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Abstract
Semi-supervised learning leverages both labeled and unlabeled images for model training, addressing the scarcity of labeled 
data. However, challenges persist, including the determination of appropriate thresholds for pseudo-labeling, the effec-
tive utilization of uncertain unlabeled images, the absence of consistency regularization, and the oversight of inter-image 
relationships among images in low-density areas. This study introduces a novel approach named the Individual-Relational 
Consistency for Bad Semi-supervised Generative Adversarial Networks (IRC-BSGAN) to tackle these issues. IRC-BSGAN 
integrates bad adversarial training, consistency regularization, and pseudo-labeling to reduce error rates and enhance clas-
sifier performance. It includes various components, such as a bad generator network, a discriminator network, a classifier, 
and consistency regularization modules. IRC-BSGAN introduces new individual and relational consistency regularization 
losses on bad fake images in low-density areas, thereby generating informative images that precisely estimate the classi-
fier's decision boundary. The proposed method ensures diversity and consistent labeling of bad fake images by integrating 
consistency mechanisms. It particularly focuses on low-density areas and extracts extra semantic details from these images 
by promoting local consistency and coherence among them. The effectiveness of IRC-BSGAN is realized by improving the 
pseudo-labeling of unlabeled images, especially for low-confidence unlabeled images. For the SVHN dataset with 1000 
labeled training images and the CIFAR-10 dataset with 4000 labeled training images, the error rate reduced from 3.89 to 
3.67 and from 7.29 to 6.17, respectively. Similarly, on the CINIC-10 dataset with 1000 labeled training images per class, 
IRC-BSGAN achieved a reduction in error rate from 19.38 to 15.45. On the COVID-19 dataset with 30 labeled training 
images, the error rate decreased from 7.41 to 5.55.

Keywords  Semi-supervised classification · Informative fake images · Low-confidence images · Individual consistency 
regularization · Relational consistency regularization

1  Introduction

Supervised learning, heavily reliant on labeled images, 
has historically dominated machine learning [1]. 
However, the manual labeling process is expensive, 
time-consuming, and impractical for large datasets [2]. 
The scarcity of labeled images in real-world scenarios 
presents significant challenges to supervised learning's 
effectiveness. Semi-supervised learning has emerged as 
a promising alternative, combining limited labeled data 
with extensive unlabeled data across various domains [3]. 
Techniques such as pseudo-labeling [4] and consistency 
regularization [5, 6] have shown promise in enhancing 
classification model performance by uncovering 
additional patterns from unlabeled data. One potential line 
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of questioning is how can these semi-supervised learning 
techniques effectively harness unlabeled data to address 
the limitations of supervised learning in contexts where 
labeled data is scarce or unavailable.

Pseudo-labeling in semi-supervised classification 
involves generating pseudo-labels for unlabeled images 
using limited labeled images [7]. The role of unlabeled 
images and pseudo-labels is crucial in semi-supervised 
learning. Algorithms assign pseudo-labels based on high 
predicted probabilities or threshold-exceeding probabili-
ties [8, 9]. Nonetheless, using fixed thresholds limits the 
effective use of unlabeled images, making it challenging to 
determine suitable thresholds for improving classifier per-
formance [10]. Thus, effectively utilizing low-confidence 
unlabeled images below the threshold remains difficult [11]. 
Additionally, addressing incorrect pseudo-labels and their 
impact on consistency regularization techniques remains an 
ongoing challenge.

Consistency regularization proves valuable in assigning 
pseudo-labels to unlabeled images below a specified threshold, 
particularly when they are proximate to the decision boundary 
[12]. This method ensures the model consistently assigns class 
labels even amid various alterations to inputs [13]. Local regu-
larization seeks to harmonize labels between unlabeled and 
labeled images at a local level, often through augmentations 
and perturbations to alleviate data sparsity [14]. These aug-
mentations might involve minor adjustments such as rotation 
and translation for images or the introduction of adversarial 
noise via techniques like virtual adversarial training [15, 16]. 
Nevertheless, applying local alterations to images close to the 
decision boundary may push them beyond the correct class 
label boundary, diminishing the efficacy of local consistency 
regularization and impeding learning efficiency.

Label consistency regularization combines weak and 
strong augmentation techniques for an accessible image, uti-
lizing augmentation anchoring and pseudo-labeling with a 
probability surpassing a predefined threshold (e.g., the Fix-
Match method [17]). However, challenges arise, including 
determining prediction probability using a fixed threshold 
and generating robust image augmentation [18]. Dynamic 
thresholding can address these issues by selecting addi-
tional pseudo-labels for classes, resulting in partial learning 
improvements [19, 20]. Nevertheless, caution is warranted 
when employing methods like FlexMatch [4] and FullMatch 
[10] with extremely low probability thresholds, as they may 
hinder efficient learning due to pseudo-label uncertainty.

One limitation of current consistency-based methods 
is their neglect of the connections among samples in low-
confidence unlabeled images [21]. The inherent relation-
ships among images, such as labels, have been shown to sig-
nificantly enhance their informativeness [22, 23]. However, 
existing methods focus narrowly on perturbing individual 
data points and overlook the connections and relationships 

among different images. Consequently, they fail to fully uti-
lize the valuable information naturally present in the struc-
tural relationships among low-confidence, unlabeled images 
[24]. This limitation can lead to a situation where the func-
tion displays smoothness near each unlabeled image in low-
density areas but lacks smoothness among them.

Recent advances in generative adversarial networks 
(GANs) [25] have demonstrated their effectiveness in 
improving generalization for semi-supervised learning by 
moving the decision boundary towards low-density areas 
[26, 27]. One approach, known as bad generative adversarial 
networks, seeks to improve a poorly performing generator 
that produces fake images near the true classifier boundary 
[28]. These generated images, similar to decision support 
vectors, help the classifier extract discriminative informa-
tion between classes and enhance generalization perfor-
mance [29]. Alternatively, marginal generative adversarial 
networks propose a three-player game involving a bad gen-
erator instead of the traditional two-player game [30]. Never-
theless, bad generative adversarial networks face challenges 
due to the lack of effective label consistency regularization, 
which results in inconsistent labels for bad fake samples. As 
far as we know, no specific proposal for individual-relational 
consistency regularization has been made to address the 
issues associated with bad GANs.

To tackle these challenges, we investigate individual 
and relational consistency among images in low-density 
areas. Our goal is to promote local smoothing of each 
bad fake image and smoothness among similar neighbor-
ing points in low-density regions. This approach aims to 
extract more semantic information from low-confidence 
unlabeled images, leading to improved performance. We 
introduce a novel method called Individual-Relational Con-
sistency for Bad Semi-supervised Generative Adversarial 
Networks (IRC-BSGAN). This method aims to enhance 
semi-supervised classification in low-density areas by 
leveraging labeled and unlabeled images below a specific 
probability threshold. The framework includes a bad gen-
erator, a discriminator, and a classifier. The bad generator 
generates images near the correct decision boundary of the 
classifier. Simultaneously, individual and relational consist-
ency regularization improves the performance of the bad 
generator and discriminator. Relational consistency provides 
more structural and semantic information for the bad fake 
images compared to individual consistency by assessing the 
relationship between one bad image and the others. Experi-
mental results on the SVHN, CINIC-10, COVID-19, and 
CIFAR-10 datasets show that our proposed semi-supervised 
model outperforms existing approaches in the literature. The 
key contributions of our research are outlined below:

1-	 We present a novel semi-supervised model featuring a 
bad generator, integrating individual and relational con-



10086	 M. S. Iraji et al.

sistency regularization between latent data and bad fake 
images in low-density regions.

2-	 We introduce novel individual consistency regulariza-
tion losses on bad fake images to improve their genera-
tion and accurately predict pseudo-labels for low-confi-
dence unlabeled images.

3-	 We propose novel (inversed) relational consistency regu-
larization losses operating on the latent vectors of bad 
fake images in low-density areas. This regularization 
technique aims to improve coherence and consistency 
within the latent space and the bad generated images.

This study is structured as follows: Section 1 provides an 
introduction. Section 2 reviews relevant literature. Section 3 
outlines the proposed model. The experimental results are 
presented in Section 4. Section 5 comprises the discussion. 
Lastly, Section 6 concludes the study and discusses future 
works. For interested parties, the Python code related to 
our research can be accessed at https://​github.​com/​ms-​iraji/​
IRCRB​SGAN.

2 � Related works

In this section, we examine the existing literature and 
research pertaining to consistency regularization and semi-
supervised classification, which are relevant to our study. 
Self-learning, as an initial approach in semi-supervised 
learning, entails predicting pseudo-labels for unlabeled 
images based on the knowledge gleaned from labeled 
images [31]. In this method, unlabeled images within the 
training dataset serve as training data and provide additional 
information to the model when their pseudo-labels exceed 
a threshold of 0.95 during each epoch of model training. 
However, the self-learning method discards information 
from unlabeled images below the threshold [32].

The teacher-student method is a widely used framework 
for consistency regularization [33]. In this approach, the 
model serves as a teacher, generating labels, while also 
functioning as a student by learning from its own gener-
ated labels. Label consistency regularization is applied to 
the labels produced by both the teacher and student networks 
using weight perturbations. However, the efficiency of this 
method is notably diminished because of the possibility of 
the teacher generating incorrect pseudo-labels, which the 
student then learns.

Li et al. introduced the SRC-MT architecture for semi-
supervised learning with unlabeled images [22]. It com-
prises a teacher model and a student model, both utiliz-
ing a deep neural network (DNN). These models enforce 
consistency regularization by aligning pseudo-labels under 
weight perturbations and input noise. Relational consistency 

regularization enhances learning by encouraging similar 
activations for related unlabeled images. However, a weak-
ness arises in local label smoothing near the decision bound-
ary without adequate augmentation anchoring, which may 
lead to incorrect pseudo-labels.

The Π model conducted two forward propagations on 
unlabeled images in each training cycle [34]. During these 
propagations, random data perturbations and dropouts 
were applied to the images [35]. The model aimed for the 
forward propagation to produce identical predictions for 
two labels. Initially, the Π model required sending images 
twice during each training iteration. Thus, the temporal 
ensemble model (TE) was introduced to alleviate this over-
head. The TE model utilizes an exponential moving aver-
age technique to aggregate class-label predictions.

The TE model [36] incorporates random augmenta-
tions, such as the dropout layer, for unlabeled images in a 
neural network. In this method, consistency regularization 
is implemented by comparing predictions for one augmen-
tation of an image with the exponential moving average of 
predictions for another augmentation of the same image 
[35]. Nevertheless, a drawback of this approach is the 
time-consuming adjustment of predictions after training 
on a large dataset.

The mean teacher approach (MT) demonstrates the 
importance of averaging model weights rather than solely 
relying on label predictions [37]. It establishes a teacher 
model by averaging weights from consecutive student mod-
els and integrates exponential moving average weights from 
the student model [37]. This amalgamation of information 
enhances target labels and intermediate representations, 
thereby improving learning and performance. The MT 
method offers advantages such as a quicker feedback loop 
between student and teacher models and scalability for large 
datasets [38].

DSSLDDR [39] is a semi-supervised learning model 
designed to address the scarcity of labeled images by 
combining dictionary representation with deep learn-
ing. It leverages class-specific dictionaries to reconstruct 
images and extract discriminative features using a deep 
neural network. Additionally, an entropy regularization 
term is utilized to handle unlabeled images. To improve 
the class estimation accuracy, DSSLDDR + incorporates 
consistency/contrastive learning. However, a limitation of 
this approach is its constrained integration of dictionary 
learning, which restricts the potential advantages across 
all layers of the model.

The authors [40] introduced a novel graph-based semi-
supervised learning method named dynamic anchor graph 
embedding (DAGE), with the goal of embedding graphs 
and classifying sample nodes simultaneously. DAGE 
utilizes a dynamic anchor graph constructed within the 

https://github.com/ms-iraji/IRCRBSGAN
https://github.com/ms-iraji/IRCRBSGAN
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latent space of a neural network to improve graph qual-
ity and simplify the embedding learning problem. It 
employs a two-branch network architecture, comprising 
a dynamic graph embedding branch and a single-sample 
consistency branch, to integrate local and global informa-
tion, resulting in more reliable classification outcomes. 
DAGE distinguishes itself by continuously optimiz-
ing the graph structure and integrating graph structural 
and model discriminant information derived from both 
labeled and unlabeled data. However, like other semi-
supervised approaches, DAGE's effectiveness depends 
on the assumption that data exhibits cluster structures or 
resides on smooth manifolds, which may pose limitations 
in real-world applications.

In the study [8], researchers introduced DNLL, a novel 
semi-supervised classification framework called dual 
pseudo-negative label learning. This framework employs 
two sub-models to generate pseudo-negative labels and 
includes a selection mechanism based on estimating uncer-
tainty. By enhancing the utilization of unlabeled images 
and reducing model parameter coupling, the framework 
achieves enhanced performance and generalization. How-
ever, limitations of the approach include the quality of the 
pseudo-negative labels and the potential reliance on specific 
selection criteria.

In the paper [41], ReliaMatch is introduced as a semi-
supervised classification approach addressing the challenges 
associated with utilizing unlabeled data and handling error 
information. ReliaMatch effectively integrates various tech-
niques, including confidence thresholding, curriculum learn-
ing, pseudo-label filtering, and feature filtering, to notably 
enhance the accuracy and reliability of classification tasks. 
By employing the confidence threshold, the algorithm filters 
out unreliable information, eliminates ambiguous semantic 
features, and discards unreliable pseudo-labels. Nonetheless, 
it is crucial to note that the algorithm's performance hinges 
on the accurate calibration and control of the confidence 
threshold. Additionally, the choice of feature extraction 
methods and model architectures can significantly impact 
its overall performance.

The authors introduced collaborative learning with unreli-
ability adaptation (CoUA), an approach for semi-supervised 
image classification that emphasizes cooperation among 
multiple networks [42]. CoUA enables the networks to 
adjust their predictions and establish customized training 
objectives for unlabeled data. By integrating an adapta-
tion module, the networks exchange training experiences 
and learn transition probabilities between their predictions. 
This collaborative framework effectively addresses the chal-
lenge of unreliable predictions by fostering collaboration 
while minimizing negative effects. The approach promotes 

consistent predictions and resilience against adversarial per-
turbations, thereby enhancing the collaborative learning pro-
cess. However, the research emphasises the importance of 
exploring training experience exchange among all networks 
and integrating predictions with uncertainty clues as areas 
for further enhancement.

In [43], a novel semi-supervised GAN architecture 
named Triple-BigGAN is introduced, which integrates 
generative modeling and classification tasks. Triple-Big-
GAN extends the BigGAN network to learn a discrimina-
tive classifier while generating high-quality synthesized 
images using partially labeled data. The framework com-
prises a discriminator, classifier, and generator. The clas-
sifier is trained on both real labeled data and generated 
samples. The discriminator distinguishes real image-label 
pairs from the labeled dataset and pairs obtained from the 
classifier for the unlabeled dataset. Unlike previous frame-
works such as Triple-GAN and EC-GAN, Triple-BigGAN 
prioritizes the end-to-end training of a robust classifier 
and discriminator. The primary goal of Triple-BigGAN 
is to achieve semi-supervised joint distribution matching, 
enabling the utilization of labeled and unlabeled data for 
image classification and synthesis within a good generator.

Virtual adversarial training (VAT) [44] was developed 
to regularize the distribution of conditional labels sur-
rounding a particular input, safeguarding against local 
disruptions. The objective is to preserve the original 
image's label even in the presence of localized pertur-
bations around each image [45]. However, during local 
augmentation of the image near the decision boundary, 
it inadvertently shifts the image to the opposite side of 
the class boundary [46]. Consequently, this approach may 
not be as effective in points located near the correct class 
boundary, potentially impacting its efficiency.

The FixMatch method [47] integrates supervised and 
unsupervised learning with augmentation anchoring. 
Weakly augmented labeled images are utilized to facilitate 
supervised learning. Semi-supervised learning involves 
the conversion of predicted labels exceeding a specific 
threshold of weak augmentations to strong augmentations 
of the same  image. Weak augmentation involves basic 
transformations, while strong augmentation encompasses 
multiple transformations. The method excludes images 
with low label prediction probabilities, aiding in estab-
lishing the decision boundary.

Interpolation consistency training (ICT) is a semi-
supervised learning method that employs a mixup tech-
nique to shift the decision boundary away from class 
boundaries [5]. Mixup entails interpolating pairs of 
images, promoting straightforward linear behavior 
and improving generalization [48]. It diminishes label 
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memorization and bolsters resilience against adversarial 
images. However, when applied to low-confidence images, 
ICT faces limitations.

The authors suggested employing a generator to produce 
bad fake images closely resembling real ones [26]. These 
artificially generated samples positioned the discriminator 
boundary between distinct image classes, thereby reducing 
its generalization error. The margin generative adversarial 
network (margin GAN) [30] was devised as a three-player 
system to generate substandard images in low-density 
regions. The discriminator distinguished real images from 
generator-generated ones, while the classifier aimed to maxi-
mize the margin of real images and decrease the margin of 
fake ones. Nonetheless, consistency regularization can still 
enhance semi-supervised learning across bad GAN models 
in low-density areas.

3 � Proposed method

In this section, the IRC-BSGAN approach is introduced 
as a three-player adversarial game comprising a discrimi-
nator, a classifier, and a bad generator. The framework 
integrates latent individual-relational consistency regu-
larization to address issues with bad fake images. Fur-
thermore, we propose latent inversed individual-relational 
consistency regularization for the bad semi-supervised 
generative adversarial model. Similar to bad GAN, the 
IRC-BSGAN utilizes adversarial training and incorpo-
rates redesigned elements, including loss functions and 
relational consistency, in order to improve its perfor-
mance. The model architecture is depicted in Fig. 1, with 
the proposed workflow and algorithm outlined in Fig. 2 
and Algorithm 1, respectively.

3.1 � Bad generator

The limited availability of data presents a significant 
challenge in semi-supervised generative learning. A 
good generator assumes a pivotal role in generating high-
quality images and mitigating the constraints imposed 
by limited data resources [43]. In another approach, the 
generator conditions class information to derive the label 
sample distribution [49]. Recent studies [26, 29, 30] have 
increasingly emphasized the integration of bad generator 
modules into semi-supervised generative learning along-
side conventional good generators. These bad generator 
modules are purposefully designed to produce examples 
aiding the classifier or discriminator network in delineat-
ing decision boundaries. Although two and three-player 
game approaches based on the bad generator have been 

proposed, they encounter challenges such as mode col-
lapse, absence of label smoothing, and inconsistency. 
We formulate the details of the basic bad generator as 
follows.

The generator is tasked with learning the distribution of 
real images and generating fake images that closely resemble 
realistic ones from the perspective of the discriminator. It is 
implemented as a deep neural network (DNN) composed 
of transposed convolutional layers [50]. Utilizing a latent 
vector z ∼ pz , which is a stochastic noise vector sampled 
from a distribution (typically either normal N(0,1) or Gauss-
ian), the generator produces fake images [49, 51, 52]. These 
bad images are then presented to the discriminator as real 
(labeled 1) during the adversarial game, as shown in Eq. 1.

In a separate adversarial game involving the classifier, 
the bad generator generates images where the classifier 
has a high margin [53]. Subsequently, the classifier's pre-
diction loss for the images generated by the bad generator, 
specifically with the class with the highest probability as 
the target label, is calculated [54]. The generator's param-
eters are then updated using the cross-entropy function 
(Eq. 2).

3.2 � Discriminator

The discriminator network serves a vital function in 
generative adversarial networks. Recently, a technique 
leveraging clustering, an augmented feature matching 
strategy, and multiple sub-discriminators has been inte-
grated into the two-player bad GAN configuration [26]. 
We aim to augment classification accuracy and mitigate 
mode collapse. The discriminator helps train the genera-
tor by providing feedback on the quality of the gener-
ated samples. Nevertheless, in this study, we implement 
individual-relational regularization to further enhance the 
performance of the discriminator network. The specifics 
of a fundamental discriminator are elucidated in the sub-
sequent subsection.

In the adversarial game involving the generator G, the dis-
criminator D is a DNN responsible for discerning between 
real and fake generated images. For discriminator training, 
the real labeled images xl ∼ pdata

xl
 and unlabeled images 

xu ∼ pdata
xu

 are assigned the label "1", while the fake-generated 
images xg = G(z) ∼ pfake

xg
 are labeled as "0". This distinction 

(1)Lossgenerator−adversarial−base = −
∑

z∼pz

logD(G(z))

(2)

Lossgenerator−adversarial−2 = −
∑nc

i=1
(arg max(C(G(z))i)log(C(G(z))i)

nc = number of class
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(a)

(b)

Bad Generator

C

Classifier

Discriminator

D
G

Bad Generator

C
Classifier

Discriminator

D
G

Fig. 1   Architectural overview of the IRC-BSGAN; (a) 3-player bad GAN, (b) 3-player bad GAN with individual-relational consistency
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is achieved using the base adversarial GAN function [55], 
which is applied to the discriminator through Eq. 3.

3.3 � Classifier

The classifier plays a pivotal role in semi-supervised 
learning by assigning class labels to labeled, unlabeled, 
and fake images. However, incorrect pseudo-labeling of 
unlabeled images can significantly impair the model's 
efficacy and result in inaccurate decision boundaries. 
Recent approaches [43, 56] have introduced the classi-
fier as a separate element alongside the traditional dis-
criminator, which was tasked with assigning class labels 
to images. In subsequent subsections, novel techniques 
are applied to bad GANs to strengthen the classifier and 
improve class estimation accuracy. This subsection out-
lines the formulation of the classifier within a bad GAN 
framework.

A DNN-based multi-class classifier, denoted as C, is uti-
lized for data label prediction. In supervised learning, where 

(3)

Lossdiscriminator−adversarial = −
∑

xl,xu∼pdata

[logD(x)] −
∑

x∼pfake

[log(1 − D(x)]

the real labeled image (xl, y) ∼ pdata
(xl,y)

 is available, the classifier 

aims to minimize the error between the predicted label C
(
xl
)
 

and the true label y using a cross-entropy function (Eq. 4) [57, 
58].

In the adversarial game between the generator and the 
classifier, the classifier assigns low-margin labels to the 
bad-generated images utilizing an inverted cross-entropy 
loss function (Eq. 5). This adversarial game between the 
classifier and generator results in the production of bad 
fake images that exhibit similarities to the support vectors 
containing decision boundary information of the classifier.

Given the scarcity of labeled images, the classifier leverages 
a large number of unlabeled images xu ∼ pdata

xu
 , utilizing the 

pseudo-labeling loss function. The predicted label C(xu) tends 
to approximate the class with the maximum probability [59], 
represented as arg max(C(xu)) , serving as the target label for 
unlabeled images (Eq. 6).

3.4 � Consistency regularization modules

Many methods, such as [5, 22, 23, 35, 37, 41, 43, 60], imple-
ment consistency regularization techniques on unlabeled 
images, facing challenges, particularly with low-confidence 
images near decision boundaries. In our proposed approach, 
we introduce innovative consistency regularization terms on 
bad fake images utilizing 3-player bad GANs to tackle these 
challenges directly. These terms are engineered to bolster the 
treatment of low-confidence images proximate to decision 
boundaries.

The proposed consistency regularization modules are 
integral to the recommended semi-supervised GANs, 
aiming to elevate the performance and robustness of the 
model components. These modules consist of two dis-
crete submodules: latent individual-relational consistency 
regularization and latent inverse individual-relational 
consistency regularization. Through combining these two 
consistency regularization submodules, both the discrimi-
nator and the bad generator's performance is bolstered, 
thereby augmenting the generation of bad fake images 
as support vectors. This improvement leads to enhanced 

(4)Lossclassifier−real−supervised = −

nc∑

i=1

(yilog(C
(
xl
)
i
)

(5)

Lossclassifier−inversed−cross−entropy = −

nc∑

i=1

(arg max(C(G(z))i)log(1 − C(G(z))i),

(6)

Lossclassifier−real−unsupervised = −
∑nc

i=1
(arg max(C(xu)i)log(C(x

u)i)

nc = number of class

Generate bad fake images by the 

GAN

Apply latent individual-relational regularization to the discriminator

Apply latent inversed individual- relational regularization to the 
generator

Supervise the training of the 

classifier through labeled data

Pseudo labeling of unlabeled images 

by the classifier

Calculate performance metrics

Start

End

Fig. 2   The overall workflow of individual-relational consistency 
for the bad semi-supervised generative adversarial networks (IRC-
BSGAN) method
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generalization and performance of the suggested semi-
supervised model.

3.4.1 � Latent individual‑relational regularization

To boost the discriminator's performance and counter the 
effects of limited image availability, we employ augmenta-
tion and consistency regularization techniques. In individual 

consistency regularization, we label bad-generated images 
consistently as fake, whether they result from latent space 
modifications or local alterations within the same latent 
space (Eq. 7). To introduce local variations to each image's 
latent vectors, we incorporate a vector of random num-
bers using a β function with mean μ and variance σ. This 
approach significantly reduces the label gap between bad 
images generated from the latent space and those resulting 
from local changes [61].

(7)Lossdiscriminator−latent−individual−regularization = ‖
�

z∼pz

D(G(z)) −
�

z�∼p�(z)

D
�
G
�
z�
��
‖2
2

Relational consistency regularization considers the 
inherent relationship between a bad fake image and other 
instances [22], capturing additional semantic information. 
We extract image activations (IA) from the fully connected 
layer of the discriminator Df  to serve as image features. 
Subsequently, we compute the activations of a batch of bad 
generated images originating from the latent space and its 
locally modified versions. Then, the image relationship 
matrix RL is computed by internally multiplying the activa-
tions of different images within the mini-batch using Eqs. 8 
and 9.

We utilize latent relational consistency regularization to 
preserve the structural stability of the relationship between 
bad images generated from the latent space when subjected 
to local perturbations of the same latent vector. This regu-
larization is integrated into the discriminator and is repre-
sented by Eq. 10.

(8)

RLi,j =

�
IAi.(IAj)

T

‖IAi.(IAj)
T‖

2

�
,∀i, j = 1… bz, bz = batch size, T = tanspose operation

(9)Df

(
xi
)
= IAi,∀i = 1… bz

(10)Lossdiscriminator−latent−individual−regularization = ‖
�

z∼pz

RL(Df (G(z))) −
�

z
�
∼p�(z)

RL(Df (G(z
�

)))‖2
2

3.4.2 � Latent inverse individual‑relational regularization

In the individual consistency regularization loss function 
(Eq. 11), the bad generator, in contrast to the discrimina-
tor, generates diverse bad images by inversely ensuring 
consistency between the latent space vector and its local 
perturbations. Furthermore, an inverse relational consist-
ency regularization loss function is introduced to disrupt 
the preservation of structural relationships between the 
activations of bad images from the latent space G(z) under 

local perturbations of the same latent vector within a mini-
batch (Eq. 12). This methodology enhances the generator's 
ability to glean discriminative information from the latent 
space and translate it into a broader spectrum of bad fake 
images, thereby augmenting both variety and sensitivity 
within the latent space. Moreover, it prevents the generator 
from producing similar structural patterns for similar latent 
vectors, fostering exploration of the latent space. Figure 2 
illustrates the overall flow, while Algorithm 1 provides 
the pseudo-code implementation of the proposed method.
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Algorithm 1   Individual-relational consistency for bad semi-
supervised generative adversarial networks (IRC-BSGAN).

(11)Lossgenerator−latent−inversed−individual−regularization = −‖
�

z∼pz

D(G(z)) −
�

z�∼p�(z)

D
�
G
�
z�
��
‖2
2

(12)Lossgenerator−latent−inversed−individual−regularization = −‖
�

z∼pz

RL(Df (G(z))) −
�

z�∼p�(z)

RL(Df (G(z
�)))‖2

2
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4 � Experiments and results

In this section, we conduct experiments to assess our pro-
posed semi-supervised model's effectiveness. We train our 
model using a limited amount of labeled data and a large 
pool of unlabeled images to build a classifier across four 
datasets. Subsequently, we evaluate the classifier's perfor-
mance on the testing set. Details about the datasets are pro-
vided in Section 4.1, while Section 4.2 defines performance 
metrics. We present the network architecture and parameter 
setup in Section 4.3. Finally, Section 4.4 documents the 
outcomes of implementing our proposed method.

4.1 � Datasets

The efficiency of the proposed semi-supervised model was 
evaluated on images from SVHN [62], CINIC-10 [39], 
COVID-19 [63], and CIFAR-10 [64] data sets.

•	 The SVHN (Street View House Numbers) dataset 
comprises 73,257 training images and 26,032 test 
images. Each sample is a 32 × 32 color image display-
ing cropped house numbers ranging from 0 to 9 against 
various backgrounds.

•	 The CIFAR-10 (Canadian Institute for Advanced Research, 
10 classes) dataset contains 50,000 training and 10,000 test 
images. Each image is a 32 × 32 color image representing 
one of 10 classes of natural objects: airplane, automobile, 
bird, cat, deer, dog, frog, horse, ship, and truck.

•	 CINIC-10 serves as a bridge between CIFAR-10 and 
ImageNet, comprising 270,000 RGB images (32 × 32 

Table 1   Confusion matrix

Actual

Negative Positive

Predicted Negative True Negatives False Negatives
Positive False Positives True Positives

Fig. 3   The structure of the a) discriminator, b) generator, and c) classifier for SVHN, CINIC-10, COVID-19, and CIFAR-10

Table 2   The proposed model parameters

Parameters SVHN CIFAR-10 CINIC-10/
COVID-19

lrD 0.0002 0.0002 0.0002
lrG 0.0002 0.0002 0.0002
lrC 0.1 0.1 0.1
Momentum 0.5 0.5 0.9
Beta1 0.5 0.5 0.5
Beta2 0.999 0.999 0.999
batch_size 100 100 128
β function:(μ, σ) (0,0.03) (0,0.07) (0,1)
z_dim 100 100 100
epochs 400 400 400
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pixels). It facilitates the evaluation of model perfor-
mance on ImageNet-like images corresponding to the 
classes in CIFAR-10. The dataset shares class labels 
with CIFAR-10 and is segmented into training, valida-
tion, and test subsets, each containing 90,000 images.

•	 Canayaz developed a comprehensive COVID-19 X-ray 
dataset featuring three distinct patient subgroups: COVID-
19, pneumonia, and healthy individuals. The dataset com-
prises a total of 1092 images, with each class being bal-
anced. All grayscale images in the experiment are 32 × 32 
pixels. For our study, we reserved a subset of 108 images 
for testing, with each class containing 36 images.

The training datasets comprise real images, whereas the 
images produced by the generator are deemed fake. In semi-
supervised learning, a subset of the training images, accom-
panied by their respective labels, are identified as labeled real 
images. Conversely, the remaining training images lacking 
labels are denoted as unlabeled real images.

4.2 � Evaluation metric

Table 1 presents the confusion matrix, consisting of the 
components TP (true positives), TN (true negatives), 
FP (false positives), and FN (false negatives) [65]. In 
multi-class classification scenarios, the positive class is 

identified as the target class, while the remaining classes 
are treated as negative. TP signifies the number of actual 
positive class samples correctly classified as positive, while 
TN denotes the number of actual negative class samples 
correctly classified as negative. FP represents the count of 
actual negative samples incorrectly classified as positive, 
whereas FN indicates the number of actual positive samples 
incorrectly classified as negative. The accuracy index is 
computed using Eq. 13, where a higher value signifies 
superior model performance [66]. Additionally, the model's 
error rate, F1 score, sensitivity, specificity, and precision 
metrics are defined by Eqs. 14–18.

(13)
Accuracy = ((TP + TN)∕(TP + FP + FN + TN)) × 100

(14)Error rate = 1 − Accuracy

(15)F1 = ((2 × TP)∕((2 × TP) + FP + FN))

(16)Sensitivity = TP∕(TP + FN)

(17)Specificity = TN∕(TN + FP)

(18)Precision = Tp∕(Tp + FP)

Fig. 4   Confusion matrices 
for classifiers trained with (a) 
500 and (b) 1000 labeled train-
ing images on SVHN test data
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4.3 � Experiment settings

The implemented method was executed on a laptop equipped 
with an Intel Core i7 12700H processor boasting a clock 
speed of 4.00 GHz, 32 GB of RAM, and an 8 GB NVIDIA 
GeForce RTX 3070 graphics card. Python programming 
language, along with the Torch library, was leveraged to 
implement the proposed algorithm. Our approach entailed 
a multi-class classifier, a bad generator, and a discriminator, 
integrating individual-relational consistency regularization 

and a pseudo-labeling technique. To ensure a fair compari-
son with the referenced paper [5], we adjusted the multi-
class classifier by employing a convolutional network 
with 13 layers (CNN-13) tailored for the SVHN, CINIC-
10, COVID-19, and CIFAR-10 datasets. The architectural 
designs of the bad generator and discriminator networks 
were inspired by the infoGAN approach [30]. Detailed vis-
ual representations of the three component architectures are 
depicted in Fig. 3.

The images utilized in the networks for the SVHN, 
CINIC-10, COVID-19, and CIFAR-10 datasets were of 
dimensions 32 × 32. In these datasets, batch sizes and the 
length of the z vector were set to 100, as stipulated in refer-
ence [5]. Concerning learning rates, the classifier, discrimi-
nator, and generator were assigned values of 0.1, 2e-4, and 
2e-4, respectively, across all datasets. For the SVHN data-
set, a variance (σ) value of 0.03 was employed in the local 
deviation function, whereas for the CIFAR-10 and CINIC-10 
datasets, variance values of 0.07 and 1 were chosen, respec-
tively. These specific variance values were meticulously 
selected to optimize performance on each respective dataset. 
The training regimen for all datasets comprised 400 epochs. 
For more detailed information regarding the model's param-
eters, kindly consult Table 2.

4.4 � Results

Experiments were conducted on the SVHN, CINIC-10, 
COVID-19, and CIFAR-10 datasets. The process of select-
ing images for training the classifier actively involved choos-
ing 500 and 1000 images from the SVHN training data as 
labeled images, as detailed in reference [5]. In Fig. 4, con-
fusion matrices for CNN-13 classifiers on the SVHN test 
data are illustrated. When trained with 500 labeled images, 
the classifier demonstrated TP values of 1698, 4786, 4039, 
2772, 2467, 2280, 1931, 1918, 1578, and 1528 for the ten 
output classes on the SVHN test data. Nevertheless, with 
an increase in labeled images to 1000 during the training 
process, the classifier exhibited improved TP values for the 
same classes, achieving 1693, 4859, 4060, 2750, 2464, 2289, 
1930, 1920, 1576, and 1531.

Figure 5 displays a series of bad fake images created 
by regularized-bad generators. The classifiers on SVHN 
were trained using 500 and 1000 labeled training images, 
as illustrated in (a) and (b), respectively. Incorporating 
both individual and relational consistency techniques sig-
nificantly improves the performance of the bad generator. 
This enhancement results in the generation of informa-
tive bad fake images, offering valuable insights into the 
classifier's decision boundary. These techniques enable 
the bad generator to produce fake images that effectively 
depict and convey information about the classifier's deci-
sion boundaries.

                              (a)

(b)

Fig. 5   Fake images generated by regularized bad generators where 
(a) 500 and (b) 1000 labeled training images were used for SVHN 
classifiers
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In our experiment, we curated a subset of labeled images 
from the CIFAR-10 training dataset, specifically select-
ing 1000 and 4000 images to train the classifier [5]. Fig-
ure 6 illustrates the confusion matrices for classifiers on 
the CIFAR-10 test data. Upon training the CNN-13 classi-
fier with 1000 labeled images, we observed TP values for 
the ten output classes on the CIFAR-10 test data, yielding 
corresponding TP values of 894, 961, 694, 686, 894, 854, 
961, 903, 920, and 948. Conversely, training the classifier 
with 4000 labeled images resulted in improved TP values 
for the same classes. The enhanced TP results were 963, 
970, 886, 860, 961, 886, 975, 956, 967, and 958. Moreover, 
improvements were noted in FP, TN, and FN values. Fig-
ure 7 illustrates the generated fake images by regularized-
bad generators using 1000 and 4000 labeled training images 
for classifiers on CIFAR-10, as depicted in subfigures a and 
b, respectively. The application of individual-relational con-
sistency regularization to the bad images significantly con-
tributes to enhancing the diversity of the generated images.

In another experiment conducted on the CINIC-10 data-
set, we selected 7,000 and 10,000 training images for clas-
sifier training, while the remaining data were designated as 
unlabeled images. Figure 8 illustrates the confusion matrices 

on the CINIC-10 test data for the CNN-13 classifier trained 
with 7,000 and 10,000 labeled images. Initially, the TP val-
ues for the ten output classes of the test data were estimated 
as 7893, 7424, 7200, 7111, 7028, 5599, 8192, 7640, 7920, 
and 7385 using a classifier trained with 700 labels per class. 
However, these TP values improved to 7819, 7795, 7559, 
7001, 7126, 6807, 8445, 8089, 8078, and 7351 using a clas-
sifier trained with 1,000 labels per class. Figure 9 depicts the 
bad images generated by individual-relational consistent bad 
generators on the CINIC-10 dataset. In this case, the gen-
erators engage in an adversarial game with the classifiers, 
which were trained using 700 and 1000 labeled images per 
class, respectively.

From the COVID-19 training data, we selected 10 and 40 
labeled images per class for training the classifiers, while 
the remaining data was utilized as unlabeled. The confusion 
matrices for the CNN-13 classifiers on the COVID-19 test 
data are depicted in Fig. 10. The classifier trained with 30 
labeled images achieved TP values of 34, 36, and 32, while 
the classifier trained with 120 labeled images estimated TP 
values of 35, 36, and 35. Figure 11 shows the bad images 
generated using individual-relational consistent bad genera-
tors on the COVID-19 dataset.

Fig. 6   Confusion matrices 
for classifiers trained with (a) 
1000 and (b) 4000 labeled 
training images on CIFAR-10 
test data leba
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The proposed consistency regularization losses intro-
duce increased variation and diversity in the generated 
bad images, resulting in a broader spectrum of informative 
images. These bad generated images display inter-class 
features, incorporating characteristics or elements from 
multiple classes. Consequently, the classifier exhibits low 
confidence in accurately classifying these images due to the 
presence of conflicting or ambiguous features. They offer 
valuable support to the classifier in precisely delineating 
the decision boundary and enhancing the pseudo-labeling 

of low-confidence unlabeled images. Additionally, Fig. 12 
illustrates the accuracy curves depicting the convergence 
of the model on the SVHN, CINIC-10, CIFAR-10, and 
COVID-19 datasets. These curves visually represent the 
model's accuracy progression during training.

5 � Discussion

In this section, we offer a comprehensive discussion of 
our findings, commencing with a quantitative analysis in 
Sect. 5.1, followed by the outcomes of our ablation studies 
in Sect. 5.2, and concluding with a qualitative discussion 
in Sect. 5.3.

5.1 � Quantitative discussion

The error rates obtained using the CNN-13 classifier for the 
CIFAR-10 and SVHN datasets are summarized in Table 3. 
Non-bold results in Tables 3 and 4, drawn from papers [5, 
8, 39], emphasize accuracy and error rate metrics. Con-
versely, the bold numerical values in the tables denote the 
best results attained from our implementation under identi-
cal conditions.

On the SVHN dataset, the state-of-the-art (SOTA) 
supervised model (Manifold Mixup) yielded estimated 
error values of 20.57 ± 0.63 and 13.07 ± 0.53 when 
trained with 500 and 1000 labeled images, respectively 
[67]. Nonetheless, when the same labeled and unlabeled 
images were utilized in the semi-supervised method (ICT) 
with the same classifier, substantially lower error rates 
of 4.23 ± 0.15 and 3.89 ± 0.04 were achieved [5]. In con-
trast, the SNTG method [23] yielded error estimates of 
3.99 ± 0.24 and 3.86 ± 0.27. Furthermore, when our pro-
posed IRC-BSGAN method was applied to the SVHN 
dataset, a notable improvement in the mean error rate 
was observed, with achieved values of 3.87 ± 0.17 and 
3.67 ± 0.09, respectively. Regarding other performance 
metrics for SVHN test images, using 500 labeled images 
resulted in a precision of 96.08%, a sensitivity of 96.02%, 
a specificity of 99.51%, and an F1 score of 96.03%. When 
the number of labeled images increased to 1000, a preci-
sion of 96.33%, a sensitivity of 96.31%, a specificity of 
99.54%, and an F1 score of 96.32% were achieved.

Estimated error values of 34.58 ± 0.37 and 18.59 ± 0.18 
on the CIFAR-10 dataset were achieved by the SOTA-super-
vised model (Manifold Mixup) when trained with 1000 and 
4000 labeled images, respectively [67]. Under the same 
conditions, error rates of 15.48 ± 0.78 and 7.29 ± 0.02 were 
yielded by the semi-supervised ICT method [5]. The CoUA 
approach [42] predicted error values as 13.83 ± 0.51 and 
8.01 ± 0.28. Furthermore, our proposed IRC-BSGAN method 

(a)

(b)

Fig. 7   Fake images generated by regularized bad generators where 
(a) 1000 and (b) 4000 labeled training images were used for CIFAR-
10 classifiers, respectively
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further improved the predicted error rates to 12.76 ± 0.31 
and 6.17 ± 0.05. For CIFAR-10, when 1000 labeled images 
were utilized, test images exhibited an estimated precision 
of 87.43%, a sensitivity of 87.15%, a specificity of 98.57%, 
and an F1 score of 87.03%. As the number of labeled images 
increased to 4000, the achieved results improved, demonstrat-
ing a precision of 93.83%, a sensitivity of 93.82%, a specific-
ity of 99.31%, and an F1 score of 93.80%.

Table 4 provides a comprehensive evaluation of per-
formance results on the CINIC-10 dataset. The outcomes 
obtained from various approaches, including the proposed 
method, a basic conventional CNN-13 supervised method, 
and state-of-the-art semi-supervised learning algorithms [5, 
8, 39], are thoroughly analyzed. When the CNN-13 clas-
sifier was trained with 700 and 1000 labeled images per 
class as a supervised model, it resulted in estimated error 
values of 33.7 ± 0.14 and 30.04 ± 0.29, respectively. The 
semi-supervised ICT approach [5], which incorporated 
unlabeled images, achieved error rates of 25.81 ± 0.16 and 
23.19 ± 0.21. The DSSLDDR + MT model [39] demon-
strated error rates of 23.96 ± 0.42 and 21.81 ± 0.16, while 
the DNLL model [8] yielded error rates of 22.11 ± 0.28 and 

19.38 ± 0.17. Notably, the proposed IRC-BSGAN method 
significantly improved the predicted error rates, attaining 
values of 18.41 ± 0.11 and 15.45 ± 0.13 when used in con-
junction with the CNN-13 classifier and 7000 and 10,000 
labels, respectively. In the case of CINIC10, with 700 
labeled images per class, an estimated precision of 81.62%, 
a sensitivity of 81.55%%, a specificity of 97.95%, and an F1 
score of 81.48% were obtained. By increasing the number 
of labeled images per class to 1000, the achieved results 
improved, yielding a precision of 84.61%, a sensitivity of 
84.52%, a specificity of 98.28%, and an F1 score of 84.52%.

5.2 � Ablation studies

In this section, we introduce additional experimental find-
ings aimed at validating the efficacy of the proposed con-
sistency module within the framework of bad generative 
semi-supervised classification. Furthermore, we investigate 
how different factors, including the components of the con-
sistency module, the architecture of the classifier, and the 
choices regarding the activation number of the discriminator, 
influence the behavior of the system.

Fig. 8   Confusion matrices 
on the CINIC-10 test images 
via classifiers trained with 
(a) 700 and (b) 1000 labeled 
images per class lebaLlautc
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Table 5 presents the average percentages of accuracy 
obtained from five runs for the COVID-19 test dataset, 
focusing on the activation number and the corresponding 

number of labeled images (30, 120). The table dis-
plays four different activation numbers: 500, 100, 700, 
and 300. Each activation number is associated with two 
sets of accuracy percentages, one for each label. For the 
activation number of 500, the average accuracy percent-
ages for the two labels (30, 120) are 92.66% ± 0.17% and 
97.53% ± 0.53%, respectively. When the activation number 
is set to 100, the accuracy percentages reduce to values of 
92.28% ± 0.54% and 97.41% ± 0.46% for the two labels. 
Similarly, an activation number of 300 yields higher accu-
racy percentages of 94.45% ± 0.23% and 98.26% ± 0.31% 
for the respective labels. Lastly, an activation number of 
700 results in accuracy percentages of 93.98% ± 0.27% and 
97.71% ± 0.29% for the two labels. These findings suggest 
that the choice of activation number has an impact on the 
accuracy of the COVID-19 test dataset. Three hundred 
activation numbers generally lead to improved accuracy, 
as demonstrated by the increasing percentages observed 
in the table.

Table 6 presents the average percentages of accuracy 
obtained from five runs for the COVID-19 test dataset, 
focusing on consistency modules and different classifiers. 
The table depicts two models, bad GAN and IRC-BSGAN, 
and two classifiers, CNN-13 and WRN-28–2. The accuracy 
percentages are provided for two scenarios: COVID-19, with 
30 and 120 labeled images. For the base model bad GAN 
and classifier CNN-13, the average accuracy percentages for 
COVID-19 with 30 labels are 92.59% ± 0.36%, and with 120 
labels, they are 97.18% ± 0.15%. On the other hand, when 
using the IRC-BSGAN with the same classifier CNN-13, 
the accuracy percentages increase to 94.45% ± 0.23% for 
COVID-19 with 30 labels and 98.26% ± 0.31% with 120 
labels.

Similarly, for the basic model bad GAN and classi-
fier WRN-28–2 with 30 labels, the accuracy percent-
ages are 92.13% ± 0.66%, and with 120 labels, they are 
96.76% ± 0.65%. Utilizing the consistency module with 
the classifier WRN-28–2, the accuracy percentages reach 
93.51% ± 0.93% with 30 labels and 97.25% ± 0.43% with 120 
labels. These results indicate that the choice of consistency 
module and classifier has a notable impact on the accuracy 
of the COVID-19 test dataset. The bad GAN with the indi-
vidual-relation-consistency module (IRC-BSGAN) generally 
outperforms the basic bad GAN module, resulting in higher 

(a)

(b)

Fig. 9   Bad images generated by consistent bad generators a and b on 
the CINIC-10 dataset where classifiers were trained with (a) 7000 
and (b) 10,000 labeled images, respectively

Fig. 10   Confusion matrices 
on the COVID-19 test images 
via classifiers trained with (a) 
30 and (b) 120 labeled images
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accuracy percentages. Additionally, the classifier CNN-13 
tends to demonstrate better accuracy compared to WRN-
28–2 in most cases. However, it's important to note that these 
findings are based on an average of five runs and may vary 
depending on the specific dataset and experimental setup.

Table 7 provides the performance metrics for the IRC-
BSGAN method on the COVID-19 test dataset using 

classifiers trained with (a) 30 labeled images and (b) 120 
labeled images. The average performance across all classes 
using 30 labeled images is a precision of 94.71%, a sensi-
tivity of 94.44%, a specificity of 97.22%, and an F1 score 
of 94.44%. On the other hand, when utilizing 120 labeled 
images, the average performance across all classes is a pre-
cision of 98.15%, a sensitivity of 98.15%, a specificity of 
99.07%, and an F1 score of 98.14%. These results confirm 
that increasing the number of labeled images from 30 to 120 
leads to improved performance across all metrics.

Based on Table 8, the activation number that yields the 
lowest average error rate is 500 for both the SVHN and 
CIFAR-10 datasets. For the SVHN dataset, this activation 
number results in an error rate of 3.67% ± 0.09%. Simi-
larly, for the CIFAR-10 dataset, the error rate decreases to 
12.76% ± 0.31% when using the same activation number.

5.3 � Qualitative discussion

The results of the study demonstrate a significant enhance-
ment in classifier performance when unlabeled data is inte-
grated using our proposed semi-supervised method (IRC-
BSGAN). Moreover, an increase in the number of labeled 
images employed for model training correlates with a reduc-
tion in the error rate. This finding highlights the importance 
of access to a larger pool of labeled images in enhancing 
the model's capacity for generalization and accurate pre-
dictions. The theoretical implications of our approach hold 
particular relevance in the context of improving bad GANs' 
performance. By incorporating unlabeled images, including 
those of low quality, and leveraging techniques such as data 
augmentation and individual-relational consistency regulari-
zation, we can elevate the overall effectiveness of these mod-
els. This highlights the significance of integrating diverse 
data sources and enforcing consistency in model predictions, 
thereby enhancing their robustness and reliability.

The practical implications of our method extend to various 
domains, notably medical diagnosis, where obtaining labeled 
data can be arduous due to the requirement for expert annota-
tions [12]. Additionally, the method is relevant for applications 
like fraud detection or anomaly detection, where accurately 
determining the decision boundary is paramount for effectively 
identifying fraudulent or anomalous instances [69].

Our proposed method, referred to as individual-relational 
consistency for bad semi-supervised generative adversarial 
networks (IRC-BSGAN), distinguishes itself from previous 
works in several key aspects:

1.	 Novel latent (inversed) individual and relational con-
sistency: Previous methods have primarily focused on 
individual consistency regularization, which perturbs 
individual data points to improve classification perfor-
mance. In contrast, the suggested method introduces 

(a)

(b)

Fig. 11   Bad images generated by consistent bad generators a and b on 
the COVID-19 dataset where classifiers were trained with (a) 30 and 
(b) 120 labeled images, respectively
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(inversed) individual and relational consistency regulari-
zation losses applied to bad fake images to enhance their 
generation and detect boundaries for low-confidence 
unlabeled images. Relational consistency regulariza-
tion operates on the latent vectors of bad fake images 
in low-density areas to enhance coherence and consist-
ency within the latent space and the generated images. 
This approach improves feature learning in mislabeled 
images near the decision boundary, reducing incorrect 
pseudo-labeling using insights from bad fake images.

2.	 Leveraging low-density areas: Our proposed method 
specifically targets low-density areas where the 
model encounters difficulties in capturing mean-
ingful information and generating bad images. By 
promoting local smoothing of each fake image and 
encouraging smoothness among neighboring points 
(relational), the method aims to uncover additional 
semantic information from unlabeled images, espe-
cially low-confidence unlabeled images in low-den-
sity regions.

Fig. 12   The accuracy curves on 
the SVHN, CINIC-10, CIFAR-
10 and COVID-19 data

Table 3   Average percentages 
of error rates obtained from five 
runs for the SVHN and CIFAR-
10 test datasets

Reference Model Number Of labels

SVHN (500) SVHN (1000) CIFAR-10
(1000)

CIFAR-10
(4000)

[67] Supervised (Mani-
fold Mixup)

20.57 ± 0.63 13.07 ± 0.53 34.58 ± 0.37 18.59 ± 0.18

[35] � model 6.65 ± 0.53 4.82 ± 0.17 31.65 ± 1.20 12.36 ± 0.31
[35] TempEns 5.12 ± 0.13 4.42 ± 0.16 23.31 ± 1.01 12.16 ± 0.24
[37] MT 4.18 ± 0.27 3.95 ± 0.19 21.55 ± 1.48 12.31 ± 0.28
[45] VAT - 5.42 ± NA - 11.36 ± NA
[45] VAT + Ent - 3.86 ± NA - 10.55 ± NA
[46] VAdD - 4.16 ± 0.08 - 11.32 ± 0.11
[23] SNTG 3.99 ± 0.24 3.86 ± 0.27 18.41 ± 0.52 10.93 ± 0.14
[37] MT + Fast SWA - - 15.58 ± NA 9.05 ± NA
[39] DSSLDDR 9.07 ± 1.15 6.65 ± 0.27 27.42 ± 1.46 15.98 ± 0.68
[30] bad GAN - 4.25 ± NA 20.63 ± NA 14.41 ± NA
[39] DSSLDDR + MT 4.12 ± 0.47 3.9 ± 0.28 16.99 ± 0.57 10.41 ± 0.2
[43] Triple-BigGAN - - - 8.90 0.21
[42] CoUA - - 13.83 ± 0.51 8.01 ± 0.28
[40] DAGE - - 14.00 ± 0.49 9.01 ± 0.24
[41] ReliaMatch - 7.13 ± 0.28 - 7.42 ± 0.05
[5] ICT 4.23 ± 0.15 3.89 ± 0.04 15.48 ± 0.78 7.29 ± 0.02
Current research IRC-BSGAN 3.87 ± 0.17 3.67 ± 0.09 12.76 ± 0.31 6.17 ± 0.05
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6 � Conclusion

Semi-supervised learning has emerged as a promising approach 
to leverage both labeled and unlabeled images for classification 
tasks. However, existing methods often assign pseudo-labels 
based solely on high probabilities, neglecting the relationships 
among low-confidence images. In response, this study proposes 
an innovative method called individual-relational consistency 
for bad semi-supervised generative adversarial networks (IRC-
BSGAN) to address the challenges of incorrect pseudo-labeling 
in semi-supervised learning scenarios. By incorporating novel 
individual and relational consistency regularization techniques, 
the proposed method aims to enhance the generation of bad 
fake images that resemble support vectors and improve the 
detection of the decision boundary.

The contributions of this research include the introduc-
tion of (inversed) individual and relational consistency regu-
larization losses on bad fake images and their latent vectors, 
as well as leveraging low-density areas to uncover additional 
semantic information. Experimental results conducted on the 
SVHN, CINIC-10, COVID-19, and CIFAR-10 datasets dem-
onstrated the effectiveness of IRC-BSGAN, outperforming 
existing approaches in terms of classification performance. 
IRC-BSGAN provided not only valuable insights but also 
delivered promising results for tackling the challenges of 
semi-supervised classification, thereby opening up avenues 
for further research and advancements in this field.

Table 4   Average error rate 
percentages from five runs for 
the CINIC-10 test data

Reference Model Number Of labels

CINIC-10 (700) CINIC-10 (1000)

[68] Supervised (CNN-13) 33.7 ± 0.14 30.04 ± 0.29
[35] � model 29.66 ± 1.12 27.04 ± 0.85
[35] TE 30.38 ± 1.01 27.35 ± 0.86
[37] MT 28.41 ± 0.29 25.71 ± 0.12
[5] ICT 25.81 ± 0.16 23.19 ± 0.21
[39] DSSLDDR 29.35 ± 0.31 26.75 ± 0.24
[39] DSSLDDR + MT 23.96 ± 0.42 21.81 ± 0.16
[8] DNLL 22.11 ± 0.28 19.38 ± 0.17
Current research IRC-BSGAN 18.41 ± 0.11 15.45 ± 0.13

Table 5   Average percentages of accuracy obtained from five runs for 
the COVID-19 test dataset depending on the activation number

The activation number Number Of labels

30 120

500 92.66 ± 0.17 97.53 ± 0.53
100 92.28 ± 0.54 97.41 ± 0.46
300 94.45 ± 0.23 98.26 ± 0.31
700 93.98 ± 0.27 97.71 ± 0.29

Table 6   Average percentages of accuracy obtained from five runs for 
the COVID-19 test dataset depending on consistency modules and 
different classifiers

Model classifier Number Of labels

30 120

bad GAN CNN-13 92.59 ± 0.36 97.18 ± 0.15
IRC-BSGAN CNN-13 94.45 ± 0.23 98.26 ± 0.31
bad GAN WRN-28–2 92.13 ± 0.66 96.76 ± 0.65
IRC-BSGAN WRN-28–2 93.51 ± 0.93 97.25 ± 0.43

Table 7   The performance metrics for the IRC-BSGAN method on the 
COVID-19 test dataset via classifiers trained with (a) 30 and (b) 120 
labeled images

(a)
Class number Precision Sensitivity Specificity F1
  COVID-19 100 94.44 100 97.14
  pneumonia 90.00 100 94.44 94.74
  health 94.12 88.89 97.22 91.43
  Average 94.71 94.44 97.22 94.44

(b)
Class number Precision Sensitivity Specificity F1
  COVID-19 97.22 97.22 98.61 97.22
  pneumonia 100 100 100 100
  health 97.22 97.22 98.61 97.22
  Average 98.15 98.15 99.07 98.14

Table 8   Average error rate (%) obtained from five runs for the SVHN 
and CIFAR-10 test datasets depending on the activation number

The activation number Data set

SVHN CIFAR-10

500 3.67 ± 0.09 12.76 ± 0.31
100 5.39 ± 0.21 15.71 ± 0.46
300 5.15 ± 0.11 15.43 ± 0.20
700 4.69 ± 0.15 14.36 ± 0.52
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While our research yields promising results, it is crucial 
to acknowledge potential limitations or challenges. These 
may include scalability issues when applying our method 
to larger datasets, sensitivity to hyperparameters, increased 
computational demands, or difficulties in generalizing the 
approach to diverse domains. It is prudent to consider these 
aspects and potential limitations when implementing and 
evaluating IRC-BSGAN in practical applications.
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