Vg, Vo,
V1) connected to it will be ignored. Therefore, consider-
ing only homogeneous subgraphs can lead to the loss of a
significant amount of useful interaction information from
the original graph. Additionally, there are different inter-
action patterns between nodes and neighbors of different
types, which often carry different semantics and should be
considered separately to avoid information loss. It’s worth
noting that nodes of different types typically have differ-
ent attributes. For example, in a recommendation system,
user node attributes may include age, gender, interests, while
item attributes may include price, text descriptions, images,
etc. Original attributes cannot be directly transferred between
nodes of different types and require pre-transformation.

@ Springer
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Since nodes of different types in HIN usually have dif-
ferent vector dimensions, in SSGCL-LG, they need to be
projected into a common space through specific transforma-
tion. Additionally, we treat labels as a special type of node
and initializes the feature of label nodes with unit vectors.
Specifically, for nodes of type ®, a specific type of mapping
matrix we is designed to transform their features X into the
common space, as shown below:

H=0(we¢X + byp), )

where o represents the activation function, and b denotes the
vector bias.

Different types of metapaths represent different semantic
information. For M types of metapaths, SSGCL-LG con-
structs heterogeneous subgraphs of this type {G"¢, . . ., G’I(j}.
For each subgraph Gﬁ", node embedding H,f" are learned
using GCN [11]. Specifically:

lh N A A
(H,fe) ‘o (D—%AD—% (H,gl—l)) W(l)) , )

where A = A + 1 represents the adjacency matrix of the
heterogeneous subgraphs G,hf with the addition of self-loop
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connections. D is the degree matrix of A. WO denotes the
weight matrix for the /-th layer of the Graph Convolutional
Network, and (H,f“')lhe represents the node representation at
the /-th layer.

After obtaining embedding for each type of heterogeneous
subgraphs {hhe, R hﬁj }, SSGCL-LG utilizes semantic-
level attention to fuse them, resulting in node Zhe under the
heterogeneous subgraph:

M

Zh =) oy, 3)
n=1

where o, represents the weight of the heterogeneous sub-

graphs GZE , calculated as follows:

1
Gl = Tag > ~a’ tanh (W - H +b> : )
neM

exXp (eGZe )
> nem CXp (eGZe )

(&)

o, = softmax (eG;;e ) =
U

Note that, because the importance of heterogeneous sub-
graphs varies across different metapaths, we can compute
weights for aggregating different heterogeneous subgraphs,
denoted as {«1, ..., ap}.

4.2 Metapath-based homogeneous subgraph
embedding

For different types of metapaths representing distinct seman-
tic information, SSGCL-LG constructs homogeneous sub-
graphs {Gﬁ"’, ceey G’;,;’ }. According to the number of meta-
paths, weight matrices for constructing homogeneous sub-
graphs {w{"’, e, w}/(,;’} are formed.

When integrating different views traditionally, the channel

attention method described in HGSL [24] is employed:
Who = W[w?, ..., whe], (©6)
where W represents a channel attention layer with parameters
WY e RIIXM 1t performs a 1 x 1 convolution on the input
using softmax(WY).

However, this method only utilizes softmax for the 1 x 1
convolution operation, neglecting the influence of node fea-
tures on graph structure fusion. To account for the impact
of node features, we utilize semantic-level attention within
heterogeneous subgraphs, resulting in different weight coef-
ficients {«1, ..., oy} guiding the construction of the weight

10061
matrix wp, for homogeneous subgraphs,
M
who = Zanw,ﬁ“’. @)
n=1

SSGCL-LG achieves this by creating a type of node for
the labels and establishing connections with nodes within the
same class. It constructs a connection matrix G between
labels and nodes within the same class. GY is concatenated
with w”® to create the label heterogeneous adjacency matrix
w'®. Similarly, GCN [11] is utilized to learn node embedding
representation Z”° within the label subgraph,

a who GY (8)
w' = ,
G'" o

zho _ G(ﬁf%wlai)f%H(lhofl)W(lho)). 9)

In this work, we use one-hot encoding to represent label
features, which can provide rich representations when label
features or prior knowledge related to labels are explicitly
given. When further performing message passing on w'®,
labels can contribute in two aspects. Firstly, each label serves
as a virtual center for intra-class nodes, making them 2-
hop neighbors even if they are far apart from each other
in w'®. This enhances the smoothness of intra-class node
representations. Secondly, modeling label semantics through
one-hot encoding helps in discovering semantic correla-
tions among labels. Although there are no direct connections
between labels, they can still receive messages from each
other through higher-order interactions, aiding in uncover-
ing their implicit relationships.

4.3 Positive sample selection strategy

In the selection of positive samples, as illustrated in Fig. 4,
considering that only a small number of nodes have label
information, nodes with the same label are considered posi-
tive samples, and nodes with different labels are considered
negative samples. Additionally, since nodes are typically
connected by multiple paths and are highly correlated, we
propose a positive selection strategy: if there are multiple
metapaths connecting two nodes, they are considered posi-
tive samples. This is depicted in Fig. 4, where links between
papers indicate that they are positive samples for each other.
One advantage of this strategy is that the selected positive
samples can better reflect the local structure of the target
node.

In Fig. 4, for example, node V and node V3 belong to
label 0, while node V, and node V5 belong to label 1. Thus,
node Vj and node V3 are positive samples for each other, and
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Fig.4 Positive sample selection
strategy

— — —>
Positive pairs
« — —>

Negative pairs

they are negative samples for node V> and node V5. Among
other nodes with unknown labels, node Vy has two paths
connecting to node V] and one path connecting to node V.
Assuming the threshold T is set to 2, then node Vjy and node
V1 are positive samples for each other, and node V() and node
V4 are negative samples for each other. Thus, the positive
sample set for node Vj is [V, V3], and the negative sample
setis [Va, V4, Vs].

If there is a metapath connecting two nodes, then these two
nodes are related. The more metapaths between two nodes,
the stronger their correlation. For nodes i and j, we define a
function C;(-) to count the number of metapaths connecting
these two nodes:

M
Ci(j)=)_0(j € N, (10)

n=1

where 0(-) denotes the sign function. We construct a
set C; sorted in descending order according to C; =
{j | j € Vand C;(j) # 0} nodes as candidate positive sam-
ples ]P’iT .

To make full use of the limited label information avail-
able for some nodes, we consider nodes with the same
label as positive samples and nodes with different labels
as negative samples. Specifically, we construct a set Q; =
{j 1j €VandQ;(j) =1}, where Q;(j) € {0, 1} repre-
sents the label discrimination function (when nodes i and
j have the same label, Q;(j) = 1, otherwise Q;(j) = 0).
The final positive samples are filtered based on both meta-
paths and label information, denoted as P; = PiT I Q;, and
the remaining nodes serve as negative samples N;.

4.4 Training

The semi-supervised contrastive loss is an extension of
the self-supervised contrastive loss. As evident from the
selection of positive samples, the incorporation of label
information expands the number of positive node pairs in
semi-supervised contrastive learning.

Once obtaining the embedding z{.w for the homogeneous
subgraphs and zf“’ for the heterogeneous subgraphs, we feed

@ Springer

Cross entropy
Loss

Contrastive
Loss

Cross entropy
Loss

them into a MLP with one hidden layer to map them into the
space where contrastive loss is calculated:

zlhoproj =wPo (w(l)zf’o + b(l)) +5?, (11)

2 proj = w@o (w(l)zlhe n b(l)) + 5, (12)

where o is the activation function, w'") is the weight matrix
for the first layer, used to map input z) to the output of the
hidden layer, b1 is the bias term for the first layer, used to
adjust the influence of the input, w® is the weight matrix
for the second layer, used to map the output of the first layer
to the output layer, b® is the bias term for the second layer,
used to adjust the influence of the output of the first layer.

After obtaining the positive sample set P; and negative
sample set N;, the loss for the homogeneous subgraphs is
computed as:

> jcp,EXp (sim (zf’”proj, z?eproj)/r)

Y kerpuny) €XP (sim (2 proj. 2 proj) /7)°
(13)

h
L}’ =—1log

where sim(u, v) is the cosine similarity function, and t is an
environmental variable.

In the homogeneous subgraphs perspective, the target
embedding zf"’ proj comes from the homogeneous sub-
graphs perspective, while the positive and negative sample
embedding zZe proj come from the heterogeneous subgraphs
perspective.

Similarly, the loss in the heterogeneous subgraphs per-
spective is:

Zje]}”,- exp (sim (zf""proj, z?”proj) /r)

> ke(piun;) €XP (sim (¢ proj, 2} proj) /7).
(14)

h
L7¢=—1log

The difference lies in the fact that the target embedding
zf‘e proj comes from the heterogeneous subgraphs perspec-
tive, while the positive and negative sample embedding
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zZ” proj come from the homogeneous subgraphs perspec-
tive.
Therefore, the contrastive loss is as follows:

1 o e
Lm,,zm;[/\-ﬁﬁ +(1—,\).£f], (15)

where A is used to balance the losses from the two subgraphs.
The cross-entropy loss function can be described as:

Lye=—Y_ Yy In(C-Z"), (16)
VEYI

Lyp=—Y Yy -In(C-Z"), (17)
vey

where y;, represents the labeled nodes set, Y, is the true label
of node v;, and C represents the parameters of the classifier.
The cross-entropy loss is defined as follows:

Leyo =uLpe + (1 — w)Lpyo, (18)

where u is used to balance the losses from two subgraphs.

Finally, by combining the contrastive loss L., and the
cross-entropy loss L., our overall loss function for SSGCL-
LG can be represented as follows:

L=71tLeon + (1 —1)Lero. (19)

Algorithm 1 describes the main flow of the enhanced rep-
resentation of the target node attributes.

5 Experiments

In this section, we conduct extensive experiments to demon-
strate the performance of SSGCL-LG. Specifically, we show
the excellent performance of our method through node clas-
sification, node clustering, and visualization. Additionally,
label importance analysis experiments, ablation experiments,
and parameter analysis experiments further prove the effec-
tiveness of SSGCL-LG.

5.1 Datasets

To evaluate the effectiveness of the proposed framework
for attribute completion, we utilize three common Het-
erogeneous Information Network (HIN) datasets. Table 1
summarizes the statistical data of these three datasets.

Algorithm 1 The algorithm of attribute enhancement.

Input: the heterogeneous graph G, the node feature X, the heteroge-
neous Subgraphs G”¢, the heterogeneous Subgraphs G"°, the label
graph GV

Output: the node embedding Z"¢ and Z"°

1: Project the node feature X into a unified dimension according to
1).

2: for G e (G"°, ..., G"¢} do

3:  Calculate the heterogeneous Subgraphs embedding H,f“’ accord-
ing to (4);

4: end for

: forn € M do

6:  Calculate the weight of heterogeneous Subgraphs «,, according
to (6)

7: end for

8: Calculate different heterogeneous Subgraphs embedding Z’¢
according to metapaths

9: Z"anday, € {or ..., 00}

10: for G € {G"*, ..., G?} do

11:  Calculate heterogeneous Subgraphs Weight matrix according to
the number of metapaths wZ o

12: end for

13: Calculate homogeneous Subgraphs w"’ according to (7).

14: Connect homogeneous Subgraphs w”® and label graph G* accord-
ing to (8);

15: Calculate the heterogeneous Subgraphs embedding H,f"" according
to (9).

16: Return Z"°

W

ho

Table 1 Statistics of datasets

Datasets Nodes Edges Metapaths

ACM Paper(P) P-A:13407 PAP
Author(A) P-S:4019 PSP
Subject(S)

IMDB Movie(M) M-D:4278 MAM
Director(D) M-A:12828 MDM
Actor(A)

DBLP Author(A) P-A:19645 APA
Paper(P) P-V:14328 APVPA
Venue(V) P-T:85810 APTPA
Term(T)

e ACM': This is an academic network that includes three
different types of nodes: 4,019 papers, 7,167 authors,
and 60 subjects. The target nodes are papers, which are
categorized into three different classes.

e IMDB?: This is a movie network that comprises three
different types of nodes: 4,278 movies, 2,081 directors,
and 5,257 actors. The target nodes are movies, which are
categorized into three different classes

! https://dl.acm.org/
2 http://www.imdb.com/

@ Springer


https://dl.acm.org/
http://www.imdb.com/

10064

C.Lietal

e DBLP3: This is also an academic network, contain-
ing four different types of nodes: 4,057 authors, 14,328
papers, 20 conferences, and 7,723 terms. The target nodes
are authors, which are categorized into four different
classes.

5.2 Baselines

We compare the proposed SSGCL-LG with three categories
of baselines: Method based on homogeneous graph (GCN
[11], GAT [13]), Method based on metapaths (HAN [20],
RoHe [26], MAGNN [21], HPN [27]), Method based on
Relation-aware (HGSL [24], HGT [23], ie-HGCN [25]).

e GCN(2017) [11]: A semi-supervised graph convolu-
tional network primarily designed for homogeneous
graphs. In this paper, GCN is applied to all meta-paths of
heterogeneous graphs and achieves the best performance.

e GAT(2018) [13]: It employs a multi-head attention
mechanism to assign weights to each neighboring node,
mainly targeting homogeneous graphs. In this paper,
GAT is applied to all meta-paths of heterogeneous graphs
and achieves the best performance.

e HAN(2019) [20]: This model generates node embedding
by performing hierarchical aggregation of neighborhood
features based on meta-paths, learning the importance
from both the node level and the semantic level.

e MAGNN(2020) [21]: This model generates node embed-
ding by applying node content transformation,intra-
meta-path aggregation, and inter-meta-path aggregation.

e HGT(2020) [23]: It introduces an attention mechanism
related to vertex and edge types.

e ie-HGCN(2023) [25]: ie-HGCN is a relation extrac-
tion model based on graph neural networks that uses a
combination of various relation representation methods,
effectively capturing dependencies and contextual infor-
mation between entities.

e HGSL(2021) [24]: It generates a heterogeneous graph
structure suitable for downstream tasks by mining feature
similarity, the interaction between features and structure,
and the high-order semantic structure in heterogeneous
graphs, and jointly learns GNN parameters.

e RoHe(2022) [26]: RoHe employs an attention purifier
that can prune malicious neighbors based on topology
and features, thus eliminating the negative influence of
malicious neighbors in the soft attention mechanism.

e HPN(2022) [27]: HPN is a graph neural network model
for graph classification that enhances model performance
through hierarchical graph pooling and structure learn-
ing, effectively handling graph structures at different
levels.

3 https://github.com/cynricfu/MAGNN

@ Springer

e SSGCL-LG(ours): It integrates label information into
the learning process of graph neural networks by con-
structing a labeled graph and building positive samples
related to labels.

5.3 Metrics

In this study, we employed multiple evaluation metrics to
assess the performance of the models. These metrics cover
different aspects of model performance, including classifica-
tion accuracy, clustering consistency, and class distribution.

e Micro-F1: Micro-F1 is one of the commonly used
evaluation metrics in multi-class classification tasks. It
combines precision and recall and is suitable for datasets
with imbalanced class distributions. The formula for
Micro-F1 is as follows:

. 2 x (Micro — Precision x Micro — Recall)
Micro—F1 =

Micro — Precision + Micro — Recall

Where, Micro-Precision represents micro-precision,
defined as the ratio of correct predictions for all classes
to all predicted instances. Micro-Recall represents micro-
recall, defined as the ratio of correct predictions for all
classes to all true labels.

e Macro-F1: Macro-F1 is another commonly used eval-
uation metric in multi-class classification tasks, which
computes the average F1 score for each class. The for-
mula for Macro-F1 is as follows:

2 x (Precision; x Recall;)

N

Macro—Fl:lZ —

N = Precision; + Recall;
Where, N denotes the number of classes, Precision;
and Recall; represent precision and recall, respectively,
for class i.

e NMI (Normalized Mutual Information): NMI is a
commonly used evaluation metric in clustering tasks,
measuring the consistency between clustering results and
true labels. The formula for NMI is as follows:

1(X;Y)
JHX) x H(Y)

Where, I(X; Y) denotes mutual information, measuring
the correlation between two random variables X and Y
H (X) and H (Y) denote the entropy of random variables
X and Y, respectively.

e ARI (Adjusted Rand Index): ARI is another commonly
used evaluation metric in clustering tasks, evaluating
clustering effectiveness by comparing the consistency

NMI =


https://github.com/cynricfu/MAGNN
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between clustering results and true labels with the consis-
tency between random clustering results and true labels.
The formula for ARI is as follows:

()@ G
U (@) + 3 O —1 &) X, ()1/6)

Where, n;; represents the number of samples simulta-
neously belonging to class i and class j; a; represents
the number of samples belonging to class i in clustering
results; b; represents the number of samples belonging
to class j in true labels; n represents the total number of
samples.

ARI

These evaluation metrics comprehensively consider the
model’s performance in classification and clustering tasks,
providing important references for the objective assessment
of research results.

5.4 Experimental setting

To ensure fairness, we use the same training, validation, and
testing sets for all methods in this study. Moreover, we set the
same dimensional embedding for all methods compared. The
hidden layer dimension is set to 64 for all compared methods.
The attention mechanism is extended to multi-head attention,
and the number of attention heads K is set to 8, as this is found
experimentally to produce more stable results.

Node classification experiments, node clustering experi-
ments, ablation experiments, attention analysis experiments,
and parameter analysis experiments all utilized the ACM,
IMDB, and DBLP datasets. Label importance analysis used
the IMDB dataset.

5.5 Node classification

In this section, we first evaluate the node classification
results of SSGCL-LG in a semi-supervised setting. Specifi-
cally, we input the node representation into a Support Vector
Machine (SVM) for classification, dividing the data into dif-
ferent training ratios from 20% to 80%, and using Micro-F1
and Macro-F1 as evaluation metrics. Conduct five repeated
experiments and report the average results. The best results
are highlighted in bold. The results are shown in Table 2.

Models based on heterogeneous graphs typically outper-
form models based on homogeneous graphs (GCN, GAT). It
is evident that directly applying homogeneous graph mod-
els to heterogeneous graphs is not feasible, as heterogeneous
graphs contain a greater variety of node and edge types, more
complex information, necessitating research into more suit-
able heterogeneous graph models.

Compared to metapath-based heterogeneous graph mod-
els (HAN, RoHe, MAGNN, HPN), on the ACM dataset,

Macro-F1 and Micro-F1 have increased by 1.5% and 1.4%
respectively compared to HAN, by 1.4% and 1% respectively
compared to RoHe, by 0.8% and 1% respectively compared
to MAGNN, and by 1% and 1.7% respectively compared
to HPN. On the IMDB dataset, Macro-F1 and Micro-F1
have increased by 3.4% and 3.0% respectively compared to
HAN, by 3.0% and 2.2% respectively compared to RoHe,
by 2.2% and 2.2% respectively compared to MAGNN, and
by 1.7% and 1.7% respectively compared to HPN. On the
DBLP dataset, Macro-F1 and Micro-F1 have increased by
2.2% and 2.8% respectively compared to HAN, by 2.8%
and 2.2% respectively compared to RoHe, by 1.4% and
1.4% respectively compared to MAGNN, and by 2.2% and
2.2% respectively compared to HPN. The reason for these
improvements is that HAN, RoHe, MAGNN and HPN are
models built on homogeneous graphs derived from meta-
paths, considering only the information of the target nodes
and ignoring the information of other types of nodes. SSGCL-
LG, on the other hand, decomposes the heterogeneous graph
into multiple meta-path-based subgraphs of both homoge-
neous and heterogeneous types, which allows it to better
capture the information of both homogeneous and hetero-
geneous neighbors in the heterogeneous graph.

Compared to metapath-based heterogeneous graph mod-
els (HGSL, HGT, ie-HGCN), on the ACM dataset, Macro-F1
and Micro-F1 have increased by 0.7% and 1.7% respec-
tively compared to HGSL, by 1.7% and 1.7% respectively
compared to HGT, and by 0.7% and 0.7% respectively com-
pared to ie-HGCN. On the IMDB dataset, Macro-F1 and
Micro-F1 have increased by 3.1% and 4.2% respectively
compared to HGSL, by 4.2% and 4.2% respectively com-
pared to HGT, and by 0.7% and 0.7% respectively compared
to ie-HGCN. On the DBLP dataset, Macro-F1 and Micro-F1
have increased by 1.3% and 6% respectively compared to
HGSL, by 6% and 6% respectively compared to HGT, and
by 1.2% and 1.2% respectively compared to ie-HGCN.. The
reason for these improvements is that while HGSL, HGT
and ie-HGCN although consider the information of hetero-
geneous nodes, they only use labels for calculating loss,
and the learning process cannot access label information.
SSGCL-LG, on the other hand, encodes labels into the learn-
ing process of the graph neural network, fully considering the
information of the labels.

5.6 Node clustering

In this section, the K-means method is employed to cluster
the embedding vectors obtained from the model. The param-
eter K for K-means is set to the number of label categories in
the dataset, which corresponds to the actual number of node
categories. The clustering results are evaluated using NMI
(Normalized Mutual Information) and ARI (Adjusted Rand
Index). NMI measures the closeness of the clustering results,
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Table 2 Experiment results (%) for the node classification task

Datesets ~ Metrics Ratio GCN  GAT HAN  MAGNN  HGT HGSL  RoHe HPN ie-HGCN  SSGCL-LG
ACM Macro-F1 20% 90.51 89.09  90.71  90.02 91.53 9243 9122  92.08 91.35 92.65
40% 90.68 8932 9133  91.39 91.68  92.58 91.61 9227  92.14 93.22
60% 90.8 89.43  91.73  92.18 91.81  92.73 92.09 92,52 9259 93.52
80% 90.58 8933 9191  92.67 91.82  92.83 92.08 9252 9279 93.51
Micro-F1 20% 9049  89.2 90.59  89.94 91.62  92.38 91.13 9196  91.27 92.73
40% 90.68  89.4 9122 9138 91.79 9254 91.52 92116  92.11 93.13
60% 90.79 8949 916 92.13 9191  92.69 91.97 9239 9253 93.34
80% 90.56  89.4 91.76  92.61 91.9 92.77 91.94 9238 9273 93.39
IMDB Macro-F1 ~ 20% 49.03  58.6 58.11  57.87 57.14  58.14 58.05 60.72  58.24 61.49
40% 49.15  58.67 5856  59.23 57.38  58.07 58.61 61.25 5933 62.01
60% 49.71 5878 5873  59.72 57.63  58.51 59.07 6142  59.65 62.24
80% 4994  58.6 58.88  59.94 57.99  59.13 59.01 61.57 59.87 62.24
Micro-F1 20% 4943 5874  58.14  57.89 57.4 58.26 58.3 60.67  58.16 61.53
40% 49.63  58.84 5858  59.29 57.6 58.05 58.88 6122  59.26 62.03
60% 4995 5892 5872 598 57.78  58.47 59.33 6138  59.57 62.24
80% 50.12  58.8 5891  60.06 5772 59.09 59.29 6158  59.82 62.27
DBLP Macro-F1 ~ 20% 89.04 89.76  92.63  93.75 88.65 93.72 9194 9283 9273 94.7
40% 89.05 89.75 9287 93.83 88.98  93.65 9222 9288  93.57 95.05
60% 89.01  89.77 93.05 93.81 89.22  93.81 9229 9299  93.66 95.05
80% 89.17 89.83 93.16 94.1 89.37  94.09 92.61 93.16  94.09 95.37
Micro-F1 20% 89.71  90.53 932 94.2 89.7 94.19 9244 9338  93.24 95.08
40% 89.72  90.53 9343  94.26 89.99  94.09 9273 9343 94 95.43
60% 89.7 90.56  93.61 94.25 90.25  94.23 92.83 9355 94.1 95.44
80% 89.95 90.61 93.69 9451 90.4 94.52 93.11 93.69  94.47 95.72

while ARI reflects the degree of overlap in the partitioning.
The closer the NMI or ARI results are to 1, the better the clus-
tering results are considered to be. The experimental results
are shown in Table 3, with the optimal results highlighted in
bold.

From the Table 3, it is evident that the SSGCL-LG model
generally outperforms other models. Analysis indicates that
our model fully takes into account the information of node

labels and, through contrastive learning, regards nodes with
the same label as positive samples. This approach allows
nodes of the same category to cluster more effectively, hence
demonstrating better clustering performance.

To perform the visualization task and provide a more
intuitive comparison, we learn the node embedding of the
aforementioned methods (i.e., MAGNN, ie-HGCN, HGSL,
HPN, RoHe, SSGCL-LG) on the DBLP dataset and project

Table 3 Experiment results (%)

for the node clustering task Datasets ACM DBLP IMDB

Metrics NMI ARI NMI ARI NMI ARI

HAN 0.7125 0.7515 0.7278 0.7833 0.1196 0.1197
MAGNN 0.7016 0.7214 0.7867 0.8400 0.1308 0.1276
HGT 0.6409 0.6646 0.6628 0.6543 0.1446 0.1176
HGSL 0.7025 0.7425 0.7632 0.7938 0.0621 0.0878
RoHe 0.6492 0.6810 0.6290 0.6984 0.1239 0.1294
HPN 0.7185 0.7598 0.7906 0.8479 0.1563 0.1498
ie-HGCN 0.4947 0.3489 0.3233 0.2721 0.1308 0.1304
SSGCL-LG 0.7357 0.7562 0.8211 0.8822 0.1658 0.1712
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(d) HPN

Fig.5 Visualization

the embedding into two-dimensional space. Then, we used
T-SNE to visualize the paper embedding in DBLP, coloring
the nodes based on their classes.

As shown in Fig. 5, SSGCL-LG demonstrates clearer
boundaries and denser clustering structures, which helps to
distinguish different categories in visualization. This indi-
cates that labels can contain rich information. By integrating
label information into the learning process of node represen-
tation through the label graph, we can effectively distinguish
nodes of different categories, significantly improving the
model’s performance, and effectively differentiating papers
belonging to different research fields.

5.7 Ablation experiments

To verify the effectiveness of different components of
SSGCL-LG, we designed three variants of SSGCL-LG and
compared their classification performance with SSGCL-LG.

(f) SSGCL-LG

The notation is shown in Table 4, and the comparison results
are shown in Fig. 6.

From Fig. 6, it can be seen that the performance of the
complete SSGCL-LG model is superior to that of its vari-
ants. The SSGCL-LG model integrates label information into
the learning process of the neural network by constructing a
label graph. Indeed, labels contain valuable information that
is beneficial for node classification. Additionally, during the
contrastive learning process, SSGCL-LG treats nodes with
the same label as positive samples for each other, aiming
to utilize the supervisory information present in the exist-
ing data for network training. By leveraging the supervisory
signals contained in both labeled and unlabeled data, the
SSGCL-LG model can learn node representation more effec-
tively. This learning approach ensures that nodes from the
same class are more closely clustered together in the rep-
resentation space, making them more distinguishable from
nodes of different classes.

Table 4 Description of the

ablation experiments symbol -w/o-w label

-w/o-pos label

-w/o-w label-pos label

Delete the label in the label graph
Delete the label in the positive sample

Delete the labels in the label diagram and the positive sample
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(a) ACM

Fig.6 Ablation experiments

5.8 Label importance analysis

To verify the importance of labels in the model, we re-divided
the training set and selected subsets of different proportions
for experiments on the IMDB dataset. The experimental
results, as shown in Fig. 7(a), indicate that as the number
of training samples increases, the performance of the model
also gradually improves. This demonstrates that the quantity
of labels has a significant impact on the performance of the
model. Notably, among all the models compared, our model
exhibits the most outstanding performance.

To further verify the effectiveness of labels, we conduct an
ablation experiment by removing the labels from the model,
including the labels in the heterogeneous node graph and the
positive samples. The results, as shown in Fig. 7(b), indicate
that when the number of training samples is very small, the
performance of the ablated model is superior to that of the
complete model. Our analysis find that when the number of
training samples is very small, the label graph is too sparse,
causing the model to fail to learn effective information from

HAN— MAGNN
62 HPN RoHe
ours ours-label

58 1 /

Macro-F1(60%)
£
1

46 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Ratio(%)

(a) a

Fig.7 Label importance analysis
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the labels, thereby reducing the model’s performance; as the
number of training samples increases, the model can grad-
ually learn more label information, hence the performance
also gradually improves.

Compared to the ablated model, the performance improve-
ment of our model is more pronounced. Because, as the
number of training samples increases, the number of avail-
able labels also increases, allowing the model to learn useful
information from the labels more effectively.

5.9 Attention analysis

To verify the effectiveness of the strategy where heteroge-
neous subgraphs under the meta-path guide the fusion of
homogeneous subgraphs during aggregation, as opposed to
aggregating under the meta-path’s homogeneous subgraphs
alone, we compared the guided fusion strategy (ours) with
a channel attention strategy (ours-channel attention). The
results of the comparison are shown in the Fig. 8.

63 ours
ours-label

62

614

60

59

Macro-F1(60%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio(%)

(b) b
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Fig.8 Attention analysis

From Fig. 8, it can be seen that the strategy of using
heterogeneous graphs to guide the fusion of homogeneous
subgraphs is more effective than using channel attention.

In heterogeneous graphs, heterogeneous subgraphs are
composed of nodes with specific meta-paths. Heterogeneous
subgraphs can provide richer local structural information
because they include interactions between all types of nodes
within the meta-path. During the learning process of het-
erogeneous subgraphs, semantic-level attention is used to
fuse representation under different heterogeneous subgraphs,
and this semantic-level attention utilizes node features.
Therefore, when aggregating heterogeneous subgraphs using
attention mechanisms, it is possible to better distinguish the
importance of different meta-paths.

In contrast, homogeneous subgraphs only contain nodes
of the target type, so when aggregating with attention mecha-
nisms, only the importance of individual nodes is considered,
which does not adequately summarize the importance of dif-

ferent meta-paths. Therefore, compared to channel attention
mechanisms, the strategy of guiding the fusion of homo-

GOSN

(a) ACM

Fig.9 Parameter sensitivity

0 ours-channel attention

Ratio (%)

(b) DBLP

(b) DBLP

6259 B ours

1 ours-channel attention

62.04

Micro-F1 (%)

61.59

60 80 20 10 60 80
Ratio (%)

(c) IMDB

geneous subgraphs with heterogeneous subgraphs under
meta-paths is more effective.

5.10 Parameter analysis

In this section, we investigate the sensitivity of important
parameters. We conduct a parameter analysis on the number
of layers in the homogenous subgraphs and the number of
layers in the heterogeneous subgraphs.

As shown in Fig. 9, the performance of node classification
generally shows a trend of first increasing and then decreas-
ing with the increase in the number of neural network layers.
This is because when nodes aggregate information from their
neighbors, the state updates of the nodes typically only con-
sider information from one-hop neighbors. Therefore, the
number of network layers reflects how many hops of neighbor
information a node can integrate. During the training process,
when the network layers are shallow, nodes may not be able
to gather sufficient effective information, which can nega-
tively impact classification performance. As the number of
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network layers increases, nodes can integrate more effective
information, thereby improving classification results. How-
ever, when the number of layers reaches a certain threshold,
the nodes in the entire network may exhibit overly similar
features, a phenomenon known as over-smoothing, which
can lead to a decline in performance.

6 Conclusion

This paper proposes a semi-supervised heterogeneous graph
contrastive learning model guided by label information,
aiming to fully utilize label information and enrich the super-
visory signal through contrastive learning. To address the
first challenge, we construct a label graph, explicitly encod-
ing label information into the learning process of the graph
neural network, achieving joint representation learning of
labels and nodes. To tackle the second challenge, when con-
structing positive and negative samples for graph contrastive
learning, we introduce a method that jointly selects posi-
tive samples using both labels and meta-paths and utilizes
contrastive loss to maximize the consistency between homo-
geneous and heterogeneous views. Extensive experiments
conducted on various datasets fully demonstrate the supe-
riority of the algorithm compared to others. Given the broad
application prospects of heterogeneous graph neural network
models, in the future, we will explore the construction of het-
erogeneous graph structures for legal judgment documents,
as well as legal judgment prediction and legal text recommen-
dation based on heterogeneous graph neural network models.
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