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Abstract
Semi-supervised feature selection plays a crucial role in semi-supervised classification tasks by identifying the most informa-
tive and relevant featureswhile discarding irrelevant or redundant features.Many semi-supervised feature selection approaches
take advantage of pairwise constraints. However, these methods either encounter obstacles when attempting to automatically
determine the appropriate number of features or cannot make full use of the given pairwise constraints. Thus, we propose a
constrained feature weighting (CFW) approach for semi-supervised feature selection. CFW has two goals: maximizing the
modified hypothesis margin related to cannot-link constraints and minimizing the must-link preserving regularization related
to must-link constraints. The former makes the selected features strongly discriminative, and the latter makes similar samples
with selected features more similar in the weighted feature space. In addition, L1-norm regularization is incorporated in
the objective function of CFW to automatically determine the number of features. Extensive experiments are conducted on
real-world datasets, and experimental results demonstrate the superior effectiveness of CFW compared to that of the existing
popular supervised and semi-supervised feature selection methods.

Keywords Semi-supervised learning · Feature selection · Feature weighting · Pairwise constraint · Hypothesis margin

1 Introduction

For decades, semi-supervised learning has yielded promising
results in situations where obtaining labeled data is an expen-
sive or time-consuming process. As a pre-processing method
in the semi-supervised learning domain, semi-supervised
feature selection aims at identifying a subset of relevant
and informative features from a large set of input fea-
tures [1, 2]. By leveraging both labeled and unlabeled data,
semi-supervised feature selection methods can enhance the
performance of models by incorporating the underlying
data structure information furnished by the unlabeled data.
Presently, feature selection has some practical applications,
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such as cancer classification [3, 4], text classification [5, 6],
and image classification [7].

Researchers have proposed numerous semi-supervised
feature selection methods. From the perspective of the input
semi-supervised information, two types of learning frame-
works are available for these methods: label-guided and
constraint-guided frameworks. A label-guided framework
provides a labeled dataset containing a few labeled sam-
ples and many unlabeled samples, while a constraint-guided
framework addresses a constrained dataset containing some
pairwise constraints and numerous unlabeled samples. Note
that a labeled dataset can be transformed into a constrained
dataset in the meaning of neighborhood, but not vice versa.
Thus, the methods utilizing these two learning frameworks
intersect. We do not discuss the possible transformations
between these two types of frameworks here, we simply
describe methods that operate under these two paradigms.

Generally, semi-supervised algorithms are mainly con-
structed from supervised methods, unsupervised methods,
and both types of methods under the label-guided frame-
work [3, 8–12]. Some examples are given as follows. The
neighborhood discrimination index (NDI) method is super-
vised [13], and a Laplacian score (LS) is unsupervised [14].
On the basis of the NDI and LS, Pang and Zhang proposed a
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semi-supervised neighborhood discrimination index (SSNDI)
[3] and a recursive feature retention (RFR) method [8] for
semi-supervised feature selection. The maximum-relevance
and minimum-redundancy (MRMR) criterion is supervised
[15], while the Pearson correlation coefficient (PCC) is unsu-
pervised [12]. Based on the MRMR criterion and the PCC,
a relevance, redundancy and Pearson criterion (RRPC) was
proposed [12]. A multi-class semi-supervised LIR (MSLIR)
method was proposed based on a supervised method called
logistic I-Relief (LIR) [11]. This approach assigns pseudo
labels to unlabeled data [9]. Tang and Zhang developed a
local preserving LIR (LPLIR) method by incorporating a
manifold regularization term into LIR [10]. A locality sen-
sitive discriminant feature (LSDF) algorithm was presented
based on the Fisher criterion and two adjacent graphs. This
method aims to maximize the margin between samples that
belong to different classes and discover the geometric struc-
ture of data using both labeled and unlabeled data [16]. It
is interesting to note that the LSDF algorithm can be easily
converted into a constrained-guided framework [17].

During the data annotation process, we may not know
anything about the labels of samples without a priori knowl-
edge, but we may judge whether two samples are similar or
not. Constraints are binary annotations that indicate whether
two samples are similar (must-link constraints) or not simi-
lar (cannot-link constraints) [18, 19]. In the constraint-guided
framework, algorithms can utilize constraints and unlabeled
information by constructing graphs. Classic supervised con-
straint scores (CSs) were proposed to evaluate the relevance
of features using Laplacian matrices constructed according
to pairwise constraints [20]. On the basis of CSs, many
graph-based semi-supervised constraint scores have been
proposed. Benabdeslem and Hindawi [21] introduced a new
semi-supervised method based on CSs, called constrained
Laplacian score (CLS). CLS uses the given must-link and
cannot-link constraints to construct adjacent graphs and then
corresponding Laplacianmatrices. Salmi et al. [17] proposed
a new constraint score based on a similarity matrix, called
the similarity-based constraint score (SCS). The SCS can be
implemented in the selected feature subspace, and it con-
structs similarity graphs to evaluate the relevance of feature
subsets. Samah et al. [22] developed a basic Relief with side
constraints (Relief-SC) algorithm that adopts only cannot-
link constraints to solve a simple convex problem in a closed
form. Chen et al. [23] took advantage of CSs and Relief-SC
and then explored a new semi-supervised method called an
iterative constraint score based on hypothesis margin (HM-
ICS). This method not only considers the relevance between
features but also calculates the hypothesis margin of a single
feature.

Under the constraint-guided framework, the above semi-
supervised methods cannot automatically determine the
optimal number of features, which is the main issue faced

by these methods. In addition, Relief-SC is unable to fully
utilize pairwise constraints, which causes it to miss the infor-
mation provided by must-link constraints, and it is sensitive
to the given cannot-link constraints because of a lack of ade-
quate neighborhood information.

To overcome the drawbacks of Relief-SC, this study pro-
poses a novel semi-supervised feature selection approach,
called constrained feature weighting (CFW). By utilizing the
hypothesis margin idea derived from Relief-SC, CFW mod-
ifies the definition of the hypothesis margin calculated from
cannot-link constraints to enrich the available neighborhood
information. By adjusting the hypothesis margin in a loga-
rithmic manner and introducing an L1-norm regularization
term, the optimization process of CFW tends to produce a
sparse solution, effectively selecting only the most informa-
tive features with non-zero weights and leading to a more
compact and interpretable model. Moreover, CFW designs
a must-link preserving regularization that contains the infor-
mation provided by must-link constraints, which can be used
to make similar samples with selected features more similar
in the weighted feature space. The main contributions of this
study are as follows.

• We redefine the process of calculating the hypothesis
margin to reduce its sensitivity to cannot-link constraints.
The modified hypothesis margin is derived frommultiple
nearest neighbors of the cannot-link constraints, whose
probabilities are also considered to ensure the robustness
of the selection process.

• Wedesign amust-link preserving regularization that con-
tains information provided by must-link constraints. Our
goal is to minimize this regularization to maintain the
desired relationships between the input samples. In this
case, similar (or must-link) samples are more similar in
the weighted feature space.

• We propose CFW based on the modified hypothesis mar-
gin concept and the must-link preserving regularization.
CFWmakes full use of pairwise constraints and the given
unlabeled data, where the modified hypothesis margin
depends on the cannot-link constraints and unlabeled
samples, and the must-link preserving regularization
considers the information contained in themust-link con-
straints. In addition, CFW can automatically determine
the optimal number of features by incorporating the L1-
norm regularization term into its objective function.

The remainder of this paper is organized as follows.
Section 2 provides a brief explanation of the pairwise con-
straints and algorithms related to the hypothesis margin. In
Section 3, we describe our proposed method in detail. Fur-
thermore, experimental results are presented in Section 4.
Finally, Section 5 concludes this paper.
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2 Related work

In this section, we briefly review some constraint-guided
methods: CS, LSDF, CLS, Relief-SC and HM-ICS. Under
a constraint-guided semi-supervised learning framework,
assume that we have two sets of pairwise constraints,M and
C, and a set X = {x1, · · · , xn} of unlabeled samples, where
xi = [xi1, · · · , xid ]T ∈ R

d is the i-th unlabeled sample, d is
the number of features, n is the number of samples,M is the
set of must-link constraints, and C is the set of cannot-link
constraints.

M = {(
xi , x j

) | xi and x j are similar
}

C = {(
xi , x j

) | xi and x j are dissimilar
} (1)

Let F = { f1, · · · , fd} be the set of feature indexes, and
F = [f1, · · · , fd ] ∈ R

n×d be the feature matrix, where fr =
[x1r , · · · , xnr ]T ∈ R

n is the r -th feature vector.

2.1 CS

Algorithms under the constraint-guided framework are often
designed according to the basic CS method. The original CS
method is supervised and computes a score for each feature
according to both M and C [20]. For a feature fr ∈ F , the
score function is as follows:

CS( fr ) =
∑

(xi ,x j)∈M
(
xir − x jr

)2

∑
(xi ,x j)∈C

(
xir − x jr

)2 (2)

CS can be expressed inmatrix form using similaritymatri-
cesWM andWC , which can be constructed by constraint sets
M and C, respectively. That is

WM
i j =

{
1, if

(
xi , x j

) ∈ M or
(
x j , xi

) ∈ M
0, otherwise

(3)

and

WC
i j =

{
1, if

(
xi , x j

) ∈ C or
(
x j , xi

) ∈ C
0, otherwise

(4)

whereWM
i j andWC

i j are the i-th and j-th entries ofWM and

WC , respectively.
Then CS can be expressed as

CS( fr ) = fTr L
Mfr

fTr LCfr
(5)

According to CS, some semi-supervised CS methods, such
as LSDF [16] and CLS [21], have been proposed.

2.2 LSDF

Zhao et al. [16] proposed LSDF, where WM is substituted
withWK NN . This approach constructs the similarity matrix
WK NN using both must-link constraints and unlabeled data
samples. That is

WKNN
i j =

⎧
⎪⎪⎨

⎪⎪⎩

γ, if
(
xi , x j

) ∈ M
1, if

(
xi ∈ XU or x j ∈ XU

)
and(

xi ∈ K NN
(
x j

)
or x j ∈ K NN (xi )

)

0, otherwise

(6)

where γ serves as a constant, K NN (x j ) denotes the set of k
nearest neighbors of the sample x j , and XU ⊂ X is the set
of unlabeled samples.

The feature score formula for LSDF is as follows:

LSDF( fr ) = fTr L
K NN fr

fTr LCfr
(7)

where LK NN = DK NN − WK NN , LK NN is the unnormal-
ized constrained Laplacian matrix of WK NN , and DK NN is
the diagonal matrix that is calculated fromWK NN .

2.3 CLS

Benabdeslemet al. [21] proposed aCLSmethod thatmodifies
the similaritymatrix (6), ensuring that the k nearest neighbors
ormust-link constraints are close to each other. The similarity
matrixWCLS of CLS is formulated as follows:

WCLS
i j

=
{

wi j , if
((
xi , x j

) ∈ M)
or

(
xi ∈ K NN

(
x j

)
or x j ∈ K NN (xi )

)

0, otherwise
(8)

where the similarity valuewi j is computed by the heat kernel
function and has the form

wi j = exp

(

−δ2
(
xi , x j

)

2σ 2

)

, i, j = 1, 2, . . . , n (9)

δ
(
xi , x j

)
is the Euclidean distance between two samples xi

and x j , and σ is a scaling parameter.
CLS is defined in terms of Laplacian matrices as follows:

CLS ( fm) = fTmL
CLSfm

fTmLCDCLSfm
(10)

where LCLS = DCLS − WCLS , LCLS represents the unnor-
malized constrained Laplacian matrix of WCLS , and DCLS

is the diagonal matrix derived fromWCLS .
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2.4 Relief-SC

The hypothesis margin concept is derived from Relief-based
methods [9–11, 24]. The hypothesismarginρ(xi ) of a sample
xi is the difference between the distance from xi to its nearest
miss (or the nearest sample to xi in the opposite class) and
the distance from xi to its nearest hit (or the nearest sample
in the same class as that of xi ). That is,

ρ(xi ) = ∣∣xi − M(xi )
∣∣ − ∣∣xi − H(xi )

∣∣ (11)

whereH(xi ) is the nearest hit of xi , andM(xi ) is the nearest
miss of xi . Note that (11) is defined based on label informa-
tion. Thus, Relief-based methods are mostly supervised [11,
24], and the corresponding semi-supervised approaches are
under the label-guided framework [9, 10].

Under the constraint-guided learning framework, Samah
et al. [22] proposed Relief-SC using only cannot-link con-
straints C. In this case, the hypothesis margin is re-designed
for a cannot-link constraint and denoted by ρ

(
xi , x j

)
with

pairwise constraint
(
xi , x j

) ∈ C. Then, the hypothesis mar-
gin vector of

(
xi , x j

) ∈ C has the form shown below:

ρ
(
xi , x j

) = ∣∣xi − H
(
x j

)∣∣ − ∣∣xi − H
(
xi

)∣∣ (12)

In (12), the nearest miss of xi is given by H(x j ), which is
also the nearest hit of x j . The objective function of Relief-SC
can be described as follows:

max
w

wT

⎛

⎝
∑

(xi ,x j)∈C
ρ

(
xi , x j

)
⎞

⎠

s.t. ‖w‖22 = 1, w ≥ 0

(13)

where ‖ · ‖2 is the L2-norm of a vector, and w is the feature
weighting vector that reveals the impact of each feature on
enlarging themargin. In fact,w can also be considered feature
scores. The higher a weight value is, the more discriminative
the corresponding feature is.

2.5 HM-ICS

The above methods all give scores to features according to
some criteria related to pairwise constraints. However, these
methods ignore the correlation between features.

Based on (2) and (12), Chen et al. [23] proposed the HM-
ICS algorithm for semi-supervised feature selection. Let R
be the current selected feature subset. For any feature fr in
the candidate feature subset R̄ ⊂ F , HM-ICS calculates the
score of R ∪ { fr }, which is defined as follows:

J (R ∪ { fr }) = λICS (R ∪ { fr }) + (1 − λ)
1

wr + γ
(14)

where ICS (R ∪ { fr }) is the iterative form of the CS for the
subset R ∪ { fr }, λ ∈ [0, 1] is a regularization parameter,
γ > 0 is a constant parameter, and wr is the weight of fr ,
which is calculated by a modified Relief-SC algorithm. In
each iteration, HM-ICS selects the feature fr with the small-
est score J (R ∪ { fr }), R is updated by adding this feature,
and R̄ is updated by deleting it.

The iterative constraint score ICS (R ∪ { fr }) in HM-ICS
has the following form:

ICS (R ∪ { fr }) =
∑

ft∈R∪{ fr }
∑

(xi ,x j)∈M
(
xit − x jt

)2

∑
ft∈ R∪{ fr }

∑
(xi ,x j)∈C

(
xit − x jt

)2

(15)

ThemodifiedRelief-SC inHM-ICS simplifies the hypoth-
esis margin concept and defines a new margin formula as
follows [23]:

ρ
(
xi , x j

) = (∣∣xi − x j
∣∣ − ∣∣xi − H

(
xi

)∣∣) (16)

It can be seen that the difference between (16) and (12) is
that the modified Relief-SC strategy replacesH

(
x j

)
with x j

for simplicity.

3 Proposedmethod

This section discusses the proposed CFWalgorithm in detail.
We first provide a new way to calculate the hypothesis mar-
gin with cannot-link constraints and then design a must-link
preserving regularization that can maintain the underlying
relationships between samples. Next, we describe the objec-
tive function of CFW and its solution. Finally, we present
the algorithm description of CFW. We use the notations
mentioned before and assume that (X , F,M, C) is a semi-
supervised information system, where X is a set of unlabeled
samples, F is a set of feature indexes, andM and C are sets
of must-link and cannot-link constraints, respectively.

3.1 Modified hypothesis margin

For the first time, Relief-SC provides a way to calculate
the hypothesis margin based on cannot-link constraints [22],
as shown in (12). However, Relief-SC is sensitive to the
given cannot-link constraints. To remedy this drawback,
we redefine the hypothesis margin calculation process with
cannot-link constraints.

The sensitivity issue is caused by the lack of adequate
neighborhood information. Relief-SC calculates the hypoth-
esis margin with only one nearest hit for each of two
dissimilar samples in a cannot-link constraint. Thus, it is pos-
sible to enrich the neighborhood information by findingmore
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near hits. Considering a cannot-link constraint
(
xi , x j

) ∈ C,
we define its hypothesis margin as follows:

ρ
(
xi , x j

) =
∑

xs∈NH(x j)

P
(
xs = H

(
x j

) |w) |xi − xs | −
∑

xs∈NH(xi )

P (xs = H (xi ) |w) |xi − xs |

(17)

where NH (xi ) represents the set containing the k nearest
neighbors of sample xi under the weighted feature space,
and P (xs = H (xi ) |w) denotes the probability that xs is the
nearest hit of xi under the weighted feature space. One pos-
sible way to calculate the probability is

P (xs = H (xi ) | w) = exp (−‖xi − xs‖w /σ)
∑

xs∈NH(xi ) exp (−‖xi − xs‖w /σ)

(18)

where ‖xi − xs‖w = ∑d
r=1 ws |xir − xsr | refers to the

weighted distance between xi and xs under the weighted fea-
ture space, and σ > 0 is a preset parameter.

Equation (17) improves the process of calculating the
hypothesis margin (12) from two perspectives. First, (17)
considers not only the k nearest neighbors of xi and x j sep-
arately but also their probabilities of being the nearest hit,
which enriches the neighborhood information and alleviates
the sensitivity of (12) to constraints. Second, the hypothesis
margin in (17) is calculated in the weighted feature space,
which adaptively adjusts the margin with feature weights
during the iteration process and then finds discriminative fea-
tures.

3.2 Must-link preserving regularization

As mentioned before, the hypothesis margin uses only the
information contained in the cannot-link constraints. To
incorporate the information provided by must-link con-
straints, we define a must-link preserving regularization that
can maintain the data structure of the must-link constraints
and make similar samples more similar. The must-link pre-
serving regularization in theweighted feature space is defined
as follows:

JR(w) =
∑

(xi ,x j )∈M

∥∥xi − x j
∥∥2
w =

∑

(xi ,x j )∈M

∥∥w � xi − w � x j
∥∥2

(19)

where the feature weight w ≥ 0, and � is the element-wise
multiplication operator.

In accordance with (19), the must-link preserving regu-
larization JR (w) describes the scatter of the similar samples
provided by the must-link constraints in the weighted feature
space induced by w. Minimizing JR (w) means that simi-
lar samples should be as close as possible in the weighted
feature space. In other words, the must-link structure in the
original space is maintained in the weighted feature space,
as a smaller distance signifies a stronger similarity between
the corresponding samples.

Now, we express the must-link preserving regularization
in matrix form. First, we need to construct a similarity graph
SM according to themust-link constraintsM by taking sam-
ples in the set X as vertices. In this graph, if

(
xi , x j

) ∈ M,
then an edge exists between them. Thus, the similaritymatrix
SM is represented as follows:

SMi j =
{
1, if

(
xi , x j

) ∈ M or
(
x j , xi

) ∈ M
0, otherwise

(20)

where SMi j is the i-th and j-th entries of SM. For simplifi-
cation, let mi be the weighted image of xi in the weighted
feature space; that is, mi = w � xi , i = 1, · · · , n. By sub-
stituting mi , i = 1, · · · , n and SM into (19), we obtain

JR (w) =
∑

(xi ,x j)∈M

∥∥mi − m j
∥∥2

=
n∑

i, j=1

∥∥mi − m j
∥∥2 SMi j

=
n∑

i, j=1

(
mi − m j

)T (
mi − m j

)
SMi j

= 2
n∑

i=1

DM
i i mT

i mi − 2
n∑

i, j=1

WM
i j mT

i m j

= trace
(
2MLMMT

)

(21)

where trace(·) denotes the sum of the diagonal elements of
a matrix, M = [m1, · · · ,mn] ∈ R

d×n , DM
i i = ∑n

j=1 S
M
i j

denotes the diagonal element of DM, and the Laplacian
matrix LM is defined as

LM = DM − SM (22)

Furthermore, M = FW because m = w � x, where F ∈
Rn×d is the featurematrix, andW = diag(w) is the diagonal
matrix. Obviously, JR (w) can be rewritten as

JR (w) = trace
(
2WTFTLMFW

)
(23)
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3.3 Optimization problem and solution

On the basis of the modified hypothesis margin (17) and the
must-link preserving regularization (23), we construct the
optimization problem for CFW. That is,

min
w

J (w) = log
(
1 + exp

(
−wT z

))
+ λ1‖w‖1 + λ2trace

(
WTQW

)

s.t. w ≥ 0

(24)

where z is the margin vector calculated by the cannot-link
constraints, ‖w‖1 is the L1-norm of w, Q = FTLMF ∈
R
d×d , the parameter λ1 ≥ 0 controls the sparsity level in the

weight vectorw, and the parameter λ2 ≥ 0 controls themust-
link information of the samples. Here, the margin vector z is
expressed by

z =
∑

(xi ,x j)∈C
ρ

(
xi , x j

)
(25)

where ρ
(
xi , x j

)
is defined in (17).

The objective function of (24) consists of three terms.
The first term in (24) is minimized to maximize the mod-
ified hypothesis margin calculated from the cannot-link
constraints. In addition, the exponential and logarithmic
functions are used to adjust the range of wT x and encourage
the model to produce accurate predictions. The second term,
‖w‖1, is the L1-norm regularization term, which encourages
sparsity in the weight vector w and can automatically select
features. A larger λ1 value leads to stronger sparsity enforce-
ment. The third term in (24) focuses on preserving a structure
similar to that provided by the must-link constraints in the
weighted feature space.

To solve CFW, we first prove that the optimization prob-
lem (24) is convex; thus it must have a globally optimal
solution. Then, we demonstrate how to use the gradient
descent method to obtain the final solution.

Theorem 1 Given the feature matrix F ∈ R
n×d and the

Laplacian matrix LM, the must-link preserving regulariza-
tion (19) is a convex function with respect tow, wherew ≥ 0.

Theorem 2 Given the feature matrix F ∈ R
n×d and the

Laplacian matrix LM, the optimization problem (24) is a
convex problem with respect to w, where w ≥ 0.

Corollary 1 Given the feature matrix F ∈ R
n×d and the

Laplacian matrix LM, the optimization problem (24) has
a global solution with respect to w.

The proofs of Theorems 1 and 2 are given in Appendices
A and B, respectively. Theorem 1 indicates that when the
margin vector z is fixed, JR (w) is a convex function with

respect to w. Theorem 2 implies that the problem in (24) is
a convex problem. For convex problems, it is known that
any locally optimal point is also globally optimal. Thus,
Corollary 1 holds true, and its proof can be omitted. Nat-
urally, the convex problem could be solved by applying the
gradient descent method.

For the purpose of applying the gradient descent method,
when the margin vector z is fixed, we need to find the first
partial derivative of J (w) with respect to w, which can be
expressed as follows:

∇ J (w) = ∂ J (w)

∂w
= − exp

(−wT z
)

1 + exp
(−wT z

)z+ λ1 + 2λ2w� q

(26)

where q = [Q11, · · · , Qdd ]T ∈ R
d is a vector composed of

the diagonal elements of Q. After obtaining ∇ J (w), we can
iteratively update the weight vector w. Let t be the iteration
variable. Then, we have

w (t) = w (t − 1) − η∇R(w(t − 1)) (27)

where 0 < η ≤ 1 is the learning rate. Due to the constraint
of w ≥ 0, w should abide by the following rules in each
iteration:

wr (t) =
{

wr (t), if wr (t) > 0
0, otherwise

, r = 1, . . . , d (28)

3.4 Algorithm description

CFW implements semi-supervised feature selection under
the constraint-guided learning framework. CFW maximizes
the hypothesis margin to magnify the discriminative features
using cannot-link constraints and minimizes the must-link
preserving regularization to strengthen the local structure of
the similar samples.

A detailed description of the proposed algorithm is given
in Algorithm 1. In step 1, CFW starts by initializing the fea-
ture weight vectorw(0) = [1, · · · , 1]T ∈ R

d and the margin
vector z(0) = [0, · · · , 0]T ∈ R

d , where d is the number
of features. Step 2 constructs a Laplacian matrix LM using
(22). Steps 3–7 iteratively update the weight vector w based
on the calculated margin vector until one of the preset con-
vergence conditions is satisfied. The final weight vector w is
returned in step 8.

Subsequently, we analyze the computational complexity
of CFW. The computational complexity of constructing the
Laplacian matrix LM by (22) is O

(
n2d

)
, where n is the

number of samples, and d is the number of features. Step
4 computes the margin vector z(t) via (25), which has a
computational complexity level of O (|C| nd), where |C| is
the number of cannot-link constraints. Step 5 updates w (t)
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Algorithm 1 CFW.
Input: Semi-supervised information system {X , F,M, C}, learning

rate η, regularization parameters λ1 and λ2, the maximum iterative
time T , and the permissive error θ ;

Output: Feature weight w;
1: Initialize w(0) = [1, · · · , 1]T ∈ R

d , and hypothesis margin vector
z(0) = [0, · · · , 0]T ∈ R

d , and t = 1;
2: Construct Laplacian matrix LM according to (22);
3: while t ≤ T and ‖w (t) − w (t − 1)‖2 > θ do
4: Calculate margin vector z(t) by (25);
5: Update weight vector w(t) by (26)–(28);
6: Let t ← t + 1;
7: end while

and has a computational complexity level of O (nd). In
each iteration, CFW has a computational complexity level
of O (|C| nd). Then the total computational complexity of
CFW is O

(
T |C| nd + n2d

)
.

Lastly, we delve into the properties of CFW. According
to Theorem 2 and Corollary 1, the problem formulated in
(24) is convex with respect to w and ensures a globally opti-
mal solution. CFW is guaranteed to converge if z(t) remains
fixed and the gradient descent method is applied to solve
(24). However, z(t) evolves during the iteration process. The
subsequent theorem explores how changes in z(t) influence
on the solution to (24).

Theorem 3 Given the learning procedure of CFW in Algo-
rithm 1, the following inequalities

J (w(t) | z(t)) ≤ J (w(t − 1) | z(t)) (29)

hold true, where J (w(t) | z(t)) represents the objective func-
tion J (w(t)) when z(t) is fixed, t ≥ 0.

The proof of Theorem 3 is provided in Appendix C.
Theorem 3 demonstrates that J (w(t)) represents a better
solution than J (w(t −1)) when z(t) is fixed, which could be
attributable to the gradient descent update rule. In essence,
regardless of changes in z(t), the solution derived in the cur-
rent iteration is better than the one from the previous iteration.

4 Experiments

To validate the feasibility and effectiveness of CFW, we
perform extensive experiments on nine public datasets. The
information of these datasets is listed in Table 1, including
the number of samples (# Sample), the number of features (#
Feature), and the number of classes (# Class) in each dataset.
The features contained in all datasets are normalized to the
interval of [0, 1].

All experiments were carried out in Pycharm 2020 and
run in a hardware environment with an Intel Core i9 CPU at
2.50 GHz and 32 GB of RAM.

Table 1 Description of nine datasets used in experiments

No. Dataset # Sample # Feature # Class

1 CNAE-9 1080 856 9

2 CNS 42 989 5

3 Colon 62 2000 2

4 Glioma 50 4434 4

5 Normal 90 1277 13

6 Novartis 103 1000 4

7 ORL 400 1024 40

8 Prostate-GE 102 5966 2

9 Sj-leukemia 248 985 6

4.1 Analysis of CFW

We analyze our proposed CFW method according to its
convergence, sparsity and discriminant ability, parameter
sensitivity, and number of constraints. Each of the nine
datasets [25–33] in Table 1 is randomly divided into a train-
ing set with 2/3 of the total samples and a test set with the
remaining samples. In addition, we randomly select samples
from the training set to construct a certain number of pairwise
constraints, where one half of the constraints are must-link
constraints, and the other half are cannot-link constraints.

4.1.1 Convergence

In experiments, we select 100 pairwise constraints, includ-
ing 50 must-link constraints and 50 cannot-link constraints.
Let η = 0.01 in (27), k = 5 in (17), which follows the set-
ting used in [16], and the regularization parameters λ1 = 1
and λ2 = 1. The convergence of CFW can be validated by
observing the variation exhibited by the objective function
with respect to the iteration variable. Thus, we consider only
the maximum number of iterations as the stop condition of
CFW and set T = 200.

Figure 1 shows the trend curves yielded by the objective
function vs. the number of iterations on the nine datasets.
From Fig. 1, we can see that the objective function arrives at
its minimum value after a certain number of iterations, which
indicates that CFW is convergent. Generally, CFWconverges
within 50 iterations on most datasets, such as CNS (Fig. 1b)
and Glioma (Fig. 1d). Notably, CFW can converge faster
or slower, depending on the utilized dataset. For example,
CFW converges quickly on the Colon dataset (Fig. 1c) and
slowly on the CNAE-9 dataset (Fig. 1a). In short, CFW is
convergent.

Based on the experiments conducted above, we find that
CFW converges within 100 iterations on all datasets, with
many requiring less than 50 iterations. To provide a compre-
hensive overview, we set the number of iterations to 100 and
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Fig. 1 Curves of objective function vs. iteration obtained by CFW on nine datasets, (a) CNAE-9, (b) CNS, (c) Colon, (d) Glioma, (e) Normal, (f)
Novartis, (g) ORL, (h) Prostate-GE, and (i) Sj-leukemia

summarize the running times required by the CFWalgorithm
on these datasets in Table 2.

Referring to Table 2, it is evident that the CFW demon-
strates commendable efficiency, with execution times under
one minute on five datasets. For instance, a mere 25 seconds
running time is required on the CNS dataset. The maximum
recorded running time for CFW is 321 seconds on theCNAE-

9 dataset. As analyzed in Section 3.4, the computational
complexity of CFW is related to only the sample number
n and the feature number d when T and C are given. Thus,
CFWwill take more time when dealing with the dataset with
large number of samples and features, which is supported by
running times in Table 2.
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Table 2 Running time(s) of CFW on nine datasets

Dataset CNAE-9 CNS Colon Glioma Normal Novartis ORL Prostate-GE Sj-leukemia

Running time (s) 321.84 25.45 47.66 108.27 33.38 26.82 81.19 153.10 47.16
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Fig. 2 Feature weight values obtained by CFW and Relief-SC on nine datasets, (a) CNAE-9, (b) CNS, (c) Colon, (d) Glioma, (e) Normal, (f)
Novartis, (g) ORL, (h) Prostate-GE, and (i) Sj-leukemia
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4.1.2 Sparsity and discriminant capability

The experimental settings employed here are the same as
those utilized in Section 4.2.1 except the stopping conditions
ofCFW.Let T = 100 and θ = 0.001 in step 3ofAlgorithm1.
Because CFW is developed based on Relief-SC, we compare
them on their sparsity and discriminant capabilities.

First, we observe the sparsity of CFW by plotting its fea-
ture weights on nine datasets, as shown in Fig. 2. Although
both methods exhibit certain degrees of sparsity, CFW is
much sparser than Relief-SC. We count the numbers of non-
zero weights produced by both CFW and Relief-SC for
each of these nine datasets and summarize them in Table 3,
which further implies the good sparsity of CFW. For exam-
ple, 2000 features are contained in the Colon dataset. CFW
obtains 214 non-zero weights, while Relief-SC generates
1979 non-zero weights. Note that Relief-SC cannot always
obtain sparse weights for some datasets, such as ORL. At
the same time, we list the accuracies achieved by the nearest
neighbor (NN) classifier with the features selected by both
methods inTable 3. Thefindings indicate thatCFWhas better
classification performance and can select more discrimina-
tive features than Releif-SC.

To further validate the discriminant capability of the fea-
tures, we use the idea behind the Fisher criterion. Namely,
good features minimize the must-link scatter and maximize
the cannot-link scatter. Let D(X) be the ratio of the must-
link scatter to the cannot-link scatter with respect to the set
X , which can be defined as follows:

D (X) =
∑

(xi ,x j)∈M ‖xi − x j‖22
∑

(xi ,x j)∈C ‖xi − x j‖22
(30)

Generally, the smaller D(X) is, the stronger the discriminant
ability the features in the set X have. Let Xw be the weighted

Table 3 Number of non-zero weights and the corresponding accuracy
obtained by CFW and Relief-SC on nine datasets

Dataset #Non-zero weight Accuracy (%)
Relief-SC CFW Relief-SC CFW

CNAE-9 118 75 63.89 64.80

CNS 925 299 69.05 71.43

Colon 1979 214 82.30 85.63

Glioma 4121 154 69.85 70.59

Normal 1249 367 67.78 70.01

Novartis 984 253 76.69 77.58

ORL 1024 189 58.74 59.51

Prostate-GE 5509 183 78.43 86.27

Sj-leukemia 952 133 67.73 67.76

feature space, i.e., xw = w � x, where xw ∈ Xw and x ∈ X .
Thus, we hope that D(Xw) is much smaller than D(X). In
other words, it is better to make D(X)/D(Xw) large.

Table 4 lists values of D(X), D(Xw) and D(X)/D(Xw)

obtained by CFW and Relief-SC. As can be seen from
Table 4, the D(Xw) values obtained by CFW are much
smaller than the D(X) values for all datasets, while the
D(Xw) values obtained by Relief-SC are not always smaller
than the D(X) values of all datasets. The D(X)/D(Xw) val-
ues obtained by CFW are all greater than 1, which indicates
that CFW selects highly discriminant feature subsets. How-
ever, the D(X)/D(Xw) values obtained by Relief-SC are
near 1 and even less than 1, which suggests that Relief-SC
does not significantly improve the discriminant ability of the
selected feature subset.

4.1.3 Parameter sensitivity

Here, we investigate the sensitivity of the parameters λ1
and λ2 in CFW and keep the other experimental settings
unchanged. The value range for these two parameters is set
to {0.01, 0.1, 1, 10, 100}.

The parameter analysis results are given in Fig. 3. As
evident from this figure, the regularization parameters have
different effects on the classification performance achieved
on different datasets. For example, the CNAE-9 dataset
(Fig. 3a) is significantly influenced by the parameters λ1
and λ2, exhibiting substantial variations. On some datasets
(Colon, Glioma, Normal, and Prostate-GE), the accuracy of
CFWfluctuates with the parameters. Conversely, the remain-
ing datasets display relatively minimal fluctuations.

Furthermore, Fig. 3(c), (d), (e), (f), and (i) illustrate that
the proposed algorithm achieves the highest classification
accuracy when λ1=1 and λ2 = 1. Thus, we suggest that
λ1=1 and λ2 = 1 in the following experiments.

Table 4 D (X), D (w � X), and D (X) /D (w � X) on nine dataset
obtained by Relief-SC and CFW

Dataset D (X) D (Xw) D (X) /D (Xw)

Relief-SC CFW Relief-SC CFW

CNAE-9 0.92 0.92 0.61 1.00 1.50

CNS 0.34 0.30 0.11 1.14 3.09

Colon 0.88 0.83 0.32 1.06 2.75

Glioma 0.51 0.48 0.12 1.07 4.24

Normal 0.90 0.86 0.09 1.05 10.00

Novartis 0.46 0.40 0.10 1.15 4.60

ORL 0.46 0.47 0.18 0.99 2.56

Prostate-GE 0.86 0.94 0.64 0.92 1.35

Sj-leukemia 0.82 0.80 0.37 1.02 2.22
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Fig. 3 Classification accuracy vs. both λ1 and λ2 on nine datasets, (a) CNAE-9, (b) CNS, (c) Colon, (d) Glioma, (e) Normal, (f) Novartis, (g) ORL,
(h) Prostate-GE, and (i) Sj-leukemia
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4.1.4 Number of constraints

Now, we analyze the impact of the number of pairwise con-
straints on the classification accuracy of CFW and keep
the other experimental settings the same as before. The
number of total pairwise constraints varies within the set
{4, 20, 40, · · · , 180, 200}, where the number of must-link

constraints is the same as the number of cannot-link con-
straints.

Figure 4 plots curves showing the accuracy vs. num-
ber of constraints obtained by CFW on each of the nine
datasets. Notably, the classification accuracy fluctuates with
the number of constraints. At the beginning, the classification
accuracy varies significantly when increasing the number of
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Fig. 4 Curves of classification accuracy vs. constraint number obtained by proposed methods on nine datasets, (a) CNAE-9, (b) CNS, (c) Colon,
(d) Glioma, (e) Normal, (f) Novartis, (g) ORL, (h) Prostate-GE, and (i) Sj-leukemia
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pairwise constraints, this satisfies our expectation that more
constraintswould inducebetter performance.However,when
the number of pairwise constraints increases beyond a cer-
tain value, i.e., 80, the classification performance displays
only minor fluctuations, which means that we cannot fur-
ther improve the performance of the model by increasing the
number of constraints. The main reason for this finding is the
limitation imposed by supervised information. In the exper-
iments, pairwise constraints are constructed from a limited
training set that provides limited supervised information. The
small observed classification performance fluctuations may
be due to the randomness of constructing constraints.

4.2 Comparison under constraint-guided learning
framework

4.2.1 Experimental setting

A 3-fold cross-validation method [34] is employed on the
nine datasets. Specifically, each dataset is randomly divided
into three subsets, where two subsets are used for training
and the third subset is employed for testing. Thus, 3 trials
are implemented in the 3-fold cross-validation process. The
average results of ten 3-fold cross-validation experiments,
totally 30 trials, are reported. In each trial, we construct 50
cannot-link and 50 must-link constraints from the training
set.

Six CS-based feature selection methods are compared
with CFW, including CS [20], LSDF [16], CLS [21], Relief-
SC [22], SCS [17], and HM-ICS [23]. In addition, a part of
CFW is related to Relief-SC, and this component is called
CFW-SC. In detail, the objective function of CFW-SC con-
tains the first two terms in (24) and can be also solved by the
gradient descent method. Here, CFW-SC is included in our
list of comparison methods.

The parameter settings of the compared supervised and
semi-supervised feature selection algorithms are all derived
from their corresponding references.Note that the supervised
learning algorithms, e.g., the CS, handle only pairwise con-
straints. The semi-supervised learning algorithms utilize not
only the constraints but also the set of unlabeled training sam-
ples. In both CFW and CFW-CS, we set k = 5, η = 0.01,
θ = 0.001, T = 100, and λ1 = 1. Additionally, let λ2 = 1
for CFW. Because the compared methods cannot determine
the optimal number of features, we assume that the number
of optimal features varies within the set {20, 40, · · · , 200}.

4.2.2 Experimental results

Figure 5 presents comparisons among the results produced by
the different feature selection algorithms on the nine datasets
under the constraint-guided learning framework. We first
analyze the experimental results as a whole. Observation

on Fig. 5 indicates that CFW achieves better classification
performance than that of the other compared methods. The
curves depicted in Fig. 5(b), (d), (f), and (g) clearly indicate
that CFW consistently surpasses the other methods in terms
of all 10 feature numbers across the CNS, Glioma, Novar-
tis, and ORL datasets. On the CNAE-9, Colon, and Normal
datasets, it is worth noting that CFW achieves the highest
classification accuracies, but it does not exhibit superiority
with respect to all 10 feature numbers. Next, we analyze
CFW, CFW-SC, and Relief-SC. As a variant of Relief-SC,
CFW-SC achieves higher accuracies than Relief-SC on most
datasets, as demonstrated in Fig. 5(b), (c), (d), (e), (g), and
(i). By incorporating the must-link constraints into CFW-
SC, CFW can obtain more supervised information and then
achieve better performance.

According to Fig. 5, we summarize the highest aver-
age accuracies and the corresponding standard deviations
produced by the compared methods in Table 5, where the
bold values represent the best results among the compared
methods, and the numbers in brackets represent the optimal
number of features. It can be seen that CFW-SC performs
much better than Relief-SC on all datasets except CNAE-9
and Novartis, which validates the efficiency of CFW-SC in
terms of improvingRelief-SC by enriching the neighborhood
information.Additionally,CFWis superior toCFW-SConall
datasets, which suggests that it is necessary to introduce the
supervised information provided by must-link constraints.
As evident from the results presented in Table 5, CFW con-
sistently achieves the best performance across all datasets.
For example, on the CNAE-9 dataset, CFWachieves a 1.92%
higher accuracy rate than that of HM-ICS (the second best
method) and a 2.58% improvement over Relief-SC (the third
best method). These findings demonstrate the superiority
of CFW with respect to selecting discriminative features in
comparison with other methods.

The superiority ofCFWcan be ascribed to two key factors.
First, the innovative hypothesis margin calculation formula
developed for CFWenhances the discriminative power of the
selected features. Second, the incorporation of the must-link
preserving regularization term ensures that the chosen fea-
tures effectively preserve the information embedded within
must-link constraints.

4.3 Comparison under label-guided learning
framework

4.3.1 Experimental setup

Under the label-guided learning framework, we can con-
struct pairwise constraints from the given labeled samples.
Thus, we compare our CFW and CFW-SC approaches with
some feature selectionmethods under a label-guided learning
framework. The compared methods are described as follows.
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Fig. 5 Curve of classification accuracy vs. the number of selected features obtained by eightmethods under the constraint-guided learning framework
on nine datasets, (a) CNAE-9, (b) CNS, (c) Colon, (d) Glioma, (e) Normal, (f) Novartis, (g) ORL, (h) Prostate-GE, and (i) Sj-leukemia

• LPLIR [16].A local preserving logistic I-Relief (LPLIR)
algorithm is a semi-supervised feature selection method
that aims to maximize the expected margin of the given
labeled data and retain the local structural information of
all data.

• S2LFS [7]. A semi-supervised local feature selection
(S2LFS) method selects different discriminative feature
subsets to represent samples from different classes.

• ASLCGLFS [35]. A semi-supervised feature selection
via adaptive structure learning and constrained graph
learning (ASLCGLFS) algorithm introduces adaptive
structure learning and graph learning to select features.

• SFS-AGGL [36]. A semi-supervised feature selection
method based on an adaptive graph with global and local
information (SFS-AGGL) effectively leverages the struc-
tural distribution information from labeled data to derive
label information for unlabeled samples.
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Table 5 Mean accuracy and
standard deviation of compared
methods under the
constraint-guided learning
framework on nine datasets

Dataset CFW CFW-CS CS LSDF

CNAE-9 63.52±5.69(200) 60.12±2.04(160) 22.97±1.56(200) 19.31±2.77(200)

CNS 71.43±12.40(120) 71.43±1.37(200) 68.81±2.37(10) 69.05±1.87(80)

Colon 83.93±5.44(200) 82.35±7.39(180) 80.12±4.12(160) 79.98±4.89(160)

Glioma 69.98±9.21(140) 68.71±1.10(140) 67.97±1.51(140) 67.44±1.93(160)

Normal 71.11±5.30(160) 70.37±1.70(140) 65.11±3.06(160) 66.67±1.81(180)

Novartis 77.68±6.62(160) 76.04±1.11(200) 76.53±1.10(200) 75.72±1.29(180)

ORL 59.10±2.96(180) 55.83±2.44(180) 57.15±1.84(200) 57.32±1.66(200)

Prostate-GE 83.33±4.49(180) 76.47±4.27(180) 80.20±4.88(180) 80.51±7.70(180)

Sj-leukemia 67.58±4.55(200) 66.94±0.42(60) 66.49±0.77(200) 67.01±0.60(200)

CLS Relief-SC SCS HM-ICS

CNAE-9 34.33±3.87(200) 60.94±1.79(180) 60.85±1.20(200) 61.60±2.89(200)

CNS 69.29±1.76(200) 69.29±2.08(140) 70.63±1.37(140) 70.38±2.26(140)

Colon 82.48±3.57(160) 79.90±2.76(200) 80.74±5.61(200) 80.92±3.98(120)

Glioma 67.28±2.39(160) 68.25±2.02(180) 67.33±4.08(60) 68.57±1.66(100)

Normal 68.44±1.67(160) 68.33±2.11(80) 68.22±1.86(160) 69.11±2.41(160)

Novartis 75.05±1.20(140) 76.52±1.11(180) 76.15±1.16(180) 76.51±1.46(160)

ORL 54.55±1.87(200) 55.55±1.48(160) 57.60±1.10(180) 56.85±1.74(200)

Prostate-GE 75.59±3.35(180) 76.18±4.48(40) 80.10±3.07(180) 81.61±4.87(180)

Sj-leukemia 66.91±0.82(140) 66.69±0.61(200) 67.08±0.22(180) 66.90±0.54(160)

*Numbers in parentheses are optimal feature numbers

As before, 3-fold cross-validation experiments are repeated
ten times. We report the average results obtained across
the 30 trials. In each trial, 40% of the training samples are
treated as labeled data, and the remaining samples are taken
as unlabeled data. For both CFW and CFW-CS, we use the
labeled data to construct the must-link constraint setM and
the cannot-link constraint set C separately. The number of
selected features is also set within the range of [20, 200]
with an interval of 20.

4.3.2 Outcome of experiments

We compare the methods described above under the label-
guided learning framework. The curves demonstrating the
accuracy vs. the number of features are shown in Figure 6.
From Figure 6, we can see that CFW is better than the other
methods.

Table 6 presents a summary of Figure 6, where the highest
average accuracy of eachmethod and the corresponding stan-
dard deviation are listed, the bold values are the best results
obtained among the compared methods, and the numbers in
parentheses represent the optimal feature numbers. Table 6
indicates that CFW is superior to the other methods on eight
out of the nine datasets. For example, CFWachieves the high-
est accuracy of 77.34% on the Colon dataset, LPLIR yields
the second best accuracy of 76.38%.Only on theORLdataset
did CFW fail to achieve the best results.

CFW can mostly stand out when compared to these label-
guided methods due to its comprehensive utilization of both
must-link and cannot-link constraints. By employing con-
straints, CFWgains deep insights into the constraint structure
of the training data, enabling the identification of features
that not only effectively differentiate between classes but also
respect the intrinsic relationships indicatedby the constraints.

4.4 Statistical tests

To conduct a thorough comparison,we perform theFriedman
test [34] and the corresponding Bonferroni-Dunn test [37] on
the experimental results described above. The Bonferroni-
Dunn test results indicate significant differences between
CFW and the other algorithms. The critical difference
between any two methods is defined as follows:

CDα = qα

√
l(l + 1)

6N
(31)

where α corresponds to the preset threshold value, l denotes
the number of methods, N represents the number of datasets,
and qα is the critical value.

In this study, we set α = 0.1 by following the guide-
lines outlined in Refs. [38, 39]. Therefore, the statistical
tests are conducted at a confidence level of 90%. Referring
to Ref. [37], we obtain a critical value of qα = 2.241. In
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Fig. 6 Curve of classification accuracy vs. the number of selected features obtained by by six methods under the label-guided learning framework
on nine datasets, (a) CNAE-9, (b) CNS, (c) Colon, (d) Glioma, (e) Normal, (f) Novartis, (g) ORL, (h) Prostate-GE, and (i) Sj-leukemia

the comparison experiments conducted under the constraint-
guided learning framework, l = 8 and N = 9. Consequently,
the critical difference is CD0.1 = 2.59. If the difference
between two algorithms is greater than 2.59, then there is
a significant distinction between them. In the comparison
experiments conducted under the label-guided framework,
l = 6 and N = 9. Then, the corresponding critical differ-
ence is CD0.1 = 1.89.

Table 7 displays the rank differences obtained through the
Friedman test with the Bonferroni-Dunn test when compar-
ing CFWwith the other methods. All rank differences, which
are represented by the values contained in the second row of
Table 7, are found to be greater than the critical difference
threshold of 2.59, which suggests that CFW is significantly
superior to the seven compared methods. Similarly, the rank
differences presented in the fourth row of Table 7 also imply
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Table 6 Mean accuracy and
standard deviation of compared
methods under the label-guided
learning framework on nine
datasets

Dataset CFW CFW-SC LPLIR

CNAE-9 67.48 ± 5.45(160) 66.91 ± 1.72(160) 65.52 ± 4.06(160)

CNS 71.43 ± 2.03(100) 71.43 ± 1.15(80) 69.05 ± 1.68(180)

Colon 77.34 ± 8.31(180) 76.26 ± 5.43 (140) 76.38 ± 4.05(200)

Glioma 66.78 ± 7.81(160) 65.87 ± 2.62(80) 66.22 ± 1.29(140)

Normal 67.23 ± 6.47(140) 66.84 ± 3.31(40) 66.67 ± 1.57(100)

Novartis 74.71 ± 6.61(160) 73.82 ± 5.43(100) 73.83 ± 2.71(160)

ORL 61.82 ± 4.57(180) 60.67 ± 1.70(140) 62.26 ± 0.70(180)

Prostate-GE 71.26 ± 3.10(160) 69.87 ± 1.13(200) 70.26 ± 8.82(120)

Sj-leukemia 67.58 ± 7.72(180) 67.34 ± 1.73(100) 66.51 ± 0.54(200)

S2LFS ASLCGLFS SFS-AGGL

CNAE-9 55.37 ± 12.09(120) 64.32 ± 9.92(160) 55.15 ± 2.12(200)

CNS 70.39 ± 12.37(140) 70.48 ± 13.18(140) 71.43 ± 13.67(180)

Colon 66.30 ± 11.44(160) 76.11 ± 13.08(140) 76.32 ± 8.06(180)

Glioma 64.22 ± 10.50(120) 64.98 ± 13.70(180) 65.63 ± 9.39(180)

Normal 65.56 ± 11.71(180) 67.11 ± 8.93(140) 67.00 ± 6.94(180)

Novartis 74.17 ± 5.88(180) 73.73 ± 6.97(180) 74.50 ± 5.53(180)

ORL 61.62 ± 4.34(80) 62.10 ± 4.19(200) 62.66 ± 5.56(200)

Prostate-GE 70.92 ± 6.38(160) 70.98 ± 7.30(160) 70.11 ± 14.71(160)

Sj-leukemia 67.28 ± 3.47(120) 66.87 ± 6.09(160) 67.20 ± 5.74(200)

*Numbers in parentheses are optimal feature numbers

that CFW performs significantly better than the other five
methods. In short, CFW has excellent performance regard-
less of the employed learning framework.

5 Conclusions

This paper focuses on the task of semi-supervised feature
selection under the constraint-guided learning framework
and proposes a novel method called, CFW. The proposed
CFW integrates the hypothesis margin concept and the con-
straint information provided by pairwise constraints. CFW
first allocates probabilities to neighbor samples, thereby
modifying the calculation formula of the hypothesis mar-
gin. The modified hypothesis margin term aims to identify
features with significant discriminant capabilities. Subse-
quently, the L1 regularization term is incorporated into the
model to guarantee the sparsity of CFW, thereby achieving
the purpose of automatic feature selection. Moreover, CFW
designs a must-link preserving regularization term, which is

aimed at selecting features that have the ability to maintain
must-link information.

A comprehensive series of experiments demonstrates the
effectiveness of CFW. First, we assess the convergence,
sparsity and discriminant ability, parameter sensitivity, and
number of constraints of CFW. The experimental results
show that CFW can converge quickly while exhibiting
good sparsity and discriminant ability. Subsequently, CFW
is compared with various supervised and semi-supervised
methods on nine high-dimensional datasets under two learn-
ing frameworks. The findings show that CFW achieves good
classification performance when using an NN as the classi-
fier. Finally, to statistically compare the performance of CFW
with that of other algorithms, the Friedman test is performed
on the experimental results. The statistical test results sug-
gest that CFW significantly outperforms the other compared
algorithms.

However, our method is not without its limitations. The
determination of the parameters, λ1 and λ2, requires careful
tuning. Although we provide guidelines for the parameter

Table 7 Rank differences obtained by Friedman test with Bonferroni-Dunn test for comparing CFW and other methods

CD0.1 (Constraint-guided) CFW-SC CS LSDF CLS Relief-SC SCS HM-ICS

2.59 2.88 4.72 4.61 5.00 4.44 3.27 2.61

CD0.1 (Label-guided) CFW-SC LPLIR S2LFS ASLCGLFS SFS-AGGL

1.89 2.34 2.45 3.34 2.67 1.90
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settings based on our experiments, the optimal settings may
vary across different datasets and application scenarios.
Though CFW exhibits robust performance across a variety
of datasets, scaling this method to extremely large datasets is
a challenge. The computational complexity of CFW signif-
icantly increases for datasets with vast numbers of samples
and features. Future efforts will be dedicated to overcoming
these challenges, with the aim of improving the scalability
of CFW to efficiently accommodate larger datasets.

Appendices

Appendix A: Proof of Theorem 1

It is well known that a function defined on an open set is
convex if and only if its Hessian matrix is positive semi-
definite. Therefore, to prove the convexity of the function
JR (w) in (19), we must demonstrate that its Hessian matrix
is positive semi-definite.

Because the Laplacian matrix LM is symmetric and pos-
itive semi-definite, Q = FTLMF is also symmetric and
positive semi-definite. Therefore, we can express the must-
link preserving regularization as JR (w) = trace

(
2MTQM

)
,

as shown in (21).
Then, the first partial derivative of JR (w) with respect to

wr can be calculated as follows:

∂ JR (w)

∂wr
= 4wr Qrr , r = 1, ..., d (A1)

where Qrr is the element in the r -th row and r -th column of
Q. The second partial derivative of JR (w)with respect tows

can be expressed as

∂2 JR (w)

∂wr∂ws
=

{
4Qrr , if r = s
0, otherwise

(A2)

Therefore, the Hessian matrix H of JR (w) is a diagonal
matrix, where the diagonal elements are Hrr = 4Qrr .

Since Q is positive semi-definite, we have that Qrr ≥ 0.
As a result, the Hessian matrixH of JR (w) is positive semi-
definite. In other words, JR (w) is a convex function of w
when w ≥ 0. This concludes the proof.

Appendix B: Proof of Theorem 2

Let J1 (w) = log
(
1 + exp

(−wT z
))

and J2 (w) = λ1‖w‖1,
then the objective function (24) can be rewritten as:

J (w) = J1 (w) + λ1 J2 (w) + λ2 JR (w) (B3)

According to the properties of convex functions, J (w) is a
convex function if and only if J1 (w), J2 (w), and JR (w) are
convex functions. Theorem 1 states that JR (w) is a convex
function. Now, we need to prove that the other two func-
tions are also convex. Following the approach used to prove
Theorem 1, we simply need to demonstrate that the Hessian
matrices of both J1 (w) and J2 (w) are positive semi-definite.

We start by calculating the first and second partial deriva-
tives of J1 (w) with respect to w, as shown below

∂ J1 (w)

∂w
= − exp

(−wT z
)

1 + exp
(−wT z

)z (B4)

and

∂2 J1 (w)

∂2w
= exp

(−wT z
)

(
1 + exp

(−wT z
))2 zz

T (B5)

Without loss of generality, let c =
√

exp(−wT z)

(1+exp(−wT z))
2 . Sub-

stituting c into (B5), we have

∂2 J1 (w)

∂2w
= (cz) (cz)T = H1 (B6)

whereH1 is the Hessian matrix of J1(w). BecauseH1 can be
regarded as the outer product of a column vector cz and its
own transpose vector (cz)T . SoH1 is a matrix of rank 1 with
only one non-zero eigenvalue. It can be calculated that the
non-zero eigenvalue of matrixH1 is c2 ‖z‖2, which is greater
than 0. In this case, the Hessian matrix of (B6) is positive
semi-definite. Therefore, J1 (w) is a convex function.

As for J2 (w), we have

∂ J2 (w)

∂wr
= 1, r = 1, ..., d (B7)

and

∂2 J2 (w)

∂wr∂ws
= 0, r , s = 1, ..., d. (B8)

Thus, the Hessian matrix of J2 (w) is a matrix with all zeros,
which means that the Hessian matrix of J2 (w) is positive
semi-definite. Hence, J2 (w) is a also convex function.

In summary, J1 (w), J2 (w) and JR (w) are convex func-
tions. Thus, J (w) is a convex function. This completes the
proof.

Appendix C: Proof of Theorem 3

Note that z(t) is updated by w(t − 1) in the t-th iteration.
When z(t) and w(t − 1) are given, w(t) is updated using the
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gradient descent scheme in (27) and the truncation rule in
(28). Consequently, the objective function achieves its min-
imum J (w(t) | z(t)) for fixed z(t). In other words,

J (w(t) | z(t)) ≤ J (w(t − 1) | z(t)) (C9)

which completes the proof of Theorem 3.
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